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Abstract—In this paper we present our multimedia corpus
of real-world driving data (NUDrive), built with the primar y
objective of firming foundations for applying digital signal
processing technologies in the vehicular environment. NUDrive
is a content rich corpus composed of driving, speech, video,
and physiological signals. So far, we have collected data from
250 drivers, who drove an instrumented vehicle under very
similar conditions. In order to provide a more meaningful
description of the situations drivers experience, a comprehensive
data annotation protocol is proposed. We also briefly present
a multimedia processing system, which uses information from
various sources in NUDrive to implement a context-dependent
estimation of a driver’s spontaneous frustration. Resultsare
encouraging and stress the relevance of content rich driving
corpora to driver behavior modeling.

I. I NTRODUCTION

The enormous impact on society of traffic-related problems
has, for many decades now, led academia and industry to
extensively study driver behavior. As a major step towards
a firmer research foundation, on which technologies for safety
and comfort while driving can be studied and evaluated, the
collection of human activities related to driving has proven to
be indispensable [1][2].

Laboratory-based approaches, especially driving simulators,
are the most common alternative to driving data collection.
Although less costly and more controllable, results based
solely on simulator data cannot be directly applicable to real-
world, since it has been shown that, among other things,
drivers’ reactions might be different in the lab than in real
vehicles [1][3]. Under real-world conditions, there are many
challenges in both implementing measurement systems and
carrying out the data collection experiments. On-road and
naturalistic approaches are by far more expensive and time
consuming, and require expertise in different research fields.
Nevertheless, data collected under real-world conditionspro-
vide a unique insight into driver behaviors and open a wide
range of research possibilities [4][5].

Although the use of instrumented vehicles for collecting
real-world driving data dates back to the 70s [6], only recently
has the recording of large-scale information become possible.
The Center for Integrated Acoustic Information Research
(CIAIR) at Nagoya University (NU), a pioneer in this work,
recorded real-world data from 500 drivers from 2000 to 2002
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[7]. The CIAIR database is primarily focused on speech
processing; thus, precious informations on driver status (e.g.,
physiological signals) and vehicle environment (e.g., following
distance) are not available.

To overcome this drawback and provide more detailed
information on drivers and environmental conditions, we have
been constructing a large-scale corpus (NUDrive) since 2006.
In this paper, we describe this research project devoted to
capturing exhaustively the human activity with multimedia
signals from many sensors in real traffic. Our main goal
is to, based on collected data, develop firm foundations for
applying digital signal processing technologies in the vehicular
environment. So far, driving, speech, video, and physiological
signals have been recorded from 250 drivers, who drove the
same instrumented vehicle under very similar conditions. We
plan to continue collecting these data from 250 additional
drivers until 2011. Data collection apparatus is presentedin
section II-A, collection process in section II-B, and collected
data is overviewed in section II-C.

One of the major challenges in the driver behavior analysis
field is the development of context-sensitive methods that also
take into account the situation in which the behavior is elicited,
rather then relying solely on responses (e.g., force on pedals,
facial expressions, physiological changes). While driving, our
actions are, most of the time, carefully planned after a complex
cognitive decision-making process based on different variables
such as weather condition, road design, and the presence
or absence of pedestrians. Therefore, an effective labeling
of multimedia information is critical for providing a more
meaningful description of the situations drivers experience.
In this work we also proposed a data annotation protocol,
presented in section III.

In order to study how different cultural traits and traffic
conditions affect the behavior of drivers, part of the data
collection is conducted under international collaboration with
the University of Texas at Dallas (USA) and with Sabanci
University (Istanbul, Turkey). Data are collected and annotated
in a similar fashion in all three sites. Such collaboration is cru-
cial for not only research analysis and consistent technology
evaluation, but also for establishing international standards in
this area.

Finally, in section IV we present an example of a multimedia
processing system devoted to the context-dependent estimation
of a driver’s spontaneous frustration. This system combines
both collected data and annotations, and has a potential to
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Fig. 1. Sensor and designed recording system utilized in data collection. Devices are divided into: input (blue), processing (black), and storage (red).

enhance the interaction between driver and vehicular systems.

II. ON-ROAD DATA COLLECTION

A. Data collection apparatus

A data collection vehicle was designed for synchronously
recording audio with other multimedia data. Various sensors
were mounted on a Toyota Hybrid Estima with 2,360 cc
displacement and automatic transmission. Data collectionwas
conducted using the system described in Fig. 1. Blue, black,
and red boxes indicate input, processing, and storage devices,
respectively. Videos were captured by five cameras with set
focal points: the drivers face (x3 different views), drivers feet,
and the road view ahead of the vehicle. An omnidirectional
camera was also mounted on the roof. A potentiometer (Copal
M-22E10-050-50K) was used to measure steering angles, and
force sensors (Kyowa Electronics Instruments CO. LPR-A-
03KNS1 and LPR-R-05KNS1) were mounted on the gas and
brake pedals, respectively. Vehicle velocity was measured
based on the output of the JIS5601 pulse generator. Distance
per 100 ms was obtained by multiplying pulse intervals and
tire circumference. All digital signals were converted to analog
by a D/A converter, so as to be sampled synchronously with
other analog signals. Two kinds of distance sensors (Sick
DMT-51111 and Mitsubishi MR3685) were mounted in front
of the vehicle to measure short and long ranges, respectively. A
differential GPS was used for recording the vehicle’s position.
In addition, 3D acceleration was acquired using a three-axial
low-power accelerometer from Crossbow Technology, Inc.
(CXL04LP3). Eleven omnidirectional condenser microphones
(Sony ECM-77B) and a close-talking headset microphone
were mounted on the vehicle to record driver speech. As for

the physiological signals, driver heart rate was acquired using a
chest belt sensor (Polar S810i), electrodermal activity (EDA)
was obtained with a skin potential sensor (SkinosSK-SPA),
placed on drivers left hand, and sweat levels using a sweat
sensor (Skinos, SKN 2000).

All sensors used in recordings are commercially available.
Driving data collection is also possible using an increasingly
common onboard communication protocol called Controlled
Area Network (CAN). The CAN-Bus signals contain real-
time vehicle information in the form of messages, which
greatly facilitates the acquisition process. CAN was not used
in NUDrive recordings because we decided to adopt sensors as
similar as possible to what we had in a previous data collection
project [7].

B. Data collection process

Participants drove the instrumented vehicle on city streets
and expressways in the city of Nagoya, Japan. During the
experiment, drivers performed secondary tasks carefully de-
signed to provide activities that were most likely to occur
during everyday driving. Detailed instructions on how to
perform each task were provided prior to the start of the
experiment. Data collection vehicle, route, equipments, and
treatment conditions were the same for all drivers. Drivers
performed the same secondary tasks in the same order at very
similar locations, so data from different drivers can be readily
compared. An experimenter monitored the experiments from
the rear seat.

Secondary tasks have been widely used as a way of
increasing workload, so driver performance under different
circumstances can be evaluated. Secondary tasks proposed in



TABLE I
SECONDARY TASKS.

ID Description

SR Signboard reading task.Drivers read aloud signboards
containing, for example, names of shops seen from the
drivers seat while driving.

ALS Alphanumeric strings reading.Drivers repeated random
four-character strings spoken by a machine.

ND Cellular phone navigation dialogue.Drivers were guided
to an unfamiliar place by a human navigator through a
hands-free cellular phone.

MR Music retrieval task.Using an automatic speech recog-
nition (ASR) system, drivers retrieved and played songs
from a list of 635 titles from 248 artists. Music could be
retrieved by artist name or song title, e.g., “Beatles” or
“Yesterday.”

NT No Task Baseline.Just driving without any task.

NUDrive focused on information exchange with in-vehicle
interfaces. Especially in Japan, interaction with navigation
systems and information retrieval tasks are part of every-
day driving and so require careful study. Proposed secondary
tasks are described in Tab. I. Figure 2 shows the route that
participants followed. Letters indicate where the different types
of tasks were performed.

Two questionnaires, one before and one after the experiment
were filled out. The first questionnaire collected information
on driver demographics such as age, driving experience, and
frequency of driving. In the second one, drivers were asked
to express their opinion about secondary tasks and equipment
used during the experiment, such as the navigation and the
speech recognition system.

After completing the route, the participant was also asked
to assess his/her subjective level of frustration by referring to
the front-view and facial videos as well as the corresponding
audio. A user interface for such assessment was designed so
that drivers used a continuous intensity scale and slid a bar
from neutral to extremely frustrated. The assessment was done
using data recorded when subjects drove on city streets while
interacting with the ASR system to retrieve and play music
(MR city). For this specific part of the experiment, route and
time were pre-selected in order to increase the number of frus-
trating environmental factors, such as pedestrians, especially
students, and bicycles crossing the road, oncoming vehicles
moving across into the driver’s lane, red-light signals, and slow
moving vehicles blocking driver’s path. While interactingwith
the machine, errors in speech recognition were also a frequent
cause of discomfort.

C. Collected data

Video footage, driving, audio, and physiological signals
were continuously recorded under both driving and idling con-
ditions from 250 subjects (about 250 hours). Figure 3 shows
demographic data on gender, age, driving experience, and
frequency of driving. Data are representative of the Japanese
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population. Figure 4 shows examples of recorded signals. Data
from other 200 drivers were collected in Dallas, USA (100
drivers) and Istanbul, Turkey (100 drivers) in a similar fashion
as part of an international collaboration. Preliminarily analysis
showed that there is no significant difference in the global
distribution of velocity, gas, and brake pedal force signals
across countries.

III. D ATA ANNOTATION

An effective annotation of multimedia information is crucial
for providing a more meaningful description of the situations
drivers experience. In this study, we proposed a data annotation
protocol that covers many of the factors that might affect
drivers and the drivers’ responses. The annotation labels are
comprised of four major groups: driver actions (e.g. facial
expression, head position), driving environment (e.g. type of
road, traffic density), vehicle status (e.g. turning, stopped), and
speech / background noise. The annotation protocol designed
in this research is comprehensive, and can be used in a wide
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Fig. 4. Examples of collected signals.

range of research fields. We are currently annotating data from
all drivers in our database. Data are being annotated in a
similar fashion at Dallas (USA) and Istanbul (Turkey), what
facilitates the consistent evaluation of technologies.

IV. EXAMPLE OF MULTIMEDIA DRIVING SIGNALS

PROCESSING: DRIVER FRUSTRATION ESTIMATION

In previous sections we described our multimedia corpus,
collected data, and annotation protocol. In this section we
briefly present an example of multimedia processing sys-
tem designed to integrate information from different sources
in NUDrive. The proposed system is devoted to the es-
timation of a driver’s spontaneous frustration based on a
context-dependent multimedia data fusion technique. Frus-
tration, which is defined as the outcome of interferences
with a goal-directed behavior, plays an important role in the
driving context, since it is one the major sources of aggression
[8][9]. As the number of in-vechicle devices increases, the
need for intelligent interfaces also stress the relevance of
frustration in driving. Together with interest, puzzlement, and
boredom, frustration is critical in human-computer interaction,
and recently it has been considered by many researches in
this field [10]. An accurate estimation of drivers’ emotional
state can be used to increase safety and comfort, acting as
a feedback for intelligent in-vehicle interfaces and adaptive
safety systems.

A few attempts have been made to automatic recognize
affect displays in in-car environments [11][12][13]. In the
present study, the proposed model is based on the assumption
that emotions are the result of an interaction with the environ-
ment and are usually accompanied by physiological changes,
facial expressions or actions. Methods on the estimation of
a driver’s emotions tend to oversimplify this model by, usu-
ally, disregarding the environment. The present approach is
an extension of a pilot study described in [14], where the
frustration estimation framework was outlined and resultsfor
three different drivers were presented.
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Traffic density

Turn

Time

Fig. 5. Example of annotation labels.

A. Materials and Methods

Data recorded while drivers interacted with a speech recog-
nizer (MR city) were utilized, so that not only the traffic but
also the man-machine interaction could be regarded as natural
sources of frustration. The annotation protocol was used to
manually code data from 20 drivers. The following labels and
possible states were used:

1) Traffic density (light / medium OR high);
2) Obstructions caused by pedestrians, bicycles, and parked

vehicles (non-obstructed / obstructed);
3) Stops at red-light signals (non-stopped / stopped);
4) Turn (not turning / turning);
5) Curve (not a curve / curve);
6) Overall face (neutral / non-neutral).

Coders annotated the time span of labels, so annotation results
can be seen as multiple streams of binary information, as
shown in Fig. 5. Labels 1-5 were used as a way of describing
the driving environment. In order to generate more consistent
information, the frustration level—which was self-assessed as
described in section II-B—was automatically quantized into
two levels: frustrated and not frustrated. The quantization
threshold was defined experimentally, being the one which
provide the best overall estimation.

When recognizing emotions, the use of complementary
information from various channels has proved to be superiorto
its single-modal counterpart, since the uncertainty due toone
channel can be decreased by adding new information. In this
study, together with the information obtained from annotation
labels, the following data/features were combined:

• Electodermal activity (EDA).Electrodermal activity is
one of the most widely used response systems in the
literature. It is linked with psychological concepts of
arousal and attention. Mean of normalized skin potential
signal (mean skin potential) and the absolute value of
the first-order difference of the normalized signal (∆ skin
potential) were used as EDA features for each data frame.

• Pedal actuation.The investigation on the effects of dif-
ferent emotional states on the way we drive is an open
and very interesting question. This study tackles this
problem by trying to show that actuation is also affected
by frustration. The force signal from gas minus brake was
used as the pedal actuation signal. Features were extracted
through spectral analysis of this signal by using a special
feature called “cepstrum” (cepstral coefficients): a widely
used spectral feature for speech and speaker recognition,



and, more recently, it proved to be effective in driver
modeling [4]. Features are calculated for each data frame.

• Speech recognition errors.The incapacity of the ASR
system to correctly recognize the name of artists or
songs was the most common type of recognition error.
Participants were instructed to say “No” when reacting
to such errors, so that they could repeat the desired input
until the machine gets it right. As a possible indicator
of speech recognition errors, we used the instants the
ASR system recognized a participant’s utterance as “No.”
This indicator was selected due to its consistency across
different drivers and required calculation time, which is
negligible. Nevertheless, since this is a pinpoint feature
that indicates an instant, an enlargement of its boundaries
was necessary. An analysis of frustration videos showed
that adding five seconds before and 15 seconds after each
utterance recognized as “No” was adequate. 20 seconds
is the time span in which significant verbal or gestural
reactions still occured; accordingly, we encoded speech
recognition errors as a binary signal, in which errors were
indicated by 20-second window of “1s.” The enlargement
of boundaries partially solved the problem of different
timings between ASR errors and other reactions, such as
facial expressions.

The process that causes frustration is complex. Several
uncertainties might be present in this process, and while
driving, frustration can be regarded as the result of a wide
range of contextual variables. To effectively estimate an emo-
tional state, a system that integrates evidence from multiple
sources in an efficient language is needed, and a Bayesian
network (BN) is the natural choice to deal with such task. A
BN is a state-of-art knowledge representation that createsa
very efficient language for building models of domains with
inherent uncertainty. Joint probabilities of a set of continuous
or discrete random variables (nodes) are represented in a
BN, which also explicitly encodes conditional independence
assumption in its structure. The details on Bayesian networks
can be found in [15], [16], and [17]. Figure 6 shows the
proposed Bayesian Network. This model was based on the
following assumptions: (1) environmental factors that may
have an impact on goal-directed behavior (traffic density, stops
at red-light signals, obstructions, turn or curve, and speech
recognition errors) may have a direct effect on frustration;
(2) a frustrated driver is likely to present changes in his/her
facial expression, physiological state, and gas- and brake-pedal
actuation.

B. Experiments and Evaluation

In order to verify the effectiveness of the proposed method
and features, experiments were performed with four different
variations of the network in Fig. 6. The direction of arrows was
kept fixed and the number of nodes was different depending
on the variation: (1)Basic: without neither driving behavior
nor speech recognition nodes; (2)Pedal actuation:the basic
plus pedal actuation node; (3)Speech:the basic plus speech
recognition errors; and (4)Full: with all nodes (Fig. 6).
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Fig. 6. Proposed Bayesian network structure. Squares represent discrete
(tabular) nodes and circle represents a continuous (Gaussian) node. Numbers
represent the number of mutually exclusive states each nodecan assume.
Experiments were conducted with four different variationsof this structure.

Detailed experimental conditions and parameter values can
be found in [14]. Individual networks were trained using
60% of data from each participant. The rest was used for
test. During training, all nodes were filled with information,
while during test, theFrustration node was empty and its
posterior probability was inferred using data from all other
nodes. Inferred probability was used as estimated frustration.

We evaluated the capacity of the proposed system to detect
frustration. After calculating the estimation signal fromeach
driver, it was filtered using a median filter of twelve seconds
so that spikes and short gaps could be removed. In order to
estimate the overall detection effectiveness, we added together
true/false positives/negatives from all drivers, so that we could
calculate overall true and false positive rates, represented by
a single point in the receiver operating characteristic (ROC)
space.

C. Results

Overall results for all four network variations are shown
in Fig. 7. In the ROC space, the point (0,1) represents the
perfect estimation. The closer the result gets to this point,
the better. Circles centered in (0,1) are also shown so that
different results can be easily compared. TheFull network,
in which both driving behavior and speech recognition results
were used, achieved the best result: a true positive (TP) rate
of 80% and a false positive (FP) rate of 9%, i.e., the system
correctly detected 80% of the frustration, and, when drivers
were not frustrated, it made mistakes 9% of the time. The
Basic variation achieved the worse result, with a TP rate of
74% and a FP rate of 12%. Both of the proposed features,
driving behavior and speech recognition errors, were effective
in boosting the estimation. These are a encouraging results.
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V. SUMMARY AND CONCLUSIONS

In this paper we described our multimedia corpus of driving
behaviors (NUDrive). Data from 250 drivers have already been
collected. We overviewed the data collection apparatus, data
annotation, and offered basic statistics on collected data. With
NUDrive we are able to test theoretical concepts and evaluate
anticipated systems using genuine human signals under real-
world conditions, that is, real instrumented car on real city
streets and highway roads. Part of the data collection is per-
formed under international collaboration with universities in
USA and Turkey. All collaborating partners use similar sensors
and a coherent data collection scenario—an important step
toward more general models of driver behavior. A sample of
collected data in Japan, USA, and Turkey can be downloaded
from the DriveBest website1.

We also presented a multimedia processing system, which
uses information from various sources in NUDrive to imple-
ment a context-dependent estimation of a driver’s spontaneous
frustration. Results stressed the importance of using multime-
dia data in order to effectively model a driver.
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