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Abstract— This paper considers when a discrete-time pe-
riodic non-homogeneous system can be transformed to a
time-invariant one by using regular linear mappings of state
variables, inputs and outputs, respectively. The problem on a
homogeneous system has been already solved as discrete-time
Floquet transformation, and also the similarity classes of Flo-
quet transformations have been characterized. Those previous
results are used to derive some conditions on transformability
of non-homogeneous systems.

I. INTRODUCTION

A lot of model-based control method for periodic sys-
tems have been proposed, e.g., [2] [3] [10] [11] [13] and
references therein. In order to establish model-based con-
trol designs for automotive engine, the authors proposed a
model representation of V6 Spark Ignition SICE benchmark
engine [9]; a continuous-time periodic nonlinear state space
model is constructed first, then the model is discretized to
get a discrete-time periodic nonlinear one, and finally by
introducing a concept of ”role state variables”, the discrete-
time periodic model can be transformed to a time-invariant
one. In the last process, the discrete-time periodic system
xk+1 = fk(xk, uk), yk = gk(xk, uk) has been transformed
to the time-invariant one ξk+1 = f(ξk, τk), ηk = g(ξk, τk)
by using periodic regular mappings ξk = pk(xk), τk =
qk(uk), ηk = rk(yk). Even if the original periodic system is
nonlinear, it is easy to find out those regular mappings be-
cause of the characteristics of automotive engine. Of course,
it is very difficult to develop the above transformability for
the general nonlinear systems. In order to challenge this
difficult problem, as the first step, this paper aims to establish
the transformability for the general linear systems.

It is well known [1] [4] as theory of Floquet that ev-
ery continuous-time periodic linear homogeneous system
ẋc(t) = Ac(t)xc(t) with a period T can be transformed
to a linear time-invariant system ξ̇c(t) = Acξc(t) by a
state transformation ξc(t) = P (t)xc(t) with P (t) being
nonsingular and periodic P (t + T ) = P (t).

For discrete-time periodic linear homogeneous system
xk+1 = Akxk, so-called discrete-time version for theory
of Floquet has been derived in [12] [6], which show that
all discrete-time periodic homogeneous systems can not be
transformed to time-invariant ones.

Furthermore, it has been shown in [6] that if a discrete-
time periodic homogeneous system has a Floquet transfor-
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mation, then the system has a lot of Floquet transformations,
and so three kinds of similarities in the set of Floquet
transformations are introduced and it has be derived that
the set of Floquet transformations splits into exactly a finite
number of equivalent classes induced by the similarity.

In this paper, we consider a discrete-time periodic linear
non-homogeneous system xk+1 = Akxk + Bkuk, yk =
Ckxk and investigate when the non-homogeneous system
can be transformed to a time-invariant one by using periodic
linear regular mappings of xk, uk, yk, respectively.

Section II formulates a problem to be considered in
this paper, then reviews the previous results on discrete-
time Floquet transformations and also gives an example to
understand a essential difficulty in the problem. Section III
is a main part of this paper, where the previous results on
similarity classes of Floquet transformations are summarized
first and new results on transformability are derived. Some
conclusion remarks are stated in Section IV.

Notation: R is a set of all real numbers, C a set of all
complex numbers, and Z a set of all integers.

For any positive integer n ∈ Z, n := {1, 2, · · · , n} and
n− := {0, 1, · · · , n−1}. For any k ∈ Z , mod(k/n) denotes
”k modulo n” .

Associated with A,B ∈ C
n×n, A � B means that A

is similar to B, i.e., there exists a nonsingular matrix S ∈
C

n×n such that B = SAS−1. Note that this notation ”�”
is also used for similarity of Floquet transformations, which
will be defined in Section III, however, it is clear from the
context whether similarity is used for matrices or Floquet
transformations.

Jm(λ) denotes an m × m Jordan block with eigenvalue
λ, and for any square matrices C and D,

C ⊕ D :=

[
C 0
0 D

]
.

II. PROBLEM STATEMENT

Consider a discrete-time periodic non-homogeneous sys-
tem with a period N

xk+1 = Akxk + Bkuk

yk = Ckxk
(1)

where k ∈ Z is time, xk ∈ R
n is state, uk ∈ R

m input,
and yk ∈ R

p output. The matrices Ak, Bk, Ck are real with
appropriate sizes, N is a positive integer greater than or equal
to 2, and it is assumed that

Ak = Amod(k/N), Bk = Bmod(k/N), Ck = Cmod(k/N).
(2)
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Suppose that there exist matrices A, B,C with appropri-
ate sizes and also there exist nonsingular matrices Pk =
Pmod(k/N) ∈ C

n×n, Qk = Qmod(k/N) ∈ C
m×m, Rk =

Rmod(k/N) ∈ C
p×p such that for any k ∈ Z,

Pk+1Ak = APk , (3)

Pk+1Bk = BQk , (4)

RkCk = CPk . (5)

Then the following equivalent transformations

ξk = Pkxk, τk = Qkuk, ηk = Rkyk, (6)

can transform the system (1) to a time-invariant system

ξk+1 = Aξk + Bτk

ηk = Cξk .
(7)

This paper aims to make clear a necessary and sufficient
condition for the system (1) to have A,B,C and Pk =
Pmod(k/N), Qk = Qmod(k/N), Rk = Rmod(k/N) in (3)-(5).
When the system (1) can be transformed to the time-invariant
system (7), the system (1) is called to be transformable to
time-invariant one (abbreviated as TTI).

A set of A and Pk = Pmod(k/N) satisfying (3) is denoted
by AP = {A,Pk = Pmod(k/N) | k ∈ Z} and AP is called
a Floquet transformation.

Associated with the system (1), recall that the following
matrix Φ is called a monodromy matrix.

Φ := AN−1 · · ·A1A0 (8)

A necessary condition for the system (1) to have a Floquet
transformation is that the monodromy matrix Φ has an N -th
root matrix. In this sense, the N -th root matrices of Φ is
very important [5] [6] [7] [8].

A necessary and sufficient condition for the system (1) to
have a Floquet transformation has been derived in [12] and
[6]. The following theorem is given in [6].

Theorem 1: [6] A discrete-time periodic system (1) with
Ak = Amod(k/N) ∈ Rn×n and a period N ≥ 2 has a Floquet
transformation AP = {A,Pk = Pmod(k/N) | k ∈ Z} if and
only if it holds that

rankAk−1Ak−2 · · ·Ah+1Ah = rankAk−h

for h ∈ N− and k − h ∈ n
(9)

where A ∈ C
n×n is any matrix similar to one of N -th roots

of the monodromy Φ given by (8). �

Let the system (1) satisfy the rank condition (9) of
Theorem 1, and suppose we have constructed a Floquet
transformation AP = {A,Pk = Pmod(k/N) | k ∈ Z}. Then
it is easy to see [6] that the following theorem holds.

Theorem 2: [6] Suppose that the system (1) has a Floquet
transformation AP = {A,Pk = Pmod(k/N) | k ∈ Z}. Then
there exist B,C and nonsingular Qk = Qmod(k/N), Rk =
Rmod(k/N) satisfying (4),(5) if and only if it holds that for
any k ∈ Z,

ImPk+1Bk = ImPkBk−1 (10)

KerCkP−1
k = KerCk−1P

−1
k−1. (11)

�

Theorem 2 with Theorem 1 seems to give a necessary and
sufficient condition for the system (1) to be TTI, but you have
to understand Theorem 2 very carefully. See the following
example.

Example 1: Consider the following system with a period
N = 3 {

xk+1 = Akxk + Bkuk

yk = Ckxk
(12)

where

A0 =

[
0 2
0 0

]
, A1 =

[
0.8 0
0 0

]
, A2 =

[
0 0
5 0

]

B0 =

[
2
1

]
, B1 =

[
1.2
1

]
, B2 =

[
1
1

]

C0 =
[

1 2
]
, C1 =

[
1 1

]
, C2 =

[
5 3

]
.

The monodromy matrix Φ is obtained as Φ = A2A1A0 =
diag(0, 8). Choose A = diag(2, 0) as a cube root matrix of
Φ and then it is easy to see that the rank condition (9) of
Theorem 1 holds.

According to the way of constructing Floquet transforma-
tions (See [6] in detail), we can get a Floquet transformation
AP11 = {A,Pk = Pmod(k/3) | k ∈ Z} where

P0 =

[
0 1
1 0

]
, P1 =

[
1 0
0 1

]
, P2 =

[
2.5 0
0 1

]
.

Now let us check whether the condition (10) of Theorem
2 holds or not. In fact, we get

P1B0 =

[
2
1

]
, P2B1 =

[
3
1

]
, P0B2 =

[
1
1

]

and therefore we conclude that the condition (10) does not
hold and the system (12) is not TTI at least under the Floquet
transformation AP11.

Note that the Floquet transformation is not unique for the
system (12). The system has another Floquet transformation
AP12 = {A,P ′

k = P ′
mod(k/3) | k ∈ Z} where

P ′
0 =

[
0 1
1 0

]
, P ′

1 =

[
1 0
0 2

]
, P ′

2 =

[
2.5 0
0 3

]
.

In this case, it is easy to see that the conditions (10) and
(11) of Theorem 2 hold. In fact, it follows that

P ′
1B0 =

[
2
2

]
, P ′

2B1 =

[
3
3

]
, P ′

0B2 =

[
1
1

]

C0(P
′
0)

−1 =
[

2 1
]
, C1(P

′
1)

−1 =
[

1 0.5
]

C2(P
′
2)

−1 =
[

2 1
]
.

Therefore, by using Q0 = 0.5, Q1 = 1/3, Q2 = 1, Qk =
Qmod(k/3) and R0 = 1, R1 = 2, R2 = 1, Rk = Rmod(k/3),
we can get a time-invariant system (A, B,C) with

A =

[
2 0
0 0

]
, B =

[
1
1

]
, C =

[
2 1

]
,

and so we can conclude that the system (12) is TTI. �
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III. MAIN RESULTS

Associated with the discrete-time periodic non-
homogeneous system (1), if we can find a Floquet
transformation by which the conditions (10) and (11) of
Theorem 2 hold, then we can conclude that the system (1)
is TTI. On the other hand, it is very difficult to conclude
from Theorem 2 that the system (1) is not TTI because, as
shown in the previous example and also in [7], the system
(1) has an infinite number of Floquet transformations if it
has.

Therefore, in order to handle the problem on TTI, it is first
needed to understand a structure of the set of all Floquet
transformations and also to characterize all the Floquet
transformations.

Suppose the discrete-time periodic non-homogeneous sys-
tem (1) has Floquet transformations, and let a set of all
the Floquet transformations be denoted by FT , i.e., ev-
ery element of FT is a Floquet transformation AP :=
{A,Pk = Pmod(k/N)

∣∣ k ∈ Z} with A,Pk’s satisfying (3).
Then we consider the following similarities between two
Floquet transformations.

Definition 1: [7] Suppose AP,AP ′ ∈ FT with AP =
{A,Pk = Pmod(k/N) | k ∈ Z} and AP ′ = {A′, P ′

k =
P ′

mod(k/N) | k ∈ Z}.

1) AP ′ is strongly similar to AP , denoted by AP ′ �s

AP , when A′ � A and there exist a nonsingular
constant matrix V ∈ C

n×n such that

P ′
k = V Pk (13)

2) AP ′ is similar to AP , denoted by AP ′ � AP , when
A′ � A and there exist nonsingular matrices Vk =
Vmod(k/N) ∈ C

n×n such that

P ′
k = VkPk (14)

3) AP ′ is weakly similar to AP , denoted by AP ′ �w

AP , when (A′)N � AN and there exist nonsingular
matrices Vk = Vmod(k/N) ∈ C

n×n such that

P ′
k = VkPk (15)

�

Each similarity can induce an equivalence relation in FT ,
and so denote its similarity class (i.e., equivalence class)
respectively as follows.

AP
s

:= {AP ′ ∈ FT | AP ′ �s AP} (16)

AP := {AP ′ ∈ FT | AP ′ � AP} (17)

AP
w

:= {AP ′ ∈ FT | AP ′ �w AP} (18)

Under the above definitions, it is easy to see [7] that AP
s
⊂

AP ⊂ AP
w

= FT .
Define

A := {A ∈ C
n×n | AN � Φ, A satisfies (9)} , (19)

recalling that A has a finite number ne of similarity classes
Ai’s, i.e., A =

⋃
i∈ne

Ai , FT also splits into ne similarity

classes as follows [7].

FT =
⋃

i∈ne

APi, APi

⋂
APj = φ for i �= j (20)

Figure 1 shows the structure of FT ; there exist a finite
number of similarity classes AP1,AP2, · · · ,APne

. Each
similarity class APi consists of an infinite number of strong
similarity classes AP

s

i1,AP
s

i2, · · ·.

��
��
AP

s

11 ��
��
AP

s

12
� �

� � � �
AP1

��
��
AP

s

21 ��
��
AP

s

22
� �

� � � �
AP2

��
��
AP

s

ne1 ��
��
AP

s

ne2
� �

� � � �
APne

� � �

� � � � � �

� � � � �

Fig. 1. The structure of FT

Now suppose we obtain a Floquet transformation, e.g.,
AP = {A,Pk = Pmod(k/N) | k ∈ Z} ∈ AP

s

11. Beginning
with AP , a way of constructing all Floquet transformations
of AP

s

11, AP1, and all the other APi’s is given as follows.
Before showing the way, we need some notations.

Associated with A,A′ ∈ A, a set of all nonsingular and
commutative matrices S’s with A and A′ is denoted as
C(A,A′), i.e.,

C(A,A′) :=
{

S ∈ C
n×n : nonsingular

∣∣ SA = A′S
}

.
(21)

It is trivial that C(A,A′) is not empty if and only if A � A′.
When A = A′, we use a simple notation C(A) for C(A,A).

A set of all N periodic sequences S’s of commutative
matrices with A,A′ ∈ A is denoted as SC(A,A′, N), i.e.,

S := {Sk = Smod(k/N) ∈ C
n×n | k ∈ Z} ∈ SC(A,A′, N)

where every Sk is nonsingular and satisfies

Sk+1A = A′Sk . (22)

It is easy to verify that SC(A,A′, N) is not empty if and only
if AN � (A′)N because (22) implies SkAN = (A′)NSk.
When A = A′, we also use a simple notation SC(A,N) for
SC(A,A,N). Therefore, W ∈ SC(A,N) means that W is
a set of nonsingular matrices Wk = Wmod(k/N) with

Wk+1A = AWk. (23)
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Note that C(A,A′) = SC(A,A′, 1). For any W ∈ C(A),
define W = {Wk = W | k ∈ Z}, then it is easy to see
that W ∈ SC(A,N) for any positive N ∈ Z. In this sense,
we could say that C(A) ⊂ SC(A,N). This fact holds for
C(A,A′) and SC(A,A′, N), and so we could also say that
C(A,A′) ⊂ SC(A,A′, N).

The next theorem characterizes each similarity class by
using C(A), SC(A,N), C(A,A′) and SC(A,A′, N).

Theorem 3: Suppose AP = {A,Pk = Pmod(k/N) | k ∈
Z} ∈ FT .

1) AP ′ = {A′, P ′
k = P ′

mod(k/N) | k ∈ Z} ∈ AP
s

if and
only if there exists an S ∈ C(A,A′) such that

P ′
k = SPk . (24)

2) AP ′ = {A′, P ′
k = P ′

mod(k/N) | k ∈ Z} ∈ AP if and
only if there exist S ∈ C(A,A′) and W = {Wk =
Wmod(k/N) | k ∈ Z} ∈ SC(A,N) such that

P ′
k = SWkPk . (25)

3) AP ′ = {A′, P ′
k = P ′

mod(k/N) | k ∈ Z} ∈ AP
w

if and
only if there exist an S = {Sk = Smod(k/N) | k ∈
Z} ∈ SC(A,A′, N) such that

P ′
k = SkPk . (26)

�

(Proof)
1) Instead of (24), the item 1) has been given as P ′

k = SWPk

with S ∈ C(A, A′) and W ∈ C(A) in [7]. Note that SW ∈
C(A,A′) because it holds that (SW )A = SWA = SAW =
A′SW = A′(SW ).
2) This item is just the same as given in [7].
3) Necessity part: Note that Pk+1Ak = APk and P ′

k+1Ak =
A′P ′

k. Therefore it follows that (P ′
k+1)

−1A′P ′
k = Ak =

P−1
k+1APk . Define Sk := P ′

kP−1
k , it is trivial that (26)

holds and also we obtain A′ = Sk+1AS−1
k , which means

S := {Sk = Smod(k/N) | k ∈ Z} ∈ SC(A, A′, N).
Sufficient part: Existence of S ∈ SC(A,A′, N)
implies that (A′)N � AN because (A′)N =
(SNAS−1

N−1) · · · (S2AS−1
1 )(S1AS−1

0 ) with SN = S0.
Therefore this and (26) mean AP ′ ∈ AP

w
.

(Q.E.D.)

The above theorem means that C(A,A′) and SC(A,A′, N)
are very important to construct all Floquet transformations
of AP

s

11, AP1, and all the other APi’s.
The set C(A,A′) is well known, so here only the set

SC(A,A′, N) is summarized below. Note that SC(A,N) =
SC(A,A,N) .

The following lemma is trivial.

Lemma 1: Suppose that JA and JA′ be the Jordan forms
of A and A′ respectively and also suppose that S ∈ C(JA, A)
and S′ ∈ C(JA′ , A′).

1) If W = {Wk = Wmod(k/N) | k ∈ Z} ∈ SC(JA, N),
then W ′ = {SWkS−1 | k ∈ Z} ∈ SC(A, N).

2) If S = {Sk = Smod(k/N) | k ∈ Z} ∈ SC(JA, JA′ , N),
then S ′ = {S′SkS−1 | k ∈ Z} ∈ SC(A,A′, N).

�

Therefore, in order to characterize SC(A,N) and
SC(A,A′, N), without loss of generality, it can be assumed
that A and A′ are in the Jordan forms.

Associated with A,A′ ∈ A, suppose that

JA = JAσ ⊕ Jν JA′ = JA′σ ⊕ Jν (27)

where JAσ, JA′σ ∈ C
n̄×n̄ are nonsingular, and Jν is nilpo-

tent. Recall Theorem 1, which claims that AN � (A′)N � Φ,
i.e., JN

A � JN
A′ � Φ. And also notice that JA and JA′ satisfy

the rank condition (9) of Theorem 1, which is the reason why
we could assume that JA and JA′ have the same nilpotent
Jν in (27).

Lemma 2: Suppose that JA and JA′ are given by (27).

1) Every S = {Sk = Smod(k/N) | k ∈ Z} ∈
SC(JA, JA′ , N) is given by

Sk = Sσ,k ⊕ Wν,k (28)

where Sσ := {Sσ,k = Sσ,mod(k/N) | k ∈
Z} ∈ SC(JAσ

, JA′

σ
, N) and Wν := {Wν,k =

Wν,mod(k/N) | k ∈ Z} ∈ SC(Jν , N).
2) If S := {Sk = Smod(k/N) | k ∈ Z} ∈

SC(JAσ
, JA′

σ
, N), then each Sk is given by

Sk = J
mod(k/N)
A′

σ
S0J

−mod(k/N)
Aσ

(29)

with any S0 ∈ C(JN
Aσ

, JN
A′

σ
).

3) Suppose that Jν is given as Jν = Jm1
(0)⊕· · ·⊕Jmq

(0)
with m1 ≥ · · · ≥ mq. Then every W := {Wk =
Wmod(k/N) | k ∈ Z} ∈ SC(Jν , N) is given by

Wk =

⎡
⎢⎢⎢⎣

W1,1,k W1,2,k · · · W1,q,k

W2,1,k W2,2,k · · · W2,q,k

...
...

. . .
...

Wq,1,k Wq,2,k · · · Wq,q,k

⎤
⎥⎥⎥⎦ (30)

where Wi,j,k ∈ C
mi×mj is given as

Wi,j,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
Emj ,k

0(mi−mj)×mj

]
for i < j

Emi,k for i = j

[
0mi×(mj−mi) Emi,k

]
for i > j

Em,k =

⎡
⎢⎢⎢⎢⎢⎣

e1,k e2,k e3,k · · · em,k

0 e1,k+1 e2,k+1 · · · em−1,k+1

0 0 e1,k+2 · · · em−2,k+2

...
...

...
. . .

...
0 0 0 · · · e1,k+m−1

⎤
⎥⎥⎥⎥⎥⎦

ej,k = ej,mod(k/N) for k ∈ Z, j ∈ m

and also the parameters ej,k’s must be chosen such that
Wk is nonsingular.

�
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The proof of this lemma can be given as almost same ways
of the proof for Lemmas 5 and 6 in [7], and so it is omitted
here.

The following theorem is derived easily from Theorem 2
and Theorem 3.

Theorem 4: The discrete-time periodic non-homogeneous
system (1) is TTI if and only if

1) There exists a Floquet transformation AP = {A,Pk =
Pmod(k/N) | k ∈ Z}.

2) There exists S = {Sk = Smod(k/N) | k ∈ Z} ∈⋃
A′∈A

SC(A,A′, N) such that

ImSk+1Pk+1Bk = ImSkPkBk−1 (31)

KerCkP−1
k S−1

k = KerCk−1P
−1
k−1S

−1
k−1 (32)

�

Note that the Floquet transformations AP11 and AP12 in
the example 1 are similar in the sense of Definition 1, i.e.,
AP11,AP12 ∈ AP1. Therefore the example 1 shows that a
similarity class AP could include the Floquet transformation
by which either (10) or (11) of Theorem 2 does not hold even
if the system (1) is TTI.

Beside the above observations, the following theorem is
very interesting.

Theorem 5: Suppose that the system (1) has a Floquet
transformation AP by which Theorem 2 holds. Then the
conditions (10) and (11) of Theorem 2 hold under all Floquet
transformations in the strong similarity class AP

s
. �

(Proof) Suppose that AP = {A,Pk = Pmod(k/N) | k ∈ Z}
satisfies (10) and (11), i.e.,

ImPk+1Bk = ImPkBk−1

KerCkP−1
k = KerCk−1P

−1
k−1.

Let AP ′ = {A′, P ′
k = P ′

mod(k/N) | k ∈ Z} be strongly
similar to AP . From Theorem 3, there exists an S ∈
C(A,A′) such that P ′

k = SPk. Therefore it follows that

ImP ′
k+1Bk = ImSPk+1Bk = SImPk+1Bk

= SImPkBk−1 = ImSPkBk−1 = ImP ′
kBk−1

KerCk(P ′
k)−1 = KerCk(SPk)−1 = KerCkP−1

k S−1

= SKerCkP−1
k = SKerCk−1P

−1
k−1

= KerCk−1P
−1
k−1S

−1 = KerCk−1(SPk−1)
−1

= KerCk−1(P
′
k−1)

−1

which means that the conditions (10) and (11) hold for AP ′.
(Q.E.D.)

Example 2: Consider the system (12) again. We can
construct another new Floquet transformation AP21 =
{A′′, P ′′

k = P ′′
mod(k/N) | k ∈ Z} , which is not similar to

AP11 and AP12 given in the example 1, as follows.

A′′ =

[
2ej2π/3 0

0 0

]
, P ′′

0 =

[
0 1

0.5 0

]
,

P ′′
1 =

[
ej2π/3 0

0 ej2π/3

]
, P ′′

2 =

[
2.5ej4π/3 0

0 1.5ej4π/3

]

It is easy to see that AP21 satisfies Theorem 2 as well as
AP12. In fact,

P ′′
1 B0 = ej2π/3

[
2
1

]
, P ′′

2 B1 = ej4π/3

[
3

1.5

]
,

P ′′
0 B2 =

[
1

0.5

]
,

C0(P
′′
0 )−1 =

[
1 1

]
, C1(P

′′
1 )−1 = e−j2π/3

[
1 1

]

C2(P
′′
2 )−1 = e−j4π/3

[
2 2

]
.

Let the similarity classes to AP12 and AP21 be denoted
as AP1 and AP2, respectively. Then we can construct
the third Floquet transformation AP31 = {A′′′, P ′′′

k =
P ′′′

mod(k/N) | k ∈ Z} , which is not included in either AP1

or AP2, as follows.

A′′′ =

[
2ej4π/3 0

0 0

]
, P ′′′

0 =

[
0 1

0.5ej4π/3 0

]
,

P ′′′
1 =

[
ej4π/3 0

0 1

]
, P ′′′

2 =

[
2.5ej2π/3 0

0 1.5ej4π/3

]

And it is easy to see that AP31 satisfies Theorem 2 as well.
�

From the examples 1 and 2, we can see that the set
of Floquet transformations for the system (12) splits three
similarity classes AP1,AP2 and AP3 and each similarity
class includes at least one Floquet transformation by which
Theorem 2 holds.

The above observation would give us the following con-
jecture; when a discrete-time periodic system (1) is TTI,
every similarity class of Floquet transformations has at least
a Floquet transformation by which the conditions (10) and
(11) of Theorem 2 hold.

But this conjecture is not true, which will be shown later.

As a case study, consider a system (1) with the following
assumptions.
A1) All Ak’s are nonsingular.
A2) The monodromy matrix Φ has n eigenvalues

λ1, λ2, · · · , λn, which are mutually different.
A3) Denote N -th roots of λi by γi1, γi2, · · · , γiN . Then all

γim (i ∈ n, m ∈ N ) are mutually different.
The following theorem claims that the structure of FT is

very simple under the above assumptions.

Theorem 6: Consider a system (1) with the assumptions
A1)-A3). Then the system has Floquet transformations and
the set FT consists of Nn similarity classes APi, i ∈ Nn .

Furthermore, every similarity class APi consists of only
one strong similarity class AP

s

i1, i.e., APi = AP
s

i1. �

(Proof) Under the assumptions A1) -A3), it is easy to see
that Φ has Nn similarity classes of N -th roots and the rank
condition (9) of Theorem 1 holds. Therefore the system (1)
has Floquet transformations.

The set A defined in (19) has Nn similarity classes whose
representatives are given by

Jm1,m2,···,mn
= diag(γ1m1

, γ2m2
, · · · , γnmn

) (33)
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where m1,m2, · · · ,mn ∈ N .
It is easy to verify from the assumption A3) that

SC(Jm1,m2,···,mn
, N) = C(Jm1,m2,···,mn

). This fact means
AP = AP

s
. (Q.E.D.)

From Theorem 5 and Theorem 6, we can see that in order
to decide whether the system (1) with A1)-A3) is TTI or not,
we have to check the conditions (10) and (11) at most for
Nn Floquet transformations.

As we mentioned before, it would be conjectured from
the above examples 1 and 2 that when a discrete-time
periodic system (1) is TTI, every similarity class of Floquet
transformations has at least a Floquet transformation by
which the conditions (10) and (11) of Theorem 2 hold. But,
understanding Theorems 5 and 6, the following example
shows that the conjecture is not true.

Example 3: Consider the following system with a period
N = 3 {

xk+1 = Akxk + Bkuk

yk = Ckxk
(34)

where

A0 =

[
1 1
0 1

]
, A1 =

[
0 2
1 0

]
, A2 =

[
−4 0
4 1

]

B0 =

[
2
−1

]
, B1 =

[
9

−14

]
, B2 =

[
−13
6

]

C0 =
[

7 0
]
, C1 =

[
6 −14

]
, C2 =

[
−14 4

]
.

It is easy to see that the system satisfies the assumptions
A1)-A3).

The monodromy matrix is given as

Φ = A2A1A0 =

[
0 −8
1 9

]

and the rank condition (9) of Theorem 1 holds. Therefore
we can get a Floquet transformation AP = {A,Pk =
Pmod(k/3) | k ∈ Z} ∈ AP1 where

P0 =

[
1 1
1 8

]
, P1 =

[
1 0
2 14

]
, P2 =

[
0 1
14 4

]
.

By this AP the conditions (10) and (11) of Theorem 2 hold.
Consider another similarity class AP2 which has a Floquet

transformation AP ′ = {A′, P ′
k = P ′

mod(k/3) | k ∈ Z} where
A′ = diag(ej2π/3, 2ej4π/3) and

P ′
0 =

[
1 1
1 8

]
, P ′

1 =

[
ej2π/3 0
2ej4π/3 14ej4π/3

]

P ′
2 =

[
0 ej4π/3

14ej2π/3 4ej2π/3

]
.

In this case we get

P ′
1B0 = 2

[
ej2π/3

−5ej4π/3

]
, P ′

2B1 = −14

[
ej4π/3

−5ej2π/3

]

P ′
0B2 = −7

[
1
−5

]

and therefore by this AP ′ the condition (10) does not hold.
Therefore, from Theorems 5 and 6, it follows that the

similarity class AP2 has no Floquet transformation by which
Theorem 2 does not hold even though Theorem 2 holds under
the similarity class AP1, and we can see that the above
conjecture is not true. �

IV. CONCLUSION

This paper has considered a condition for discrete-time
periodic non-homogeneous linear systems to be transformed
to time-invariant ones. Because the condition depends on
Floquet transformations, before using the condition, you have
to know all Floquet transformations and its structure, where
a concept of similarity classes and some special sets of
commutative matrices play important roles.

When the condition is used, it has been shown that every
Floquet transformation in a strong similarity class gives the
same conclusion whereas not in a similarity class.

In the case that the monodromy matrix is nonsingular
with diagonalizable N -th roots, the structure of all Floquet
transformations is very simple; similarity is reduced to strong
similarity. Therefore, in order to get a conclusion, it is
enough to check the condition for a finite number of Floquet
transformations.

The future researches are to consider the same problems
from the view point of impulse responses of the system and
to extend all the results to the case of nonlinear systems.
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