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Abstract—In this paper we present our multimedia corpus [7]. The CIAIR database is primarily focused on speech
of real-world driving data (NUDrive), built with the primar y  processing; thus, precious informations on driver stagug. (

objective of firming foundations for applying digital signal ; ; ; ; ;
processing technologies in the vehicular environment. NUive gg;ﬂg?'giSr',%?zl\f;i?;ﬁevemde environment (e.gloieing

is a content rich corpus composed of driving, speech, video, . . .
and physiological signals. So far, we have collected datadm To overcome this drawback and provide more detailed

250 drivers, who drove an instrumented vehicle under very information on drivers and environmental conditions, weeha
similar conditions. In order to provide a more meaningful peen constructing a large-scale corpus (NUDrive) sinces200
description of the situations drivers experience, a compigensive In this paper, we describe this research project devoted to

data annotation protocol is proposed. We also briefly presen . . . . . .
a multimedia processing system, which uses information fim capturing exhaustively the human activity with multimedia

various sources in NUDrive to implement a context-dependan Signals from many sensors in real traffic. Our main goal
estimation of a driver's spontaneous frustration. Resultsare is to, based on collected data, develop firm foundations for
encouraging and stress the relevance of content rich drivig  applying digital signal processing technologies in theicelar
corpora to driver behavior modeling. environment. So far, driving, speech, video, and physichig

|. INTRODUCTION signals have been recorded from 250 drivers, who drove the

same instrumented vehicle under very similar conditions. W

The enormous impact on society of traffic-related probler%?an to continue collecting these data from 250 additional

has, for many decades now, led academia and industry(gto

extensively studv driver behavior. As a maior step towar rivers until 2011. Data collection apparatus is preseirted
y Y ) J P ction II-A, collection process in section 1I-B, and cotled

whi Ving udi vald ' One of the major challenges in the driver behavior analysis

collection of human activities related to driving has prove field is the development of context-sensitive methods tlsat a

beLlnk()jlsptensatt))Ie [%j][Z]. h iallv drivi rordat take into account the situation in which the behavior isiteld;
avoratory-based approacnhes, especially driving SIeat |y, e relying solely on responses (e.g., force onlpeda

are the most common alternative to driving data collectiopa ial expressions, physiological changes). While dgyieur
Although less costly and more controllable, results basc%1 tions are, most of the time, carefully planned after a demp

solely on S|mL_JIator data cannot be directly applicable &l re cognitive decision-making process based on differentide
world, since it has been shown that, among other things S :

. , . . . : . Uch as weather condition, road design, and the presence
drivers’ reactions might be different in the lab than in re

. . r absence of pedestrians. Therefore, an effective lapelin
vehicles [1][3]. Under real-world conditions, there arenya of multimedia information is critical for providing a more

challenges in both implementing measurement systems a}‘Hganingful description of the situations drivers experé&en

carrying out the data collection experiments. On-road arlllgii this work we also proposed a data annotation protocol
naturalistic approaches are by far more expensive and time '

. . Lo . présented in section Il
consuming, and require expertise in different researchdiel P

Nevertheless. data collected under real-world conditi In order to study how different cultural traits and traffic

ide a uni é insiaht into driver behaviors and o enlmams .azénnditions affect the behavior of drivers, part of the data
v unique nsight into driv Vi P Willection is conducted under international collaboratidth
range of research possibilities [4][5].

) . . the Uni ity of T t Dall USA d with Sabanci
Although the use of instrumented vehicles for collectin e University of Texas at Dallas ( ) and wi abanct

aniversity (Istanbul, Turkey). Data are collected and datexl

real-world driving data dates back to the 70s [6], only rélgen in a similar fashion in all three sites. Such collaborat®nriu-

has the recording of large-scale information become plessib_. . :
. ) ial for not only research analysis and consistent teclgyolo
The Center for Integrated Acoustic Information Researcjl y y

(CIAIR) at Nagoya University (NU), a pioneer in this work, yaluation, but also for establishing international stadd in
. this area.
recorded real-world data from 500 drivers from 2000 to 200 Finally, in section IV we present an example of a multimedia
processing system devoted to the context-dependent ¢istima
MMSP’09, October 5-7, 2009, Rio de Janeiro, Brazil. of a driver's spontaneous frustration. This system conine

978-1-4244-4464-9/0$25.00 ©2009 IEEE. both collected data and annotations, and has a potential to



ﬂ%f @Wei-cameras Camera Heart rate
Digital sig Control
PC

recording
- Amplifier '—| Amplifier |"

1
=
o

Range R "1

Distance R

1 PC for image MIC 12
- f recording
GPS Iopeesf =
PC for . 1 Amplifier
- DSP v
Omni- —
directional . | Control unit | | HUB | Steering angle
camera I
l- : .
l : . Analog sig Velocity
H l_ recording
seud] si . . PC A

g

PC for E . - - i !
| Distance-M I—» DSP 1 H | Skin potential
v v

a

506060000000009d [ | Force sensor |' | Gas pedal |
° |

Force sensor H Brake pedal |

Sweat sensor

Cameras

Camera link

Multi-channel AD
converter (64-ch) Accelerometer

! 0000000000000000 |+

[_1Em

Camera adaptor

[

i

PC for recording

Fig. 1. Sensor and designed recording system utilized ia dallection. Devices are divided into: input (blue), pregiag (black), and storage (red).

enhance the interaction between driver and vehicular sysste the physiological signals, driver heart rate was acquissdgia
chest belt sensor (Polar S810i), electrodermal activi9AE
) was obtained with a skin potential sensor (SkinosSK-SPA),
A. Data collection apparatus placed on drivers left hand, and sweat levels using a sweat
A data collection vehicle was designed for synchronous$ensor (Skinos, SKN 2000).
recording audio with other multimedia data. Various sessor All sensors used in recordings are commercially available.
were mounted on a Toyota Hybrid Estima with 2,360 cPriving data collection is also possible using an increglsin
displacement and automatic transmission. Data collest@®m common onboard communication protocol called Controlled
conducted using the system described in Fig. 1. Blue, bladkea Network (CAN). The CAN-Bus signals contain real-
and red boxes indicate input, processing, and storageeatgvidgime vehicle information in the form of messages, which
respectively. Videos were captured by five cameras with ggeatly facilitates the acquisition process. CAN was n@dus
focal points: the drivers face (x3 different views), drigdeet, in NUDrive recordings because we decided to adopt sensors as
and the road view ahead of the vehicle. An omnidirectionaimilar as possible to what we had in a previous data cofiacti
camera was also mounted on the roof. A potentiometer (Copabject [7].
M-22E10-050-50K) was used to measure steering angles, and i
force sensors (Kyowa Electronics Instruments CO. LPR-&: Data collection process
03KNS1 and LPR-R-05KNS1) were mounted on the gas andParticipants drove the instrumented vehicle on city street
brake pedals, respectively. Vehicle velocity was measuradd expressways in the city of Nagoya, Japan. During the
based on the output of the JIS5601 pulse generator. Distaegperiment, drivers performed secondary tasks carefudly d
per 100 ms was obtained by multiplying pulse intervals argigned to provide activities that were most likely to occur
tire circumference. All digital signals were converted tmlpg during everyday driving. Detailed instructions on how to
by a D/A converter, so as to be sampled synchronously wiperform each task were provided prior to the start of the
other analog signals. Two kinds of distance sensors (Siekperiment. Data collection vehicle, route, equipments] a
DMT-51111 and Mitsubishi MR3685) were mounted in frontreatment conditions were the same for all drivers. Drivers
of the vehicle to measure short and long ranges, respectivel performed the same secondary tasks in the same order at very
differential GPS was used for recording the vehicle’s posit similar locations, so data from different drivers can bedilga
In addition, 3D acceleration was acquired using a threataxcompared. An experimenter monitored the experiments from
low-power accelerometer from Crossbow Technology, Inthe rear seat.
(CXL04LP3). Eleven omnidirectional condenser microplone Secondary tasks have been widely used as a way of
(Sony ECM-77B) and a close-talking headset microphoirecreasing workload, so driver performance under differen
were mounted on the vehicle to record driver speech. As forcumstances can be evaluated. Secondary tasks proposed i

Il. ON-ROAD DATA COLLECTION



TABLE |
SECONDARY TASKS.

ID Description

MR
SR Signboard reading taskDrivers read aloud signboards exp MR

containing, for example, names of shops seen from the 1 oy
drivers seat while driving. N N

ALS Alphanumeric strings readingDrivers repeated random <« <~

four-character strings spoken by a machine. ALS A SR )
exp %,

ND Cellular phone navigation dialoguédrivers were guided e
to an unfamiliar place by a human navigator through a
hands-free cellular phone.

Begin

MR Music retrieval task.Using an automatic speech recog- N
nition (ASR) system, drivers retrieved and played songs
from a list of 635 titles from 248 artists. Music could be —_—
retrieved by artist name or song title, e.g., “Beatles” or 500m

“Yesterday.” . - N
Fig. 2. Route participants followed. Secondary tasks amektrdirection are

NT No Task Baselinelust driving without any task. indicated. Music retrieval (MR) and alphanumeric stringading (ALS) were
performed on both city streets (city), and on expresswayp)(ePeriods of
no secondary task are labeled NT.

NUDrive focused on information exchange with in-vehicle 100%

interfaces. Especially in Japan, interaction with navarat Over 50 month or ese

systems and information retrieval tasks are part of every- 46-50 ;g?s

day driving and so require careful study. Proposed secgndar 759, | Female | [, o | | | [Afewtimes |

tasks are described in Tab. I. Figure 2 shows the route that aweek

participants followed. Letters indicate where the differgypes 36-40 15-20

of tasks were performed. 50% L a135 H 00 H i
Two questionnaires, one before and one after the experiment 2630

were filled out. The first questionnaire collected inforroati Male 5-10 Almost

on driver demographics such as age, driving experience, and 25% 1 u u — evervday

frequency of driving. In the second one, drivers were asked 21-25 3.5

to express their opinion about secondary tasks and equipmen

used during the experiment, such as the navigation and the 0% <Syears

speech recognition system. Gender Age Driving  Frequency

. .. experience  ofdriving

After completing the route, the participant was also asked

to assess his/her subjective level of frustration by refgrto Fig. 3. Basic demographics for the 250 participants.

the front-view and facial videos as well as the correspogpdin

audio. A user interface for such assessment was designed so

that drivers used a continuous intensity scale and slid a apulation. Figure 4 shows examples of recorded signals Da
from neutral to extremely frustrated. The assessment was dérom other 200 drivers were collected in Dallas, USA (100
using data recorded when subjects drove on city streetewhdrivers) and Istanbul, Turkey (100 drivers) in a similarias
interacting with the ASR system to retrieve and play musis part of an international collaboration. Preliminarihabysis
(MR city). For this specific part of the experiment, route anghowed that there is no significant difference in the global
time were pre-selected in order to increase the number sf fralistribution of velocity, gas, and brake pedal force signal
trating environmental factors, such as pedestrians, &slyec across countries.

students, and bicycles crossing the road, oncoming vehicle

moving across into the driver’s lane, red-light signals] alow l1Il. DATA ANNOTATION

moving vehicles blocking driver’s path. While interactiwith An effective annotation of multimedia information is craki
the machine, errors in speech recognition were also a frequor providing a more meaningful description of the situatio
cause of discomfort. drivers experience. In this study, we proposed a data atioiota

protocol that covers many of the factors that might affect
C. Collected data drivers and the drivers’ responses. The annotation labels a
Video footage, driving, audio, and physiological signalsomprised of four major groups: driver actions (e.g. facial
were continuously recorded under both driving and idling-co expression, head position), driving environment (e.getgp
ditions from 250 subjects (about 250 hours). Figure 3 showsad, traffic density), vehicle status (e.g. turning, sexhpand
demographic data on gender, age, driving experience, apkech / background noise. The annotation protocol designe
frequency of driving. Data are representative of the Jag@nén this research is comprehensive, and can be used in a wide
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Fig. 4. Examples of collected signals. manually code data from 20 drivers. The following labels and

possible states were used:

1) Traffic density (light / medium OR high);

range of research fields. We are currently annotating data fr 2) Obstructi db destri bicvcl doark
all drivers in our database. Data are being annotated in a) structions caused by pedestrians, bicycles, an parke
vehicles (non-obstructed / obstructed);

similar fashion at Dallas (USA) and Istanbul (Turkey), what 3) S d-liaht sianal q/ q):
facilitates the consistent evaluation of technologies. ) Stops at red- '9 t signais (non-stopped / stopped);
4) Turn (not turning / turning);

5) Curve (not a curve / curve);
IV. EXAMPLE OF MULTIMEDIA DRIVING SIGNALS 6) Overall face (neutral / non-neutral).

PROCESSING DRIVER FRUSTRATION ESTIMATION . .
Coders annotated the time span of labels, so annotatioltsresu

In previous sections we described our multimedia corpugan be seen as multiple streams of binary information, as
collected data, and annotation protocol. In this section v#@own in Fig. 5. Labels 1-5 were used as a way of describing
briefly present an example of multimedia processing sydi€ driving environment. In order to generate more consiste
tem designed to integrate information from different sesrc information, the frustration level—which was self-assesas
in NUDrive. The proposed system is devoted to the e§escribed in section Il-B—was automatically quantizedint
timation of a driver's spontaneous frustration based ont@o levels: frustrated and not frustrated. The quantizatio
context-dependent multimedia data fusion technique. -Frigreshold was defined experimentally, being the one which
tration, which is defined as the outcome of interferenc@sovide the best overall estimation.
with a goal-directed behavior, plays an important role ia th When recognizing emotions, the use of complementary
driving context, since it is one the major sources of aggwess information from various channels has proved to be supésior
[8][9]. As the number of in-vechicle devices increases, tHts single-modal counterpart, since the uncertainty duente
need for intelligent interfaces also stress the relevarfce @annel can be decreased by adding new information. In this
frustration in driving. Together with interest, puzzlerheand study, together with the information obtained from anriotat
boredom, frustration is critical in human-computer inttian, labels, the following data/features were combined:
and recently it has been considered by many researches i@ Electodermal activity (EDA)Electrodermal activity is
this field [10]. An accurate estimation of drivers’ emotibna one of the most widely used response systems in the
state can be used to increase safety and comfort, acting as literature. It is linked with psychological concepts of

a feedback for intelligent in-vehicle interfaces and adapt arousal and attention. Mean of normalized skin potential
safety systems. signal (mean skin potential) and the absolute value of
A few attempts have been made to automatic recognize the first-order difference of the normalized signal ¢kin
affect displays in in-car environments [11][12][13]. Ineth potential) were used as EDA features for each data frame.
present study, the proposed model is based on the assumption Pedal actuationThe investigation on the effects of dif-
that emotions are the result of an interaction with the emsir ferent emotional states on the way we drive is an open

ment and are usually accompanied by physiological changes, and very interesting question. This study tackles this
facial expressions or actions. Methods on the estimation of problem by trying to show that actuation is also affected

a driver's emotions tend to oversimplify this model by, usu- by frustration. The force signal from gas minus brake was
ally, disregarding the environment. The present approach i used as the pedal actuation signal. Features were extracted
an extension of a pilot study described in [14], where the through spectral analysis of this signal by using a special
frustration estimation framework was outlined and resfdts feature called “cepstrum” (cepstral coefficients): a wydel
three different drivers were presented. used spectral feature for speech and speaker recognition,



and, more recently, it proved to be effective in driver
modeling [4]. Features are calculated for each data frame.
o Speech recognition errorsThe incapacity of the ASR

Traffic density
2

Turn OR
curve
2

Stops at red-
light signal
2

This indicator was selected due to its consistency acros
different drivers and required calculation time, which is
negligible. Nevertheless, since this is a pinpoint feature y
that indicates an instant, an enlargement of its boundaries Overall face '\’F']zf:nfl':ln A Skin potential
was necessary. An analysis of frustration videos showed 2 4 2
that adding five seconds before and 15 seconds after each
utterance recognized as “No” was adequate. 20 SeCORglS 6. Proposed Bayesian network structure. Squares septradiscrete
is the time span in which significant verbal or gesturdabular) nodes and circle represents a continuous (Gayssode. Numbers
reactions still occured; accordingly, we encoded Speeg}qresent the number of mutually exclusive states each vadeassume.
" ' . . . xperiments were conducted with four different variatiafshis structure.

recognition errors as a binary signal, in which errors were

indicated by 20-second window of “1s.” The enlargement

of boundaries partially solved the problem of different

timings between ASR errors and other reactions, such @§tailed experimental conditions and parameter values can
facial expressions. be found in [14]. Individual networks were trained using

The process that causes frustration is complex. Seve? o of Qata fr_om each participant. The res t was use_d for
uncertainties might be present in this process, and whli S_t' D““F‘g training, all node_s were filled with mformatl_o
driving, frustration can be regarded as the result of a wide ile _durmg tes‘g,_ theFrus_tratlon nod_e was empty and its
range of contextual variables. To effectively estimate aro-e posterior probability was inferred using dafca from qll othe
tional state, a system that integrates evidence from ntmllti&Odes' Inferred probability was used as estimated fristrat
sources in an efficient language is needed, and a Bayesia¥/e evaluated the capacity of the proposed system to detect
network (BN) is the natural choice to deal with such task. Rustration. After calculating the estimation signal fraach
BN is a state-of-art knowledge representation that createdlriver, it was filtered using a median filter of twelve seconds
very efficient language for building models of domains wit§0 that spikes and short gaps could be removed. In order to
inherent uncertainty. Joint probabilities of a set of contius €stimate the overall detection effectiveness, we addeetheg
or discrete random variables (nodes) are represented ifrye/false positives/negatives from all drivers, so thatasuld
BN, which also explicitly encodes conditional independenéalculate overall true and false positive rates, represehy
assumption in its structure. The details on Bayesian néssvo@ Single point in the receiver operating characteristic RO
can be found in [15], [16], and [17]. Figure 6 shows thé&Pace.
proposed Bayesian Network. This model was based on the
following assumptions: (1) environmental factors that may
have an impact on goal-directed behavior (traffic densibps C. Results
at red-light signals, obstructions, turn or curve, and spee
recognition errors) may have a direct effect on frustrgtion Overall results for all four network variations are shown
(2) a frustrated driver is likely to present changes in k@s/hin Fig. 7. In the ROC space, the point (0,1) represents the

facial expression, physiological state, and gas- and bpekial Perfect estimation. The closer the result gets to this point
actuation. the better. Circles centered in (0,1) are also shown so that

_ ) different results can be easily compared. Thdl network,
B. Experiments and Evaluation in which both driving behavior and speech recognition rssul
In order to verify the effectiveness of the proposed methadere used, achieved the best result: a true positive (TE) rat
and features, experiments were performed with four differeof 80% and a false positive (FP) rate of 9%, i.e., the system
variations of the network in Fig. 6. The direction of arrowasv correctly detected 80% of the frustration, and, when dsiver
kept fixed and the number of nodes was different dependingre not frustrated, it made mistakes 9% of the time. The
on the variation: (1)Basic: without neither driving behavior Basic variation achieved the worse result, with a TP rate of
nor speech recognition nodes; (R¢dal actuationithe basic 74% and a FP rate of 12%. Both of the proposed features,
plus pedal actuation node; ($peechthe basic plus speechdriving behavior and speech recognition errors, were tifec
recognition errors; and (4)ull: with all nodes (Fig. 6). in boosting the estimation. These are a encouraging results

system to correctly recognize the name of artists or p—
songs was the most common type of recognition error. recognition
Participants were instructed to say “No” when reacting | owstructions v errors
to such errors, so that they could repeat the desired input pcezl;ij:a% . ,
until the machine gets it right. As a possible indicator | " picycles, »| Frustation

iti i parked
of speech recognition errors, we us,ed the mstantf thf; ot —~— -
ASR system recognized a participant’s utterance as “No. 2 \ e
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Fig. 7. Overall results achieved by the network in all forfefiént
configurations.
[12]
V. SUMMARY AND CONCLUSIONS [13]

In this paper we described our multimedia corpus of driving
behaviors (NUDrive). Data from 250 drivers have alreadynbee
collected. We overviewed the data collection apparatug d&4
annotation, and offered basic statistics on collected. ¥t
NUDrive we are able to test theoretical concepts and evaluat
anticipated systems using genuine human signals under rés
world conditions, that is, real instrumented car on reay cit
streets and highway roads. Part of the data collection is p&#6]
formed under international collaboration with univesestiin [17]
USA and Turkey. All collaborating partners use similar g#as
and a coherent data collection scenario—an important step
toward more general models of driver behavior. A sample of
collected data in Japan, USA, and Turkey can be downloaded
from the DriveBest website

We also presented a multimedia processing system, which
uses information from various sources in NUDrive to imple-
ment a context-dependent estimation of a driver’s spotamne
frustration. Results stressed the importance of usingimet
dia data in order to effectively model a driver.
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