
644 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 56, NO. 8, AUGUST 2009

Fast Hardware Algorithm for Division in GF(2m)
Based on the Extended Euclid’s Algorithm With

Parallelization of Modular Reductions
Katsuki Kobayashi, Student Member, IEEE, and Naofumi Takagi, Senior Member, IEEE

Abstract—We propose a fast hardware algorithm for division
in GF(2m) based on the extended Euclid’s algorithm. The algo-
rithm requires only one iteration to perform the operations that
correspond to the ones performed in two iterations of previously
reported division algorithms. Since the algorithm performs mod-
ular reductions in parallel by changing the order of execution
of the operations, a circuit based on this algorithm has almost
the same critical path delay as the previously proposed ones. The
circuit computes division in m clock cycles, whereas the previously
proposed circuits take 2m − 1 or more clock cycles.

Index Terms—Division, Euclid’s algorithm, Galois field, hard-
ware algorithm.

I. INTRODUCTION

GALOIS field GF(2m) has many applications, particularly
in elliptic curve cryptography. To accelerate such appli-

cations, high-speed implementation of arithmetic operations
in GF(2m) is required. Among basic arithmetic operations in
GF(2m), division takes the maximum time. In this brief, we
propose a fast hardware algorithm for division in GF(2m)
suitable for sequential circuit implementation.

In general, one of the following three methods is employed
for division in the Galois field: Fermat’s little theorem [1],
[2], the extended Euclid’s algorithm [3]–[8], or a solution of a
system of linear equations [9], [10]. When m is large, division
algorithms based on the extended Euclid’s algorithm are the
most efficient way to implement circuits, because circuits based
on them easily can be implemented and have lower area–time
products [5], [10]. The algorithm to be proposed in this brief is
based on the extended Euclid’s algorithm.

The proposed algorithm requires only one iteration to per-
form the operations that correspond to the operations performed
in two iterations of previously reported division algorithms
based on the extended Euclid’s algorithm. In a division al-
gorithm based on the extended Euclid’s algorithm, modular
reductions are performed. The previously reported division
algorithms sequentially perform two modular reductions in two
successive iterations. On the other hand, the proposed algorithm

Manuscript received September 30, 2008; revised March 4, 2009. First
published July 10, 2009; current version published August 14, 2009. This work
was supported in part by the VLSI Design and Education Center, The University
of Tokyo, in collaboration with Synopsys, Inc., and Rohm, Inc. This paper was
recommended by Associate Editor A. Y. Wu.

The authors are with the Department of Information Engineering, Graduate
School of Information Science, Nagoya University, Nagoya 464-8603, Japan
(e-mail: katsu@takagi.i.is.nagoya-u.ac.jp; ntakagi@takagi.i.is.nagoya-u.ac.jp).

Digital Object Identifier 10.1109/TCSII.2009.2024253

performs them in parallel by changing the order of execution of
the operations.

We have designed a sequential circuit that performs the
operations in one iteration of the proposed algorithm in one
clock cycle. The circuit has a latency of m clock cycles, which
is almost half of that of the circuits proposed in [3] and [4]. The
critical path delay of the circuit is larger by the delay of a two-
input XOR gate compared to that of the circuit proposed in [4]
and smaller by approximately the delay of a 2 : 1 multiplexer
compared to that of the circuit proposed in [3] because of its
parallelization of modular reductions.

This brief is organized as follows. In Section II, we explain
arithmetic operations in GF(2m), the division algorithm based
on the extended Euclid’s algorithm proposed by Guo and Wang
[5], and its modification for developing the proposed algorithm.
In Section III, we propose a fast hardware algorithm for division
in GF(2m) with parallelization of two modular reductions. In
Section IV, we show a design of a circuit based on the proposed
algorithm and estimate its computation time and area.

II. PRELIMINARIES

A. Arithmetic Operations in GF(2m)

Let

G(x) = xm + gm−1x
m−1 + · · · + g1x + 1 (1)

be an irreducible polynomial on GF(2), where gj ∈ {0, 1}.
Then, an arbitrary element in GF(2m) defined by G(x) can be
represented as

A(x) = am−1x
m−1 + · · · + a1x + a0 (2)

where aj ∈ {0, 1}.
Addition and subtraction in GF(2m) are defined as polyno-

mial addition and subtraction on GF(2), respectively. Thus, both
are computed with a bitwise XOR operation. Multiplication “·”
in GF(2m) is defined as a polynomial multiplication modulo
G(x) on GF(2). The multiplicative inverse B−1(x) of B(x) in
GF(2m) is defined as the element that satisfies

B(x) · B−1(x) = 1. (3)

Then, division “÷” in GF(2m) is defined as

A(x) ÷ B(x) = A(x) · B−1(x). (4)

1549-7747/$26.00 © 2009 IEEE

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on August 02,2010 at 05:41:23 UTC from IEEE Xplore. Restrictions apply.

KOBAYASHI AND TAKAGI: FAST HARDWARE ALGORITHM FOR DIVISION IN GF(2m) 645

B. Guo and Wang’s Division Algorithm in GF(2m)

Here, we describe the hardware algorithm for division in
GF(2m) proposed by Guo and Wang [5] and its modifica-
tion. We will employ the modified algorithm for developing
our new algorithm, which is suitable for sequential circuit
implementation.

First, we describe Guo and Wang’s algorithm developed for
systolic circuit implementation. The feature of this algorithm
is that there are two for-loops in it so that bidirectional shifts
can be avoided when it is implemented as a circuit. This
algorithm computes (A(x) ÷ B(x)) · xm in the first for-loop
and computes A(x) ÷ B(x) by dividing the result of the first
for-loop by xm in the second for-loop.

[Algorithm GW] (Guo and Wang’s Division Algorithm)
1: R(x) := B(x); S(x) := G(x);
2: U(x) := A(x); V (x) := 0;
3: δ := 0;
4: for i = 1 to 2m do
5: if rm = 0 then
6: R(x) := R(x) × x;
7: U(x) := U(x) × x mod G(x);
8: δ := δ + 1;
9: else
10: S(x) := (S(x) − sm ∧ R(x)) × x;
11: V (x) := (V (x) − sm ∧ U(x)) × x mod G(x);
12: if δ = 0 then

13:

[
R(x)
S(x)

]
:=

[
S(x)
R(x)

]
;

14:

[
U(x)
V (x)

]
:=

[
V (x)
U(x)

]
;

15: δ := δ + 1;
16: else
17: δ := δ − 1;
18: end if
19: end if
20: end for
21: for i = 1 to m do
22: U(x) := U(x)/x mod G(x);
23: end for
24: output U(x) as the result.

Note that in Algorithm GW, the modular operations “U(x) ×
x mod G(x)” and “U(x)/x mod G(x)” can be calculated as

uj := (um−1 ∧ gj) ⊕ uj−1 (5)

uj := (u0 ∧ gj+1) ⊕ uj+1 (6)

for 0 ≤ j < m, respectively. Thus, both multiplying by x and
dividing by x modulo G(x) can be computed with m two-
input AND gates and m two-input XOR gates. The computation
time of each operation is TX + TA, where TX and TA mean
the delay of a two-input XOR gate and a two-input AND gate,
respectively.

Next, to make Algorithm GW suitable for sequential circuit
implementation, we modify the algorithm so that the value of
δ can be negative. By this modification, shift registers can be
reduced as in [6]–[8] for sequential circuit implementation. The

first for-loop of the following algorithm is the same as Yan and
Sarwate’s inversion algorithm [8], except that the latter does not
perform polynomial reduction on U(x).

The modified algorithm is given as follows, where the nota-
tion SEL(flag,A(x), B(x)) denotes

SEL (flag,A(x), B(x)) =
{

A(x), if flag = 1
B(x), otherwise

(7)

and the notation SGN(a) denotes

SGN(a) =
{

1, if a < 0
0, otherwise.

(8)

swap is a variable employed as a flag for deciding whether the
algorithm assigns R(x) to S(x).

[Algorithm MGW] (Modified Version of Guo and Wang’s
Division Algorithm)

1: R(x) := B(x); S(x) := G(x);
2: U(x) := A(x); V (x) := 0;
3: δ := 0;
4: for i = 1 to 2m do
5: swap := SGN(δ) ∧ rm;

6:

[
R(x)
S(x)

]
:=

[
(R(x) − rm ∧ S(x)) × x
SEL(swap,R(x), S(x))

]
;

7:

[
U(x)
V (x)

]
:=

[
(U(x) − rm ∧ V (x)) × x mod G(x)

SEL(swap, U(x), V (x))

]
;

8: δ := (−1)swapδ − 1;
9: end for
10: for i = 1 to m do
11: V (x) := V (x)/x mod G(x);
12: end for
13: output V (x) as the result.

Note that in the first for-loop of Algorithm MGW, the oper-
ation for updating U(x) takes the maximum time because of
modular reduction. This operation is represented as

uj := uj−1 ⊕ (rm ∧ vj−1) ⊕ ((um−1 ⊕ (rm ∧ vm−1)) ∧ gj)
(9)

where uj and vj denote the jth coefficients of U(x) and
V (x), respectively. Thus, if we implement the first for-loop
of Algorithm MGW as a sequential circuit that performs the
operation in one iteration of the algorithm in a cycle, the critical
path delay of the circuit will be 2TX + 2TA. This value is the
same as that of the circuit proposed in [4] and smaller than that
of the circuit proposed in [3], which are compared with a circuit
based on the proposed algorithm in Section IV.

III. NEW FAST ALGORITHM FOR DIVISION IN GF(2m)

In this section, we propose a fast hardware algorithm for di-
vision in GF(2m). We employ Algorithm MGW for developing
the algorithm to be proposed in this section.

First, we start with merging the second for-loop of Algorithm
MGW into the first for-loop. Since the operation in line 7
of Algorithm MGW is performed exactly 2m times, we can

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on August 02,2010 at 05:41:23 UTC from IEEE Xplore. Restrictions apply.

646 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 56, NO. 8, AUGUST 2009

perform this merger by replacing m arbitrary chosen operations
out of the 2m operations in line 7 with[

U(x)
V (x)

]
:=

[
(U(x) − rm ∧ V (x))

SEL (swap, U(x), V (x)) /x mod G(x)

]
.

(10)

Thus, we modify the algorithm so that it performs the opera-
tions of two iterations in one iteration of the first for-loop and
replace one of the two operations that update U(x) and V (x)
with the above expression.

By the above modification, the operations for U(x) and V (x)
in one iteration of the merged algorithm can be represented as[

U ′(x)
V ′(x)

]
:=

[
(U(x) − rm ∧ V (x)) × x mod G(x)

SEL (swap, U(x), V (x))

]
(11)

[
U(x)
V (x)

]
:=

[
(U ′(x) − r′m ∧ V ′(x))

SEL (swap′, U ′(x), V ′(x)) /x mod G(x)

]
.

(12)

Here, U ′(x) and V ′(x) are intermediate variables for U(x)
and V (x), respectively, and r′m and swap′ are obtained from
the result of the first operation as{

r′m := rm−1 ⊕ (rm ∧ sm−1)
swap′ := SGN ((−1)swapδ − 1) ∧ r′m.

(13)

Note that in (11) and (12), two modular reductions are sequen-
tially performed.

Next, we modify the time of polynomial reduction in the
above operations to parallelize the modular reductions. The
reason why the modular reductions in (11) and (12) are se-
quentially performed is that the operation for updating U(x)
in (12) depends on U ′(x) in (11), which requires a modular
reduction. Let us consider removing the modular reduction in
(11). In that case, U ′(x) will be a polynomial with degree
m or less and its constant term will be zero. Thus, to update
U(x) by (12), we need to perform a polynomial reduction
of U ′(x). However, we do not need to perform a polynomial
reduction of V ′(x) because it is already a polynomial with
degree less than m. Similarly, to update V (x) by (12), we need
to perform a polynomial reduction of V ′(x)/x. However, we do
not need to perform a polynomial reduction of U ′(x)/x because
its constant term is zero. Therefore, we can replace (11) and
(12) with[

U ′(x)
V ′(x)

]
:=

[
(U(x) − rm ∧ V (x)) × x
SEL (swap, U(x), V (x))

]
(14)

[
U(x)
V (x)

]
:=

[
(U ′(x) mod G(x)) − r′m ∧ V ′(x)

SEL (swap′, U ′(x), V ′(x)/x mod G(x))

]

(15)

without any influence on the result. The above two operations
are performed as

⎧⎪⎪⎨
⎪⎪⎩

u′
j := uj−1 ⊕ (rm ∧ vj−1);

v′
j := SEL(swap, uj , vj)

uj := u′
j ⊕ (u′

m ∧ gj) ⊕
(
r′m ∧ v′

j

)
;

vj := SEL
(
swap′, u′

j+1, v
′
i+1 ⊕ (v′

0 ∧ gi+1)
) (16)

Fig. 1. Block diagram of the circuit based on Algorithm DEEA.

where u′
j , v′

j , and gj denote the jth coefficients of U ′(x), V ′(x),
and G(x), respectively. The proposed hardware algorithm is
given as follows.

[Algorithm DEEA] (Proposed Division Algorithm)
1: R(x) := B(x); S(x) := G(x);
2: U(x) := A(x); V (x) := 0;
3: δ := 0;
4: for i = 1 to m do
5: swap := SGN(δ) ∧ rm;

6:

[
R′(x)
S ′(x)

]
:=

[
(R(x) − rm ∧ S(x)) × x
SEL(swap,R(x), S(x))

]
;

7:

[
U ′(x)
V ′(x)

]
:=

[
(U(x) − rm ∧ V (x)) × x
SEL(swap, U(x), V (x))

]
;

8: δ′ := (−1)swapδ − 1;
9: swap′ := SGN(δ′) ∧ r′m;

10:

[
R(x)
S(x)

]
:=

[
(R′(x) − r′m ∧ S ′(x)) × x
SEL(swap′, R′(x), S ′(x))

]
;

11:

[
U(x)
V (x)

]
:=

[
(U ′(x) mod G(x)) − r′m ∧ V (x)′

SEL(swap′, U ′(x), V ′(x)/x mod G(x))

]
;

12: δ := (−1)swap′
δ′ − 1;

13: end for
14: output V (x) as the result.

IV. CIRCUIT BASED ON THE PROPOSED ALGORITHM

A. Circuit Design

We have designed a sequential circuit that performs the
operations in one iteration of the proposed algorithm in a cycle.
Fig. 1 shows a block diagram of the circuit. Fig. 2(a)–(d) shows
the basic cells of the circuit. Reg-R, Reg-S, Reg-U , Reg-V ,
Reg-G, Reg-Δ, and Reg-sgn are registers for storing R(x),
S(x), U(x), V (x), G(x), Δ(= 2m−|δ|), and the sign of δ, res-
pectively. Fig. 2(e) shows the controller of the circuit. Note that
to accelerate the circuit, we employ 1-hot counter for δ that

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on August 02,2010 at 05:41:23 UTC from IEEE Xplore. Restrictions apply.

KOBAYASHI AND TAKAGI: FAST HARDWARE ALGORITHM FOR DIVISION IN GF(2m) 647

Fig. 2. (a) RS-cell. (b) UV -cell. (c) UV -cell2. (d) Δ-cell. (e) Controller.

consists of Reg-Δ and Reg-sgn, which holds 1 if δ is negative.
RS-calc is the part that updates the polynomials R(x) and
S(x) as

⎧⎪⎪⎨
⎪⎪⎩

r′j := rj−1 ⊕ (rm ∧ sj−1)
s′j := SEL(swap, rj , sj)
rj := r′j−1 ⊕

(
r′m ∧ s′j−1

)
sj := SEL

(
swap′, r′j , s

′
j

) (17)

and consists of (m + 1) RS-cells. UV -calc is the part that
updates the polynomials U(x) and V (x) according to (16) and
consists of m UV -cells and one UV -cell2 at the far left of
UV -calc. Δ-calc is the part that updates Δ and consists of
(m + 1)Δ-cells.

The value of |δ| is updated as

|δ| :=
{
|δ| + 1, if δ = 0 or (δ < 0 and rm = 0)
|δ| − 1, otherwise

(18)

and the sign of δ “sgn” is updated as

sgn :=
{

1, if δ = 0 or (δ < 0 and rm = 0)
0, otherwise.

(19)

Therefore, the control signals of the circuit, i.e., swap, swap′,
shift1, and shift2, are computed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

swap := sgn ∧ rm

swap′ := sgn′ ∧ r′m

sgn′ := Δ′
m ∨ (sgn ∧ rm)

sgn := Δm ∨
(
sgn′ ∧ r′m

)
shift1 := Δ′

m ∨ (sgn ∧ rm)

shift2 := Δm ∨
(
sgn′ ∧ r′m

)
.

(20)

Note that the value of sgn′ is the same as that of shift1, and the
value of sgn in the next iteration is the same as that of shift2.

From (16)–(20), the critical path of a circuit based on the
proposed algorithm will be the path from rm to uj via r′m with

a delay of 3TX + 2TA. Since a circuit based on the proposed
circuit has a bit-slice structure, we can perform place and route
with relative ease.

B. Comparison With Previously Proposed Circuits

We have compared the circuit based on the proposed algo-
rithm with two previously proposed division circuits designed
as sequential circuits. Note that for fair comparison about
computation time, we have employed a 1-hot counter as the
counter of Brunner et al.’s division circuit, although the original
circuit employs a binary counter. Table I shows a comparison
of the circuits, where the number of transistors is based on the
assumption that a two-input AND gate, a two-input OR gate, a
two-input XOR gate, a 2 : 1 multiplexer, and a 1-bit latch consist
of four, six, six, six, and eight transistors, respectively, as in [4].

The critical path delay of the circuit based on this algorithm
is larger by the delay of a two-input XOR gate compared to that
of the circuit proposed in [4]. The circuit based on the proposed
algorithm has a latency of m clock cycles, which is almost half
of that of the previously proposed circuits.

C. Logic Synthesis Results

We have described the circuit designed in Section IV-A
with SystemVerilog. To evaluate the proposed algorithm, we
have also described three circuits. One is the circuit proposed
by Brunner et al. [3], another is the circuit proposed by
Kim et al. [4], and the third is the circuit that performs the
operations performed in two clock cycles of Kim et al.’s circuit
in one clock cycle and denoted as “Kim et al.’s (duplicated)” in
what follows.

We have synthesized them with Synopsys Design Compiler
using the Rohm 0.18-μm CMOS standard cell library provided
by the VLSI Design and Education Center, University of Tokyo.
Table II shows the result of logic synthesis. The computation
time is the product of the critical path delay and the latency.

The computation time of the circuit based on the proposed
algorithm has been estimated to be over 35% smaller than that
of the previously proposed circuits, and approximately 10%

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on August 02,2010 at 05:41:23 UTC from IEEE Xplore. Restrictions apply.

648 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 56, NO. 8, AUGUST 2009

TABLE I
COMPARISON OF THE CIRCUITS

TABLE II
LOGIC SYNTHESIS RESULTS (0.18-μm CMOS TECHNOLOGY)

smaller than that of Kim et al.’s (duplicated). The area of the
circuit based on the proposed algorithm has been estimated to
be only 30% larger than that of Kim et al.’s circuit.

V. CONCLUSION

We have proposed a fast hardware algorithm for division
in GF(2m). It is based on the extended Euclid’s algorithm
and requires only one iteration to perform the operations that
correspond to two iterations in previously reported division
algorithms with parallel execution of modular reductions in one
iteration.

We have designed a sequential circuit based on the proposed
algorithm that performs one iteration of the algorithm in one
clock cycle. The circuit has a latency of m clock cycles, which
is almost half of that of the previously proposed circuits. It has
almost the same critical path delay as the previously proposed
circuits because of its parallelism. Therefore, it can compute
division in GF(2m) much faster than the previously proposed
circuits. The area of the circuit based on the proposed algorithm
has been estimated to be only 30% larger than that of the circuit
proposed in [4] with logic synthesis.

We can employ a two-level 1-hot counter [7] for storing
the value of |δ| to reduce the area of the circuit instead of
a 1-hot counter. It consists of δh-bit and δl-bit 1-hot coun-
ters, where m + 1 ≤ δh · δl, and δh ≈ δl ≈

√
m. Thus, we can

significantly reduce the register size and the number of 2 : 1
multiplexer without a high cost for critical path delay.

ACKNOWLEDGMENT

The authors would like to thank Assoc. Prof. K. Takagi of
Nagoya University for his valuable advice.

REFERENCES

[1] C. Wang and J. Guo, “New systolic arrays for C + AB2, inversion, and
division on GF(2m),” IEEE Trans. Comput., vol. 49, no. 10, pp. 1120–
1125, Oct. 2000.

[2] N. Takagi, J. Yoshiki, and K. Takagi, “A fast algorithm for multiplicative
inversion in GF(2m) using normal basis,” IEEE Trans. Comput., vol. 50,
no. 5, pp. 394–398, May 2001.

[3] H. Brunner, A. Curiger, and M. Hofstetter, “On computing multiplicative
inverses in GF(2m),” IEEE Trans. Comput., vol. 42, no. 8, pp. 1010–
1015, Aug. 1993.

[4] C. H. Kim, S. Kwon, J. J. Kim, and C. P. Hong, “A compact and fast
division architecture for a finite field GF(2m),” in Proc. ICCSA, 2003,
pp. 855–864.

[5] J. Guo and C. Wang, “Systolic array implementation of Euclid’s algorithm
for inversion and division in GF(2m),” IEEE Trans. Comput., vol. 47,
no. 10, pp. 1161–1167, Oct. 1998.

[6] A. K. Daneshbeh and M. A. Hasan, “A class of unidirectional bit se-
rial systolic architectures for multiplicative inversion and division over
GF(2m),” IEEE Trans. Comput., vol. 54, no. 2, pp. 370–380, Mar. 2005.

[7] Y. Watanabe, N. Takagi, and K. Takagi, “A VLSI algorithm for division
in GF(2m) based on extended binary GCD algorithm,” IEICE Trans.
Fundam., vol. E85-A, no. 5, pp. 994–999, May 2002.

[8] Z. Yan and D. V. Sarwate, “New systolic architectures for inversion and
division in GF(2m),” IEEE Trans. Comput., vol. 52, no. 11, pp. 1514–
1519, Nov. 2003.

[9] C. Wang and J. Lin, “A systolic architecture for computing inverses and
divisions in finite fields GF(2m),” IEEE Trans. Comput., vol. 42, no. 9,
pp. 1141–1146, Sep. 1993.

[10] M. A. Hasan and V. K. Bhargava, “Bit-serial systolic divider and mul-
tiplier for finite fields GF(2m),” IEEE Trans. Comput., vol. 41, no. 8,
pp. 972–980, Aug. 1992.

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on August 02,2010 at 05:41:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

