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Abstract— This paper considers discrete-time Floquet trans-
formations, by which a discrete-time periodic linear system can
be transformed to a time-invariant one. The previous researches
have made clear when a discrete-time periodic system has its
Floquet transformations and also it is known that the system has
a lot of Floquet transformations if it has one. This paper defines
three new similarities between two Floquet transformations,
clarifies some relations among those similarities, and also makes
clear how a set of all Floquet transformations can be split into
a finite number of equivalence classes.

I. INTRODUCTION

A lot of model-based control method for periodic systems
have been proposed, e.g., [2] [8] [10] and references therein.
In order to establish model-based control designs for automo-
tive engine, the authors proposed a model representation of
V6 Spark Ignition SICE benchmark engine [7]: a continuous-
time periodic nonlinear state space model is constructed first,
then the model is discretized to get a discrete-time periodic
nonlinear state space model, and finally by introducing a
concept of ”role state variables”, the discrete-time periodic
model can be transformed to a time-invariant one. It could be
claimed that the last process corresponds to using the theory
of Floquet in discrete-time version.

It is well known [1] [3] as theory of Floquet that ev-
ery continuous-time periodic linear homogeneous system
ẋc(t) = Ac(t)xc(t) with a period T can be transformed
to a linear time-invariant system ξ̇c(t) = Acξc(t) by a
state transformation ξc(t) = P (t)xc(t) with P (t) being
nonsingular and periodic P (t + T ) = P (t).

It has been made clear in [9] when a discrete-time periodic
linear homogeneous system can be transformed to a time-
invariant one, which could be called discrete-time version for
theory of Floquet. Those results in [9] are very interesting,
in which it is shown that all discrete-time periodic systems
are not necessarily transformed to time-invariant ones.

The previous research [5] also considers discrete-time
Floquet transformations, where a necessary and sufficient
condition for a discrete-time periodic system to have Floquet
transformations is given. This condition is equivalent to
one of [9], however, the proof is novel and self-contained.
Furthermore, from the result of [5], it is easy to see that
corresponding to every N -th root of the monodolomy matrix,
you can construct a Floquet transformation. Noticing that a
square matrix could have many N -th roots which are not
similar each other, it is easy to guess that the system could
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have many Floquet transformations which are not ”similar”
each other. However, at this moment, some problems arises:
what ”similarity” between two discrete-time Floquet trans-
formations means, and what structure the set of all Floquet
transformations has.

In this paper, three kinds of similarities between two
Floquet transformations are newly defined, some relations
among those similarities are made clear and also it is shown
how the set of all Floquet transformations can be split
into a finite number of equivalence classes by using those
similarities.

Section II reviews the previous results on discrete-time
Floquet transformations and also gives an example to under-
stand the problem to be considered in this paper. Section III
considers similarity classes of N -th root matrices. Section
IV is a main part of this paper, where similarity classes
of Floquet transformations are discussed. Some conclusion
remarks are stated in Section V.

Notation: R is a set of all real numbers, C a set of all
complex numbers, and Z a set of all integers.

For any positive integer n ∈ Z, n := {1, 2, · · · , n} and
n− := {0, 1, · · · , n−1}. For any k ∈ Z , mod(k/n) denotes
”k modulo n” and floor(k/n) ”the greatest integer less than
or equal to k/n”, i.e., it holds that k = floor(k/n) × n +
mod(k/n).

Associated with A,B ∈ C
n×n, A � B means that A

is similar to B, i.e., there exists a nonsingular matrix S ∈
C

n×n such that B = SAS−1.
Jm(λ) denotes an m × m Jordan block with eigenvalue

λ, and the direct sum is denoted as ⊕, i.e., for any square
matrices C and D,

C ⊕ D :=

[
C 0
0 D

]
.

II. DISCRETE-TIME FLOQUET TRANSFORMATION

Consider a discrete-time periodic homogeneous system
with a period N

xk+1 = Akxk (1)

where k ∈ Z is time, xk ∈ R
n state, Ak ∈ R

n×n, N a
positive integer (≥ 2) and it is assumed that

Ak = Amod(k/N). (2)

Suppose that there exist a matrix A ∈ C
n×n and a

sequence of nonsingular matrices {Pk ∈ C
n×n | k ∈ Z}

such that for any k ∈ Z,

Pk+1Ak = APk (3)

Pk = Pmod(k/N). (4)
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Then, by introducing a new state ξk as ξk = Pkxk, the
system (1) can be transformed to a time-invariant system

ξk+1 = Aξk (5)

where ξk ∈ C
n and A ∈ C

n×n.
Associated with the system (1), the set of matrices A

and Pk’s in (3) and (4), denoted by AP := {A, Pk =
Pmod(k/N) | k ∈ Z}, is called a Floquet transformation.

Define a monodolomy matrix Φ ∈ R
n×n as

Φ := AN−1 · · ·A1A0, (6)

then it is easy to verify from (3) and (4) that Φ =(
P−1

0 AP0

)N
. This means that Φ has an N -th root

P−1
0 AP0 ∈ C

n×n if the system (1) has a Floquet trans-
formation.

A necessary and sufficient condition for the system (1) to
have a Floquet transformation has been given in [9], where
an algorithm is shown to calculate a Floquet transformation
from the data {Ak | k ∈ N−}. The following theorem
derived in [5] also gives a necessary and sufficient condition
for the system (1) to have a Floquet transformation.

Theorem 1: [5] Given a system (1), (2) with Ak ∈ Rn×n

and a period N ≥ 2, there exists a Floquet transformation
AP = {A,Pk = Pmod(k/N) | k ∈ Z} if and only if it holds
that

rankAk−1Ak−2 · · ·Ah+1Ah = rankAk−h

for h ∈ N− and k − h ∈ n.
(7)

where A ∈ C
n×n is any matrix similar to one of N -th roots

of Φ given by (6). �

The condition (7) of Theorem 1 is equivalent to one of
[9]. However, the proof given in [5] shows how to construct
a Floquet transformation associated with every A similar to
one of N -th roots of Φ, whereas the algorithm in [9] gives
only one of Floquet transformations. From this point of view,
Theorem 1 is more suitable to consider ”similarity classes”
in the set of discrete-time Floquet transformations.

Example 1: Consider a periodic system xk+1 = Akxk

with a period N = 3 and

A0 =

⎡
⎣ 0 0 1

1 0 0
0 0 0

⎤
⎦ , A1 =

⎡
⎣ 0 1 0

0 0 0
0 0 1

⎤
⎦

A2 =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ , Ak = Amod(k/N).

According to Theorem 1, it is easy to verify that this
periodic system has Floquet transformations, and also we
can construct a lot of Floquet transformations; e.g., the first
one is AP = {A,Pk = Pmod(k/N) | k ∈ Z} where

A =

⎡
⎣ 1 0 0

0 0 1
0 0 0

⎤
⎦ , P0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

P1 =

⎡
⎣ 0 1 0

1 0 1
0 0 1

⎤
⎦ , P2 =

⎡
⎣ 1 0 0

0 1 1
0 1 0

⎤
⎦

The second Floquet transformation AP ′ = {A′, P ′

k =
P ′

mod(k/N) | k ∈ Z} is given as

A′ =

⎡
⎣ 1 0 0

0 0 1
0 0 0

⎤
⎦ , P ′

0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

P ′

1 =

⎡
⎣ 0 1 0

1 0 −1
0 0 2

⎤
⎦ , P ′

2 =

⎡
⎣ 1 0 0

0 3 2
0 1 0

⎤
⎦

and the third one is AP ′′ = {A′′, P ′′

k = P ′′

mod(k/N) | k ∈ Z}
where

A′′ =

⎡
⎣ ej2π/3 0 0

0 0 1
0 0 0

⎤
⎦ , P ′′

0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

P ′′

1 =

⎡
⎣ 0 ej2π/3 0

1 0 1
0 0 1

⎤
⎦ , P ′′

2 =

⎡
⎣ ej4π/3 0 0

0 1 1
0 1 0

⎤
⎦ .

You can see that A′ � A (really A′ = A) and A′′ is not
similar to A. And also you can realize that P0 = P ′

0 = I3,
however, P ′

1 and P ′

2 are respectively different from P1 and
P2 and moreover P ′

1P
−1
1 �= P ′

2P
−1
2 . So, it is not easy to

speculate what relation there exists between Pk’s and P ′

k’s.
�

If a discrete-time periodic system has a Floquet transfor-
mation, it has a lot of Floquet transformations as shown in the
above example. It is an interesting issue to investigate some
relations among those Floquet transformations. The aim of
this paper is to make clear some sorts of similarities among
the Floquet transformations.

First of all, we will make clear similarity classes of N -th
roots of the monodolomy matrix Φ in the next section.

III. SIMILARITY CLASSES OF N -TH ROOT MATRICES

Given a matrix Φ ∈ R
n×n and a positive integer N ≥ 2,

an N -th root of Φ is a matrix A ∈ C
n×n satisfying

AN = Φ. (8)

By the analogy with N -th roots of a real number, it is easy
to imagine that there are many N -th roots if Φ has one. Note
that all square matrices do not necessarily have N -th roots,
whereas all real numbers do.

In this section we are interested in when Φ has N -th roots
and how many similarity classes exist in a set of all N -th
roots of Φ.

Suppose that (8) holds and let JΦ and JA be the Jordan
forms of Φ and A, respectively, i.e.,

Φ = SΦJΦS−1
Φ , A = SAJAS−1

A

where SΦ, SA ∈ C
n×n are nonsingular. Then it follows

that JN
A � JΦ because SΦJΦS−1

Φ = Φ = AN =(
SAJAS−1

A

)N
= SAJN

A S−1
A .
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From the above observation, in order to characterize all
the N -th roots A’s of Φ, it is enough 1to characterize all the
Jordan forms JA’s of the N -th roots.

Now recall a useful fact given as Theorem 6.2.25 in [6]
and set f(t) = tN in the theorem, then the following lemma
is directly obtained.

Lemma 1: Let Jm(γ) be a m × m Jordan block with
eigenvalue γ.

1) In the case of γ �= 0,

Jm(γ)N � Jm(γN ) (9)

2) In the case of γ = 0 and suppose that m̄ =
floor(m/N) and r = mod(k/N), then

Jm(0)N

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Jm̄+1(0) ⊕ · · · ⊕ Jm̄+1(0)︸ ︷︷ ︸
r

⊕Jm̄(0) ⊕ · · · ⊕ Jm̄(0)︸ ︷︷ ︸
N−r

for m ≥ N

J1(0) ⊕ · · · ⊕ J1(0)︸ ︷︷ ︸
m

= 0m×m for m < N

(10)

�

From the above lemma, we get the following theorem,
which is just an extension of square roots [6] to N -th roots.

Theorem 2: Let Φ ∈ R
n×n be given and suppose N ≥ 2.

1) If Φ is nonsingular, Φ has N -th roots. Furthermore, if
Φ has p Jordan blocks in its Jordan form as follows,

Φ � J�1(λ1) ⊕ J�2(λ2) ⊕ · · · ⊕ J�p
(λp) (11)

then every N -th root A of Φ also has p Jordan blocks
in its Jordan form as follows,

A � J�1(γ1) ⊕ J�2(γ2) ⊕ · · · ⊕ J�p
(γp) (12)

where γN
i = λi for i ∈ p. Therefore if there exists μ

distinct eigenvalues among {λ1, λ2, · · · , λp}, a number
of N -th roots of Φ is at least Nμ and at most Np.

2) If Φ is nilpotent

Φ � Jn1
(0) ⊕ Jn2

(0) ⊕ · · · ⊕ Jns
(0) (13)

and suppose m = floor(s/N) and r = mod(s/N).
Then Φ has an N -th root if and only if there exists a
permutation ν of s such that the following conditions
a) and b) hold;

a) define Δj ∈ R1×(N−1) for j ∈ m− by

Δj :=
(
nν(jN+1) − nν(jN+2),

nν(jN+2) − nν(jN+3),

· · · · · · · · · · · · · · · · · · ,

nν(jN+N−1) − nν(jN+N)

)
, (14)

1Derivation of A from JA, JΦ and SΦ is straightforward. In fact, first
find a nonsingular X satisfying XJN

A
= JΦX , then calculate A =

SΦXJA(SΦX)−1.

then each Δj has the property that its only
one element is either ”0” or ”1” and the other
elements are all ”0”.

b) if r ≥ 1, then it holds that

nν(s) = nν(s−1) = · · · = nν(s−r+1) = 1. (15)

Furthermore, an N -th root A of Φ is given as

A � Jm1
(0) ⊕ Jm2

(0) ⊕ · · · ⊕ Jmq
(0) (16)

where q ≥ m,

mi =

N∑
h=1

nν((i−1)N+h) for 1 ≤ i ≤ m (17)

and mi ≤ N for (m + 1) ≤ i ≤ q.
3) Φ has an N -th root if and only if the nilpotent part of

Φ satisfies the above condition 2). Furthermore, if Φ
has an N -th root, its set of N -th roots lies in finitely
many different similarity classes.

�

Example 2: Consider a nonsingular matrix

Φ � J2(2) ⊕ J2(2)

and list up all the similarity classes of its N -th roots.
Φ has one eigenvalue of λ = 2 and two Jordan blocks,

therefore μ = 1 and p = 2. All the N -th roots of λ = 2 are
given as

γk = 21/Nej 2πk
N for k ∈ N−

where 21/N denotes the positive real N -th root of 2. There-
fore it is easy to see that any N -th root of Φ is similar to
one of J2(γk) ⊕ J2(γk′) for k, k′ ∈ N−.

Notice

J2(γk) ⊕ J2(γk′) � J2(γk′) ⊕ J2(γk).

This happens because the sizes of two Jordan blocks are
equal. Therefore in this case, the number of similarity classes
of N -th roots is equal to

N +N C2 =
N(N + 1)

2

which is a number between N(= Nμ) and N2(= Np).
�

Example 3: Consider a nilpotent matrix

Φ � J2(0) ⊕ J2(0) ⊕ J1(0) ⊕ J1(0).

Note that s = 4, n1 = n2 = 2 and n3 = n4 = 1.
Φ has a square root. In fact, associated with N = 2, it

follows that m = floor(s/N) = 2 and r = mod(s/N) = 0.
Now let the permutation ν of s be ν(i) = i, then we
have Δ0 := (n1 − n2) = 0, Δ1 := (n3 − n4) = 0.
These observations say that the condition 2) in Theorem 2
is satisfied and a square root A of Φ is similar to JA =
J4(0)⊕J2(0) because m1 = n1+n2 = 4 and m2 = n3+n4.

In this case, it is very interesting that Φ has another
square root A′ which is not similar to JA. In fact, when the
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permutation ν is set as ν(1) = 1, ν(2) = 3, ν(3) = 2, ν(4) =
4, then we have Δ0 = (n1 −n3) = 1, Δ1 = (n2 −n4) = 1,
which also satisfy the condition 2) in Theorem 2, and m1 =
n1 + n3 = 3, m2 = n2 + n4 = 3, so Φ has a square root A′

similar to JA′ = J3(0) ⊕ J3(0).
Now we will decide whether the matrix Φ has a cube root

or not. In this case, N = 3 and m = floor(s/N) = 1, r =
mod(s/N) = 1. If we set a permutation ν as ν(i) = i, then
it follows that Δ0 = (n1 − n2, n2 − n3) = (0, 1). Note that
nν(4) = n4 = 1. Therefore the conditions 2), a) and b) in
Theorem 2 are satisfied, m1 = n1 + n2 + n3 = 5, so Φ has
a cube root similar to JA = J5(0) ⊕ J1(0).

In the case of N = 4, it follows that m = floor(s/N) =
1, r = mod(s/N) = 0, and Δ0 = (n1 − n2, n2 − n3, n3 −
n4) = (0, 1, 0), therefore the matrix Φ has a 4th root similar
to JA = J6(0).

It is also trivial that the matrix Φ has no N -th root when
N ≥ 5.

�

IV. SIMILARITY CLASSES OF FLOQUET

TRANSFORMATIONS

Suppose the discrete-time periodic system (1) with (2) has
Floquet transformations, we denote a set of all the Floquet
transformations by FT , i.e., every element of FT is a
Floquet transformation AP := {A,Pk = Pmod(k/N) | k ∈
Z}, which satisfy (3) and (4).

The matrix A of Floquet transformation AP = {A,Pk =
Pmod(k/N) | k ∈ Z} ∈ FT could be different from
A′ of another Floquet transformation AP ′ = {A′, P ′

k =
P ′

mod(k/N) | k ∈ Z} ∈ FT . Collect all the matrices A’s
of all the Floquet transformations in FT and denote the set
by A.

It is easy to see that Theorem 1 implies the next lemma.

Lemma 2: A ∈ A if and only if A is similar to one of
N -th roots of the monodolomy matrix Φ given as (6) and
also satisfies the condition (7). �

Now suppose that the Jordan forms JA and JΦ of A and
Φ are expressed as

JA = JAσ ⊕ JAν , JΦ = JΦσ ⊕ JΦν (18)

where JAσ, JΦσ are nonsingular and JAν , JΦν are nilpotent.
By recalling Theorem 2, it follows that A has a finite

number of different similarity classes. Notice that every A ∈
A satisfies the rank condition (7), so each A ∈ A has the
same Jordan blocks for its nilpotent part JAν . Therefore,
suppose A,A′ ∈ A have their Jordan forms as JA = JAσ ⊕
JAν and JA′ = JA′σ ⊕ JA′ν respectively, then it always
holds JAν = JA′ν and also it holds that A � A′ if and only
if JAσ = JA′σ.

Associated with any A ∈ A, a subset {A′ ∈ A | A′ � A}
of A is called a similarity class or an equivalence class.

From these observations, we get the following lemma.

Lemma 3: Suppose that the monodolomy matrix Φ given
as (6) has a Jordan form JΦ = JΦσ ⊕ JΦν with JΦσ being

nonsingular and JΦν nilpotent, and also suppose that JΦσ has
μ distinct eigenvalues and p Jordan blocks . Then a number
of similarity classes in the set A, denoted by ne, is at least
Nμ and at most Np, i.e., denoting each similarity class by
Ai for i ∈ ne, the set A splits into exactly ne similarity
classes as follows.

A =
⋃

i∈ne

Ai, Ai

⋂
Aj = φ for i �= j (19)

�

Note that the number ne can be determined exactly from the
data {�i, λi | i ∈ p} of JΦσ = J�1(λ1) ⊕ J�2(λ2) ⊕ · · · ⊕
J�p

(λp).
Now we will define a similarity between two Floquet

transformations.

Definition 1: Suppose AP,AP ′ ∈ FT with AP =
{A,Pk = Pmod(k/N) | k ∈ Z} and AP ′ = {A′, P ′

k =
P ′

mod(k/N) | k ∈ Z}.
1) AP ′ is strongly similar to AP , denoted by AP ′ �s

AP , when A′ � A and there exist a nonsingular
constant matrix Q ∈ C

n×n such that

P ′

k = QPk (20)

2) AP ′ is similar to AP , denoted by AP ′ � AP , when
A′ � A and there exist nonsingular matrices Qk =
Qmod(k/N) ∈ C

n×n (k ∈ Z) such that

P ′

k = QkPk (21)

3) AP ′ is weakly similar to AP , denoted by AP ′ �w

AP , when (A′)N � AN and there exist nonsingular
matrices Qk = Qmod(k/N) ∈ C

n×n (k ∈ Z) such that

P ′

k = QkPk (22)

�

Note that the same notation ”�” is used for similarity both
of matrix and of Floquet transformation, but it is clear from
the content which similarity it means.

Each similarity defined above for Floquet transformations
satisfies reflexive, symmetric, and transitive laws, therefore
the similarities have right to be equivalence relations in FT .
The equivalence class of an element AP ∈ FT with respect
to each similarity is denoted as follows.

AP
s

:= {AP ′ ∈ FT | AP ′ �s AP} (23)

AP := {AP ′ ∈ FT | AP ′ � AP} (24)

AP
w

:= {AP ′ ∈ FT | AP ′ �w AP} (25)

Then it is trivial that

AP
s
⊂ AP ⊂ AP

w
(26)

because from the definitions, AP ′ �s AP implies AP ′ �
AP , which also implies AP ′ �w AP .

Associated with a matrix A ∈ C
n×n, we denote a set

of all nonsingular matrices that are commutative with A as
C(A), i.e.,

C(A) :=
{

W ∈ C
n×n : nonsingular

∣∣ WA = AW
}

.
(27)
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This set has already been investigated in detail [4] [6].
Now we extend the commutative matrix to define a new

concept of an N periodic sequence of commutative matrices
with A, which is denoted as W := {Wk = Wmod(k/N) ∈
C

n×n | k ∈ Z} where every Wk is nonsingular and satisfies

Wk+1A = AWk. (28)

Moreover, we denote a set of all N periodic sequences of
commutative matrices with A as SC(A,N).

It is easy to see that SC(A, 1) = C(A) because Wk =
Wmod(k/N) = W0 for any k ∈ Z in the case of N = 1.

Moreover, for any W ∈ C(A), it is easy to see that W =
{Wk = W | k ∈ Z} ∈ SC(A,N) for any positive N ∈ Z.
In this sense, we could say that C(A) ⊂ SC(A,N).

Under the above notation, some interesting facts on the
similarity classes in FT are stated in the next theorem.

Theorem 3: Suppose AP = {A,Pk = Pmod(k/N) | k ∈
Z} ∈ FT .

1) {A′, P ′

k = P ′

mod(k/N) | k ∈ Z} ∈ AP
s

if and only if
there exist nonsingular S and W ∈ C(A) such that

A′ = SAS−1, P ′

k = SWPk. (29)

2) {A′, P ′

k = P ′

mod(k/N) | k ∈ Z} ∈ AP if and
only if there exist nonsingular S and W = {Wk =
Wmod(k/N) | k ∈ Z} ∈ SC(A,N) such that

A′ = SAS−1, P ′

k = SWkPk. (30)

3) It holds that
AP

w
= FT . (31)

�

(Proof)
Fact 3) It is trivial that AP

w
⊂ FT . So we will prove that

FT ⊂ AP
w

.
Consider any element AP ′ = {A′, P ′

k = P ′

mod(k/N) | k ∈
Z} ∈ FT . Recall that Pk+1Ak = APk, P ′

k+1Ak = A′P ′

k

for k ∈ Z. Therefore, it follows that

Ak = (P ′

k+1)
−1A′P ′

k = (Pk+1)
−1APk,

which implies A′ = (P ′

k+1P
−1
k+1)A(P ′

kP−1
k )−1. Now, define

Qk := P ′

kP−1
k . Then it is trivial that (22) holds and also

noticing QN = Q0, it follows that

(A′)N = (QNAQ−1
N−1) · · · (Q2AQ−1

1 )(Q1AQ−1
0 )

= Q0A
NQ−1

0

which means (A′)N � AN . We have proved that AP ′ ∈
AP

w
.

Fact 2)
Sufficiency part: Suppose that there exist nonsingular S

and W = {Wk = Wmod(k/N) | k ∈ Z} ∈ SC(A,N)
such that (30) holds, then we will prove AP ′ = {A′, P ′

k =
P ′

mod(k/N) | k ∈ Z} ∈ FT .
It is trivial that A′ � A ∈ A, so A′ ∈ A. Next we can

derive

P ′

k+1Ak = (SWk+1Pk+1)Ak = SWk+1APk

= SAWkPk = (SAS−1)SWkPk = A′P ′

k (32)

where (30) is used at the first and the last equalities. The
second equality comes from Pk+1Ak = APk and the third
equality from W ∈ SC(A,N). (32) with A′ ∈ A implies
AP ′ ∈ FT .

Now it is easy to see that (30) implies (21) with Qk =
SWk, which prove AP ′ � AP , i.e., AP ′ ∈ AP .

Necessity part: Suppose AP ′ = {A′, P ′

k =
P ′

mod(k/N) | k ∈ Z} � AP , then we will prove that there
exist nonsingular S and W = {Wk = Wmod(k/N) | k ∈
Z} ∈ SC(A,N) such that (30) holds.

By the definition, AP ′ � AP means that A′ � A and
there exist nonsingular Qk’s such that (21) holds.

Therefore it is trivial that there exists a nonsingular matrix
S such that A′ = SAS−1.

In the same way as the proof of Fact 3), the fact that
AP,AP ′ ∈ FT gives

A′ = (P ′

k+1P
−1
k+1)A(P ′

kP−1
k )−1 = Qk+1AQ−1

k

where the second equality comes from (21). The above
equation and A′ = SAS−1 derive

SAS−1 = Qk+1AQ−1
k

which means W := {S−1Qk | k ∈ Z} ∈ SC(A). When we
denote Wk := S−1Qk, then Qk = SWk and (21) goes to
P ′

k = QkPk = SWkPk. This is just (30) .

Fact 1) Recall that the similarity class becomes the strong
one when all Qk’s in (21) are equal to a constant matrix Q.

And also recall that when W = {Wk = Wmod(k/N) | k ∈
Z} ∈ SC(A,N) and all the Wk’s are equal to a constant
matrix W , then W ∈ C(A).

Therefore it is straightforward to derive (29) from (30).
(Q.E.D.)

The fact 3) of Theorem 3 demonstrates that the weak simi-
larity can not work to distinguish one Floquet transformation
from another one. In this sense, the weak similarity has no
meaning in FT .

Recall the similarity class decomposition (19) in the set
A. When AP ∈ FT has A ∈ Ai, we denote AP by APi.
Then we will have the following theorem with respect to
equivalence class decomposition in the set FT .

Theorem 4: The set FT splits into exactly ne similarity
classes as follows.

FT =
⋃

i∈ne

APi, APi

⋂
APj = φ for i �= j (33)

where the number ne is given in Lemma 3. �

(Proof) Consider AP,AP ′ ∈ FT with AP = {A,Pk =
Pmod(k/N) | k ∈ Z} and AP ′ = {A′, P ′

k = P ′

mod(k/N) | k ∈
Z} and suppose that A ∈ Ai and A′ ∈ Aj .

If i = j, it can be claimed that AP ′ � AP , so AP ′,AP ∈
APi. In fact, if i = j, then A, A′ ∈ Ai, so A′ � A.
By using the same proof of Fact 3) of Theorem 3, from
AP,AP ′ ∈ FT , it is derived that P ′

k = QkPk, i.e., (21).
Thus we conclude AP ′ � AP .
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If i �= j, this means that A′ is not similar to A, so
it is trivial that AP ′ is not similar to AP , which means
APi

⋂
APj = φ.

The above observations and Lemma 3 gives the theorem.
(Q.E.D.)

Theorem 3 and Theorem 4 say that the set of SC(A,N)
plays a very important role in order to characterize each
equivalence class APi and so FT itself. Now we will here
characterize SC(A,N) .

The next lemma is trivial.

Lemma 4: Suppose that A � A′, i.e., A′ = SAS−1 with
S being nonsingular. If W = {Wk = Wmod(k/N) | k ∈ Z} ∈
SC(A,N), then W ′ = {SWkS−1 | k ∈ Z} ∈ SC(A′, N).
�

Therefore, in order to characterize SC(A, N), it is enough
to assume that A is in the Jordan form.

Suppose that A = JA ∈ C
n×n is the Jordan form given

in (18), i.e., JA = JAσ ⊕ JAν with JAσ ∈ C
n̄×n̄ and W :=

{Wk = Wmod(k,N) | k ∈ Z} ∈ SC(JA, N). Then (28)
becomes

Wk+1JA = JAWk. (34)

Let Wk be expressed as

Wk =

[
W11,k W12,k

W21,k W22,k

]

where W11,k ∈ C
n̄×n̄.

From (34), it is easy to see that WkJN
A = JN

A Wk for any
k ∈ Z. Note that JN

A = JN
Aσ ⊕ JN

Aν , and also JN
Aσ and JN

Aν

have no common eigenvalue. Therefore we can see that that
W12,k = 0 and W21,k = 0.

Now we can suppose that

Wk = Wσ,k ⊕ Wν,k for k ∈ Z

where Wσ,k ∈ C
n̄×n̄. (34) becomes

Wσ,k+1JAσ = JAσWσ,k (35)

Wν,k+1JAν = JAνWν,k (36)

Lemma 5: The solution Wσ,k to (35) is given by

Wσ,k = J
mod(k/N)
Aσ Wσ,0J

−mod(k/N)
Aσ for k ∈ Z (37)

with any Wσ,0 ∈ C(JN
Aσ). �

(Proof) (35) implies Wσ,0J
N
Aσ = JN

AσWσ,0, which means
Wσ,0 ∈ C(JN

Aσ). (37) is derived directly from (35) because
JAσ is nonsingular. (Q.E.D.)

Next we will characterize all the solutions Wν,k to (36).
Suppose JAν is given as

JAν = Jm1
(0) ⊕ Jm2

(0) ⊕ · · · ⊕ Jmq
(0) (38)

where m1 ≥ m2 ≥ · · · ≥ mq, and let Wν,k be expressed by

Wν,k =

⎡
⎢⎢⎢⎣

V1,1,k V1,2,k · · · V1,q,k

V2,1,k V2,2,k · · · V2,q,k

...
...

. . .
...

Vq,1,k Vq,2,k · · · Vq,q,k

⎤
⎥⎥⎥⎦ (39)

where Vi,j,k ∈ C
mi×mj . Then (36) becomes

Vi,j,k+1Jmj
(0) = Jmi

(0)Vi,j,k, for i, j ∈ q (40)

and Vi,j,k = Vi,j,mod(k,N) for k ∈ Z.

Lemma 6: The solution Vi,j,k to (40) is given as

Vi,j,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
Vmj ,k

0(mi−mj)×mj

]
for i < j

Vmi,k for i = j

[
0mi×(mj−mi) Vmi,k

]
for i > j

(41)

where

Vm,k =

⎡
⎢⎢⎢⎢⎢⎣

v1,k v2,k v3,k · · · vm,k

0 v1,k+1 v2,k+1 · · · vm−1,k+1

0 0 v1,k+2 · · · vm−2,k+2

...
...

...
. . .

...
0 0 0 · · · v1,k+m−1

⎤
⎥⎥⎥⎥⎥⎦ (42)

vk,j = vmod(k/N),j for k ∈ Z, j ∈ m. (43)

and also the parameters vj,k’s must be chosen such that Wν,k

is nonsingular. �

(Proof) Let the matrix Vi,j,k ∈ C
mi×mj be denoted by

Vk,i,j =

⎡
⎢⎢⎢⎢⎢⎣

v1,1,k v1,2,k v1,3,k · · · v1,mj ,k

v2,1,k v2,2,k v2,3,k · · · v2,mj ,k

v3,1,k v3,2,k v3,3,k · · · v3,mJ ,k

...
...

...
. . .

...
vmi,1,k vmi,2,k vmi,3,k · · · vmi,mj ,k

⎤
⎥⎥⎥⎥⎥⎦ .

Then (40) implies that

vs,t−1,k+1 = vs+1,t,k

for 1 ≤ s ≤ (mi − 1), 2 ≤ t ≤ mj (44)

vs,1,k = 0 for 2 ≤ s ≤ mi (45)

vmi,t,k+1 = 0 for 1 ≤ t ≤ (mj − 1). (46)

Note that the above equations hold for any k, so the last
equation is equivalent to

vmi,t,k = 0 for 1 ≤ t ≤ (mj − 1). (47)

In the case of i ≤ j: Note that mi ≥ mj . Then (44),
(45) and (47) hold if and only if all vs,t,k’s are expressed by

vs,t,k = v̄k+s−1,t−s+1 (48)

where

v̄k+s−1,2−s = 0 for 2 ≤ s ≤ mi (49)

v̄k+mi−1,t−mi+1 = 0 for 1 ≤ t ≤ (mj − 1). (50)

These two equations hold for any k, so we get that v̄s′,t′ = 0
for t′ ≤ 0. This fact and (48) imply (41) and (42) with vi,j

being regarded as v̄i,j in the case of i ≤ j.
In the case of i > j: Note that mi ≤ mj and denote

� = mj − mi. Then (44), (45) and (47) hold if and only if
all vk,s,t’s are expressed by

vs,t,k = v̄k+s−1,t−�−s+1 (51)
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where

v̄k+s−1,2−�−s = 0 for 2 ≤ s ≤ mi (52)

v̄k+mi−1,t−�−mi+1 = 0 for 1 ≤ t ≤ mj − 1. (53)

These two equations hold for any k, so we get that v̄s′,t′ =
0 for t′ ≤. This fact and (48) imply (41) with vi,j being
regarded as v̄i,j in the case of i > j. (Q.E.D.)

Example 4: Suppose JAν = J4(0) ⊕ J2(0) and N = 3.
Then the solutions Wν,k’s to (36) are given as

Wν,0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,0 a2,0 a3,0 a4,0 b1,0 b2,0

0 a1,1 a2,1 a3,1 0 b1,1

0 0 a1,2 a2,2 0 0
0 0 0 a1,0 0 0
0 0 c1,0 c2,0 d1,0 d2,0

0 0 0 c1,1 0 d1,1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Wν,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,1 a2,1 a3,1 a4,1 b1,1 b2,1

0 a1,2 a2,2 a3,2 0 b1,2

0 0 a1,0 a2,0 0 0
0 0 0 a1,1 0 0
0 0 c1,1 c2,1 d1,1 d2,1

0 0 0 c1,2 0 d1,2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Wν,2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1,2 a2,2 a3,2 a4,2 b1,2 b2,2

0 a1,0 a2,0 a3,0 0 b1,0

0 0 a1,1 a2,1 0 0
0 0 0 a1,2 0 0
0 0 c1,2 c2,2 d1,2 d2,2

0 0 0 c1,0 0 d1,0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where a1,0, a1,1, a1,2, d1,0, d1,1, d1,2 must be nonzero be-
cause Wν,k’s are nonsingular and the other parameters
ai,j , bi,j , ci,j , di,j are free.

�

We have characterized SC(JA, N) completely by Lemma
5 and Lemma 6.

We can conclude from the above observations that C(A) is
a strict subset of SC(A,N), so Theorem 4 claims that AP

s

is a strict subset of AP , i.e., AP
s
⊂ AP and AP

s
�= AP .

Figure 1 shows the structure of FT ; there exist a finite
number of similarity classes AP1,AP2, · · · ,APne

. Each
similarity class APi consists of an infinite number of strong
similarity classes AP

s

i1,AP
s

i2, · · · .

V. CONCLUSION

When a discrete-time periodic linear system has a Floquet
transformation, it has a lot of Floquet transformations. This
paper aimed to solve how many essentially different Floquet
transformations the system has. The approach in this paper
is to define a similarity between two Floquet transformations
and to make clear the structure of equivalence classes in the
set of all the Floquet transformations.

Three kinds of similarities have been proposed: strong
similarity, similarity, and weak similarity, and then some
interesting relations among those similarities have been spec-
ified. Those investigations have detected which similarity is

��
��
AP

s

11 ��
��
AP

s

12
� �

� � � �
AP1

��
��
AP

s

21 ��
��
AP

s

22
� �

� � � �
AP2

��
��
AP

s

ne1 ��
��
AP

s

ne2
� �

� � � �
APne

� � �

� � � � � �

� � � � �

Fig. 1. The structure of FT

most suitable to split the set of Floquet transformations into
its equivalence classes.

Furthermore, it has been shown that in order to charac-
terize each equivalence class, the concept of N periodic
sequence of commutative matrices, which is an extension of
commutative matrix, is very important and it has been done
successfully to parameterize all the N periodic sequences of
commutative matrices completely.

The future researches are to make clear when discrete-
time periodic non-homogeneous systems can be transformed
to time-invariant ones and to construct a theory of Floquet
transformations for nonlinear systems.

REFERENCES

[1] R.W. Brockett, ”Finite Dimensional Linear System”, John Wiley and
Sons,inc., p46-48, 1970.

[2] J. Chauvin, G. Corde, N. Petit, and P.Rouchon, ”Periodic input esti-
mation for linear periodic systems: Automotive engine applications”,
Automatica, V0l.43, pp971-980, 2007.

[3] C.T. Chen, ”Linear System Theory and Design”, Holt, Rinehart and
Winston, p153-154, 1984.

[4] F.R. Gantmacher, ”The Theory of Matrices”, Vol.1, Chelsea, New
York, Chapter VIII, 1959.

[5] Y. Hayakawa and T. Jimbo, ”Floquet Transformations for Discrete-
time Systems: Equivalence between periodic systems and time-
invariant ones”, the 47th IEEE CDC, 2008. (to appear)

[6] G.A. Horn and C.R. Johnson, ”Topics in Matrix Analysis”, Cambridge
University Press, Chapter 6, 1991.

[7] T. Jimbo and Y. Hayakawa, ”Physical-Model-Based Control of En-
gine Cold Start via Role State Variables”, 17th World Congress of
IFAC(Seoul,Korea), pp1024-1029, 2008.

[8] P. Montagnier and R.J. Spiteri, ”A Gramian-Based Controller for
Linear Periodic Systems”, IEEE Trans. Automat. Contr., Vol.49, No.8,
pp1380-1385, 2004.

[9] P. Van Dooren and J. Sreedhar, ”When is a Periodic Discrete-Time
System Equivalent to a Time-Invariant One?”, Linear Algebra and its
Applications, 212/213, pp131-151, 1994.
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