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Abstract— A Brain-Computer Interface (BCI) is a system
which could enable patients like those with Amyotrophic Lateral
Sclerosis to control some equipment and to communicate with
other people, and has been anticipated to be achieved. One
of the problems in BCI research is a trade-off between trans-
mission speed and accuracy. In the field of data transmission,
on the other hand, Reliability-Based Hybrid Automatic Repeat
reQuest (RB-HARQ), one of the error control methods, has
been developed to achieve both of the performances. The
authors, therefore, have considered BCIs as communications
between users and computers, and applied Reliability-Based
ARQ, customized RB-HARQ, to BCIs. It has been shown that
the proposed method is superior to other error control methods
in two-class classification. In this paper, the proposed method
is extended to deal with multi-class classification of EEG data,
and is shown to be effective in multi-class problems.

I. INTRODUCTION

Recently, a lot of research on Brain-Computer Inter-
faces (BCIs) which record brain activities, discriminate the
thoughts, and then enable patients like those with Amy-
otrophic Lateral Sclerosis (ALS) to control some equipment
or to communicate with others has been reported. The authors
also have been studying on a BCI based on Electroen-
cephalogram (EEG), which is considered as one of the most
reasonable measurements since it is non-invasive and costs
less [1]. In fact, EEG-based BCIs have been researched
well; for example, Thought Translations Device (TTD) [2]
by Birbaumer et al.; and Graz-BCI [3] by Pfurtscheller et
al., which employs the band power from 8 to 13 Hz (alpha
band) as a feature of EEG, and applies Linear Discriminant
Analysis (LDA) [4] to it. The accuracy, however, is not high
since biological signals such as EEGs contain much noise,
partly due to users’ physical or mental conditions. On the
other hand, it also has been suggested that the longer EEG
data used for one discrimination is, the more accuracy could
be achieved [3], [5], [6]. It could be possible to say that
high accuracy can be gained in exchange for speed, that is
the length of data, in those methods; here seems a trade-
off between accuracy and speed. The purpose of this study,
therefore, is to develop a BCI which accomplishes both of
them simultaneously.

In the field of data transmission, there are some error
control methods; for instance, Forward Error Correction
(FEC), which allows the receiver to detect and correct errors;
Automatic Repeat reQuest (ARQ), which asks the transmitter
to repeat code words; and Hybrid ARQ (HARQ), which
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is a combination of ARQ and FEC. In the past several
years, Reliability-Based Hybrid ARQ (RB-HARQ) has been
proposed [7]. This method is a variation of HARQ, in which
the requests are based on reliability of each bit in code
words. It also has been reported that RB-HARQ can provide
performance close to the channel capacity.

BCIs can also be considered as communications between
users and computers [8]. The standard averaging can be
seen as an error control in BCIs, where a transmitter re-
quests certain times, and a received series is combined
and decoded. Millán et al. propose a classification method,
which classifies EEG data as “unknown” when its expected
accuracy of classification is not high enough [9]. This paper
calls their method and the standard averaging as Basic RB-
ARQ and Constant ARQ, respectively. Similar to these, the
authors have proposed Reliability-Based ARQ (RB-ARQ),
customized RB-HARQ [10], and shown that the proposed
method is superior to either Constant ARQ or Basic RB-ARQ
theoretically and empirically in two-class classification.

In this paper, RB-ARQ is extended to deal with multi-class
classification, and applied to one of the EEG data in the BCI
Competition1, which is held to examine signal processing
and classification methods for BCIs, and provides EEG data
to the public.

II. RELIABILITY-BASED AUTOMATIC REPEAT REQUEST

Suppose a user has one thought out of two in his mind
(e.g. imagination of left or right hand movement), and
p-dimensional feature vector is obtained from EEG data.
Correspondingly, let u ∈ {0, 1} be the thought label, xt ∈ Rp

be the feature vector at time t, and XT be the set of xt at time
T (XT = {xt|t = 1, 2, . . . , T}). Then, the log-likelihood
ratio (LLR) given XT , λT , can be obtained as follows:

λT = ln
π0p(XT |0)
π1p(XT |1)

, (1)

where πk and p(XT |k) denote the priori probability of
k, and the the conditional density function of XT given
k, respectively. Suppose that each x is independent and
identically distributed (i.i.d.), and fk(x) is the conditional
density function of x given k, (1) can be re-written as
follows:

λT = ln
π0

∏
t f0(xt)

π1
∏

t f1(xt)
, (2)

= ln
π0

π1
+

∑

t

ln
f0(xt)
f1(xt)

. (3)

1http://ida.first.fhg.de/projects/bci/competitions/
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The absolute value of LLR, |λT |, means the reliability; the
larger it is, the higher the probability of correct classification
is. Hence, in RB-ARQ, if the reliability is smaller than a
given threshold, λ, the system requests the same thought;
otherwise the thought label, u, can be estimated as follows:






repeat request if |λT | < λ,

estimate û =

{
0 else if λT ≥ λ,

1 otherwise,
(4)

where a “hat” denotes an estimation.
RB-ARQ was designed for two-class classification as RB-

HARQ deals with it (i.e. 0 or 1). On the other hand, there
could be BCIs based on multi-class classification in order
to increase the amount of information per classification.
Therefore, RB-ARQ needs to be extended for such BCIs.

Let K be a set of thoughts, and xt ∈ Rp be the feature
vector at time t. Then, the posteriori probability, P (k|XT ),
for k ∈ K given XT , or the likelihood ratio can be obtained
as follows:

P (k|XT ) =
πkp(XT |k)∑
l∈K πlp(XT |l) , (5)

=
πk

∏
t fk(xt)∑

l∈K πl
∏

t fl(xt)
. (6)

According to the Bayes decision theory, the label is estimated
as the k whose likelihood ratio is maximum as

û = arg max
k

P (k|XT ). (7)

Similar to the absolute value of LLR, the maximum likeli-
hood ratio (MLR) also means the reliability; hence, only if
the MLR is larger than a given threshold τ in (8), the label is
estimated; otherwise the system requests the same thought.

max
k

P (k|XT ) ≥ τ (8)

III. EXPERIMENTS

A. Comparison of Methods by Simulation
The proposed method was compared with two error con-

trol methods: Constant ARQ, requesting n times constantly
regardless of the reliability; and Basic RB-ARQ, taking the
likelihood ratio obtained from the following P (k|XT ),

P (k|XT ) =
πkfk(xT )∑
l∈K πlfl(xT )

. (9)

Note that Basic RB-ARQ does not take the past samples
XT−1 into account.

In this experiment, fk(x) obeyed 2-dimensional Gaussian
distributions with the following parameters,

µk = r (cos(2πk/|K|), sin(2πk/|K|)) , (10)
Σk = I, (11)

where I denotes identity matrix; the number of classes was
three (i.e. |K|=3); and it was assumed that each sample x
took one second to measure. In the cases of both r = 1 and
r = 1.5, the three methods were applied to LDA to classify
samples distributed normally.

B. Application to actual EEG data

In order to validate the effectiveness of the proposed
method, the three methods were applied to one of the EEG
data in BCI Competition, which was data set V in BCI
Competition III [9].

1) Data Description: The data set contains EEG data
recorded from three subjects, when they were doing the
following tasks:

• imagination of left-hand movement
• imagination of right-hand movement
• generation of words beginning with certain letters

And it includes four sessions: the first three as training data,
and the last as test data. They are provided in two styles:
raw EEG signals, and precomputed features; and the latter
one was employed in this experiment. Every 62.5 msec
(i.e. 16 Hz), the power spectral density (PSD) of the last
second was estimated with a resolution of 2 Hz from 8-30
Hz for 8 channels (C3, Cz, C4, CP1, CP2, P3, Pz, and P4
[11]); therefore, the preprocessed data lied on 96 dimensional
space. The number of the samples in one session was around
3,500.

2) Applications of error control methods: Considering a
rule in the competition, which required us to make outputs
of classifications every 0.5 sec (i.e. 2 Hz), the outputs were
made longer than that. To make sure this, consecutive 8
samples in the provided data were averaged; thus, the number
of the averaged samples per session was around 440. Taking
account of the non-stationarity of EEG, the data set of the 3rd
session was solely used as training data for each subject; and
that of the 4th session was used to test the classifier. LDA
was employed as a classifier; and RB-ARQ, Basic RB-ARQ,
and Constant ARQ were applied as error control methods.

3) Application of RB-ARQ to tuned classifier: Since the
proposed method, RB-ARQ, is an error control method, it can
be combined with any classifier which assumes data obeys
a certain probability distribution. Therefore, if the proposed
method is applied to a “tuned” classifier, the combined sys-
tem could accomplish higher performance. Fortunately, the
website of the BCI competition also provides the results and
descriptions of each method; for the data set V, there were
twenty methods ranked by their performances, and the 5th
of them was selected here2. According to the description3,
the channels were chosen as Table I, and LDA was utilized
as a classifier. Unlike the cases of III-B.2, samples were not
averaged; thus, to provide outputs longer than every 0.5 sec,
either of the following conditions needed to be satisfied in
addition to (8),

T ∈ {n ∈ Z|n ≥ 8}, (12)
T ∈ {n ∈ Z|n ≥ 8, n mod 8 = 0}. (13)

2The first three of them utilized classifiers which does not assume
probability distributions such as Support Vector Machine (SVM), and the
details of the 4th one were not clearly described, though it used LDA.

3http://ida.first.fhg.de/projects/bci/competition
iii/results/martigny/IreneSturm desc.txt, (accessed Jan.
24th, 2009)
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TABLE I
SELECTED CHANNELS

S1 C3, Cz, C4, CP1, and CP2
S2 C3, Cz, C4, and CP1
S3 C3, Cz, C4, CP1, CP2, and Pz

TABLE II
EXCERPT FROM THE RESULTS FOR THE DATA SET V

Rank S1 S2 S3 AVG
1 79.60% 70.31% 56.02% 68.65%
...

...
...

5 78.08% 63.83% 52.75% 64.91%
* 68.72% 61.52% 41.74% 57.33%

Note that the time required for one output can be 0.5 sec,
0.5625 sec, etc. in the case of (12); and it can be only 0.5
sec, 1.0 sec, etc. in the case of (13).

IV. RESULTS AND DISCUSSION

Figure 1 describes the relationships between accuracy (14)
and transmission time (i.e. speed) at (a) r = 1 and (b)
r = 1.5; each plot means the result from different threshold
(RB-ARQ and Basic RB-ARQ), or the number of requests
(Constant ARQ).

Accuracy =
number of correct classifications

number of classifications
× 100 (14)

It shows that the longer the transmission time is, the better
the accuracy is; and the accuracy of (b) is better than that
of (a), because in the case of (b) the difference between the
mean of each class is larger than that of (a). It also clearly
shows that RB-ARQ is roughly superior to the others in terms
of both performances, though the accuracy of RB-ARQ at
the time less than 1.5 sec is almost equal to that of Basic
RB-ARQ in the case of (b).

Table II shows the excerpt from the results for the data
set V on the website, including the one (*) implemented
according to the description. Figure 2 shows the relationships
between accuracy and transmission time for each subject
when each error control method was applied. It tells that
combining the tuned classifier with error control methods
surely improved accuracy with an increase in transmission
time. Although, according to Table II, the accuracies of
the method implemented by the authors was worse than
those of the 5th one, which would be due to lack of the
description (e.g. it was not clear which data set was used
for training), it is important that the proposed method can
be combined with any classifier as long as it is based on
probability distributions. Figure 2 (a) and (b) also tell that
the performance of RB-ARQ was almost equal to that of
Basic RB-ARQ, and both of them were clearly superior to
that of Constant ARQ; alternatively, the superiority of RB-
ARQ to other methods can be seen in Fig. 2 (c) only by
close look. This would be because in the cases of (a) and
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Fig. 1. Comparison of Methods (Theoretical Value)

(b), the distances among the means of each class relative to
the covariances were relatively larger than that of (c), implied
by the fact that the accuracies of (a) and (b) were better than
that of (c).

Figure 3 shows the relationships between experimental
values and thresholds τ for each subject in the case of RB-
ARQ. Theoretically, an expected accuracy is greater than
a selected threshold; however, the experimental value was
less than the corresponding threshold especially in (c). The
reason would be that data were not normally distributed, that
they were not stationary, or both; indeed, non-stationarity of
EEG has been known empirically for years, and quantified by
Shenoy et al. [12]. The possible solutions for this problem
would be use of an adaptive learning, or an extraction of
Gaussian or stationary features.

Figure 4 shows the results of the application of RB-ARQ
to the tuned classifier. The series labeled “16 Hz” obtained
from the case using (12), and the one labeled “2 Hz” from
the case using (13). It tells that the series “16 Hz” have
achieved better performance compared with the one “2 Hz”.
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This would be because of the time efficiency of the method
using (12); for instance, suppose that the condition (8) was
not satisfied at T = 8 (i.e. 0.5 sec), it could be satisfied at
T = 9 (0.5625 msec) in the case of (12), while it could not
be satisfied until at T = 16 (1.0 sec) in the case of (13). This
means that it is better not to average samples in use of RB-
ARQ; moreover, it implies that it could achieve even better
performance using raw EEG signals, which were recorded at
512 Hz sampling rate.

In this paper, the performance of speed was evaluated by
the length of data used for one classification. More precisely,
however, the delay when a user changes his/her thought also
needs to be taken into consideration. To investigate the delay,
it is necessary to conduct an experiment with a new scheme,
where a user is requested to either change or keep his/her
thought according to the error control methods.

V. CONCLUSIONS

The authors have proposed Reliability-Based Automatic
Repeat reQuest (RB-ARQ), which is an error control method,
suitable for Brain-Computer Interfaces (BCIs). In this pa-
per, RB-ARQ was extended to deal with multi-class clas-
sification in BCIs; and it was shown that the proposed
method, RB-ARQ, was more effective than other error
control methods even for multi-class problems. However,
due to non-Gaussianity or non-stationarity, the experimental
performance was worse than the theoretically expected one.
In future works, an adaptive learning, and an extraction of
Gaussian or stationary features will be examined in order to
solve this problem. Also, it was shown in the experimental
results that the higher the temporal resolution of data used
for classification was, the better the performance was; thus,
it implies that it could achieve even better performance
using not down-sampled and precomputed data but raw
EEG signals. To investigate the precise performance of the
proposed method, it is necessary to conduct an experiment
with a new scheme that uses the proposed method.
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Fig. 2. Comparison of Methods (Experimental Value)
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Fig. 3. Experimental Value and Threshold (Proposed RB-ARQ)
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