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Abstract— This paper analyze stability of an object grasped
by soft-fingers in 3-dimensional space based on moment sta-
bility. We firstly define the moment stability as a criterion for
stability of a grasped object when the object is perturbed for
the orientation. In detail, the moment stability means that the
grasping force can be the restoring force when the object is
perturbed. Based on the moment stability, the stability condition
of an object grasped by hard-fingers is derived. We indicate that
contact points to satisfy the condition are restricted to upper
locations of the center of mass and the class of the object shape
is only a kind of hollow objects. Next, the condition of an object
grasped by semispherical soft-fingers thirdly is considered. Two-
fingered grasp by soft-fingers can satisfy the force-closure which
is traditional major criterion for static grasp. The consideration
shows a novel result that two-fingered grasp can satisfy the
moment stability with only two fingers while the hard-fingers
need at least three numbers for the force-closure and can not
satisfy the moment stability. On the other hand, it is indicated
that the torsion moments do not effect on the moment stability
well and it is necessary to add the third finger in a condition
of the contact points. Numerical examples finally are shown.

I. INTRODUCTION

Many researchers have tried to introduce robots into
human’s daily environments. Since the robots are aimed to do
various tasks instead of human, multi-fingered robot hands
are effective as end-effectors. Multi-fingered robot hands
have capability to grasp variously-shaped objects because the
hands can grasp with multi contacts and can control grasping
force via multi joint inputs.

There are many research for grasp stability of an object
grasped by balanced contact forces when the object is
perturbed from its equilibrium point. When the object is
displaced and the balanced forces are invariant, the forces
generate the resultant force and moment to the object. This
is referred to as the stiffness effect and is a direct measure
of quasi-static grasp stability [1]. Cutkosky and Kao [2]
derived the stiffness matrix between resultant force/moment
and small displacement of a grasped object as a function
of geometry of the grasped object and contact condition.
Montana [3] analyzed the stiffness effect of an grasped object
with rolling contact in 2D space concerned with the curvature
of the object. Maekawa et al. [4] analyzed the stiffness effect
with rolling contact in 3D space and derived the stiffness ma-
trix to evaluate the stiffness effect of the translation/rotation
of the object and the contact movement due to the rolling
contact. Since it is assumed that finger-tips are rigid bodies
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in the all studies, the stiffness effect destabilize the grasped
object except for the stiffness effect due to rolling contact
[4]. While these studies do not control contact forces, there
are studies where the stiffness effect is controlled by contact
forces to stabilize a grasped object around its equilibrium
[5], [6], [7]. In this paper, we concentrate on the stiffness
effect without controlling contact forces.

Recently, soft-fingers made from soft materials have been
studied. Compared with hard-fingers made from hard materi-
als, the soft-fingers have a lot of advantages [8]: the contact
friction is larger than that of the hard-finger since the contact
is surface; the soft-finger can reduce the impact force in
contact establishment; it can fit on various shapes of the
object; there exists moment friction about the contact normal.
Inoue et al. [9], [10], [11], [12] proposed a parallel distributed
deformation model of a semispherical soft fingertip and
considered stability of two-fingered grasp based on the local
minimum elastic energy with the rolling contact in two-
dimensional space. On the other hand, Nakashima et al.
[13] proposed a radial distributed deformation model of a
semispherical soft fingertip and showed a stability condition
of two-fingered grasp to satisfy the moment stability based
on the stiffness effect. These studies are restricted in 2-
dimensional space and can not consider the moment friction
about the contact normal because of 2-dimensional defor-
mation model. This moment is new feature in 3-dimensional
deformation of a soft-finger and one of the advantages of
a soft-finger as mentioned previously. Two-fingered grasp
by soft-fingers can satisfy the force-closure [14], which is
a traditional major criterion for static grasp. However, it is
not evident how the moment effects on restoring force when
a grasped object is perturbed.

In this paper, we study stability of an object grasped by
soft-fingers in 3-dimensional space based on the stiffness
effect. The study [4] showed that the stiffness effect due
to the object rotation is much larger than the one due to
the object translation and the stiffness effect due to the
rolling contact stabilize the object. Therefore, we consider
the object rotation and the rolling contact. We firstly define
the moment stability as a criterion for stability of a grasped
object when the object is perturbed for the orientation. Based
on the moment stability, the stability condition of an object
grasped by hard-fingers is derived. The problem setting are
a specified case of the analysis in Ref. [4]. We indicate
that contact points to satisfy the condition are restricted to
upper locations from the center of mass and the class of
the object shape is only a kind of hollow objects. Next, the
condition of an object grasped by semispherical soft-fingers
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Fig. 1. An object grasped by hard-fingers.

thirdly is considered. A 3-dimensional deformation model of
a soft-finger and the contact kinematics with the deformation
are utilized which has been proposed in [15]. Two-fingered
grasp by soft-fingers can satisfy the force-closure which is
traditional major criterion for static grasp. The consideration
shows a novel result that two-fingered grasp can satisfy the
moment stability with only two fingers while the hard-fingers
need at least three numbers for the force-closure and can
not satisfy the moment stability. On the other hand, it is
indicated that the torsion moments do not effect on the
moment stability very well and it is necessary to add the
third finger in a condition of the contact points. Numerical
examples finally are shown for the consideration.

II. STABILITY ANALYSIS OF HARD-FINGER GRASP

We firstly analyze stability of an object grasped by a
pair of hard-fingers in 2D space as shown in Fig. 1. The
fingers and object are rigid bodies and the fingers are pointy.
ΣO is the reference frame attached at the center of mass
of the object. Note that vectors without left superscripts
are expressed in ΣO. f i, pi ∈ R

3 (i = 1, · · · , N ) are
the contact force and the position vector at the ith contact
point respectively. The grasp of the object is defined as the
following equilibrium equations of force and moment:

N∑
i=1

fi + mg = 0, (1)

N∑
i=1

S(pi)fi = 0, (2)

where m is the mass of the object, g := [0 0 g]T, g =
−9.8 [m/s2] is the gravitational vector and S(pi) ∈ R

3×3 is
the skew-symmetric matrix defined as

S(pi) :=

⎡
⎣ 0 −pzi

pyi

pzi
0 −pxi

−pyi
pxi

0

⎤
⎦ , (3)

by which a cross product pi × fi is expressed as

pi × fi = S(pi)fi. (4)

For the system of the hard-finger grasp, we consider the
stiffness effect due to the object rotation ω = ζk, where

k ∈ R
3 is the rotation axis and ζ ∈ R is the amount of the

rotation. It is assumed that the object is only rotated around
the center of mass. It is also assumed that the contact force
f i and the contact point on the object pi are invariant. This
assumption can be realized by an appropriate control method
if a joint structure satisfies the manipulable condition [14].
We define the moment stability as

(ζk)TM(ζ,k) < 0 for any k, ζ, (5)

where M(ζ,k) := [Mx My Mz]
T ∈ R

3 is the moment
caused by the object rotation ω = ζk. Eq. (5) is the extension
of the 2-dimensional moment stability in [13] and means
that M(ζ,k) is the restoring force against the rotational
displacement ω = ζk as shown in Fig. 1.

The resultant moment M(ζ,k) of the hard-finger grasp is
given by

M(ζ,k) =

N∑
i=1

(Rk(ζ)pi) × fi, (6)

where Rk(ζ) ∈ R
3×3 is the rotation matrix about k-axis

through ζ defined as [14]

Rk(ζ)=

⎡
⎣ k2

xvζ + cζ kxkyvζ − kzsζ kxkzvζ + kysζ

kxkyvζ + kzsζ k2
yvζ + cζ kykzvζ − kxsζ

kxkzvζ − kysζ kykzvζ + kxsζ k2
zvζ + cζ

⎤
⎦,

(7)
where cζ := cos ζ, sζ := sin ζ and vζ := 1−cos ζ. It is here
assumed that the perturbed rotation amount ζ is small. From
the assumption and (3), (7) is linearized as

Rk(ζ) =

⎡
⎣ 1 −kzζ kyζ

kzζ 1 −kxζ
−kyζ kxζ 1

⎤
⎦ = I3 + S(ζk). (8)

Substituting (8) into (6), we get

M(ζ,k) =
N∑

i=1

(pi + S(ζk)pi) × fi

=

N∑
i=1

S(pi)fi︸ ︷︷ ︸
0

+

N∑
i=1

S(S(ζk)pi)fi

= −
N∑

i=1

(
pT

i fiI3 − pif
T
i

)
ζk, (9)

where the first term of the second row equals 0 from (2)
and the second term is simplified by easy calculation [14].
Substituting (9) into (5) leads to

(ζk)TM(ζ,k) = −(ζk)TKh(ζk), (10)

where

Kh :=

N∑
i=1

Khi
, Khi

:= pT
i fiI3 − pif

T
i .

Since (10) is the quadratic form, the condition to hold the
moment stability (5) is given by [16]

K̄h > 0, (11)
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Fig. 2. Grasp situations not to and to satisfy (12).

where

K̄h :=
N∑

i=1

K̄hi
, K̄hi

:=
1

2
(Khi

+ KT
hi

).

From Sylvester’s criterion [16], The condition to satisfy (11)
is

detK̄j
h > 0, j = 1, 2, 3, (12)

where K̄
j
h ∈ R

j×j is the jth principal minors of K̄h.
Here, we consider a condition to satisfy the moment

stability. The principal minors K̄
j
h are calculated from (10)

and (11) as

detK̄1
h = k̄11

h (13)

detK̄2
h = k̄11

h k̄22
h − (k̄12

h )2 (14)

detK̄3
h = k̄11

h k̄22
h k̄33

h + 2k̄12
h k̄13

h k̄23
h

−k̄11
h (k̄23

h )2 − k̄22
h (k̄12

h )2 − k̄33
h (k̄13

h )2, (15)

where k̄ij
h is the component of K̄h at the ith row and jth

column given by

k̄
11

h :=

NX
i=1

(pyifyi + pzifzi), k̄
12

h := −

1

2

NX
i=1

(pyifxi + pxifyi)

k̄
13

h := −

1

2

NX
i=1

(pzifxi + pxifzi), k̄
22

h :=

NX
i=1

(pxifxi + pzifzi)

k̄
23

h := −

1

2

NX
i=1

(pzifyi + pyifzi), k̄
33

h :=

NX
i=1

(pxifxi + pyifyi)

(16)

From (13), (14) and (16), the condition to satisfy detK̄j
h >

0 (j = 1, 2) is easily obtained as

k̄11
h > 0, k̄22

h > 0. (17)

Since the condition of (15) depends on a grasp situation, it is
considered in an example of Fig. 2 (a), where the following

relations hold:

pxi
fxi

+ pyi
fyi

< 0 (i = 1, 2, 3),

px1
=px2

=−2px3
=px < 0, fx1

=fx2
=−1

2
fx3

=fx > 0,

py1
=−py2

=py < 0, py3
=0, fy1

=−fy2
> 0, fy3

=0,

pz1
=pz2

=pz3
=pz > 0, fz1

=fz2
=fz3

=fz. (18)

The gravity direction is in the z-axis. This example is a
typical grasp situation where the contact points surround
the center of mass (CM) and the grasping forces are in the
direction to the CM. From (18), it is easily obtained that
k̄33

h < 0, k̄12
h = 0 and k̄13

h . By these facts and (17),

detK̄3
h = k̄11

h

{
k̄22

h k̄33
h − (k̄23

h )2
}

< 0. (19)

Therefore, it is necessary to hold k̄33
h > 0 in order to satisfy

detK̄3
h > 0. This condition is satisfied in the strange grasp

situation of a hollow object of Fig. 2 (b), where the grasping
forces are in the inverse direct to the CM. Furthermore, it
is necessary to satisfy (17). A sufficient condition of (17) is
given by

pyi
fyi

+pzi
fzi

> 0, pxi
fxi

+pzi
fzi

> 0 (i = 1, 2, 3). (20)

For space limitation, the condition pyi
fyi

+ pzi
fzi

> 0
is considered. The areas of f1 and f2 to satisfy (20) are
represented by the shaded areas in (c) and (d) of Fig. 2. It is
obvious that there do not exist f1 and f2 when the contact
positions are under the center of mass. In order to construct
the grasp of the object, the contact force f i also has to satisfy
the friction condition illustrated in (3) of Fig. 2 (e):

fT
i eti

≤ μi|fT
i eni

|, (21)

where eni
, eti

∈ R
3 are the normal and tangent vectors

and μi is the static friction coefficient. Fig. 2 (f) shows the
friction cone and the area of (20), where γfi

and γmi
are the

angles of the boundaries of the friction cone and (20) from
the contact normal respectively. These angles are defined as

γfi
:= tan−1 μi, γmi

:= tan−1 hi

li
, (22)

where li and hi are the distances of the ith contact point from
the CM along the normal and tangent respectively. Therefore,
it is necessary for the distances li and hi of the contact point
to satisfy

γmi
≤ γfi

⇔ hi

li
≤ μi (23)

as shown in (f) of Fig. 2.
Remark 1: From (23), it is easy to grasp a slender object

with the upper contact points while it is difficult to grasp a
wide object with central contact points. In other words, the
contact locations for the stability are restricted to far upper
from the CM. Furthermore, Fig. 2 (b) implies that kinds of
object shape to satisfy the moment stability are restricted to
hollow objects. These results indicate that it is impossible to
realize the moment stability by hard-fingers.
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Fig. 3. Soft finger and Contact situation.

III. STABILITY ANALYSIS OF SOFT-FINGER GRASP

In this section, we secondly analyze stability of an object
grasped by a pair of soft-fingers in 3D space. A deformation
model of a soft-finger and a contact kinematics are neces-
sary for the analysis. We use a 3-dimensional deformation
model and the rolling contact with deformation as a contact
kinematics, which are proposed in [15].

A. 3-Dimensional Deformation Model

In this paper, a soft-finger means a semispherical soft
material, the flat part of which is attached to a rigid base
as in the left figure of Fig. 3. We make a deformation model
of a soft-finger with a contact to a plane of a polyhedral
object as shown in the right of Fig. 3.

The frame and coordinates of the configuration of the con-
tact point is defined here. The finger frame ΣFi

is attached
to the center of the soft-finger as in the left of Fig. 4 (a).
The yFi

- and zFi
-axes are in the finger base and the xFi

-axis
goes through the finger. Since the soft-finger is a semisphere,
the contact point on the soft-fingertip before deformation

(a) Polar coordinates and radius coordinate δri

(b) Spherical and torsion coordinates (δθi
, δφi

), δψi

Fig. 4. The coordinates of the deformation of the soft-finger.

is expressed by the polar coordinates (θi, φi, ri), where θi,
φi and ri are the angles and radius. When the finger is
deformed with the contact on the object, the contact surface
is the circle from the geometry of the finger and object as
shown in the left figure of Fig. 4 (a). Therefore, the contact
point after deformation is defined as the center of the contact
surface. The right of Fig. 4 (a) shows the cross section along
the longitude through the contact point of the left figure.
The deformed area overlapping the object is expressed by
the compressive deformation displacement δri

∈ R+ in the
radial direction. As shown in the left of Fig. 4 (b), the
deformations along the finger surface are expressed by the
shearing and compressive deformation angles δθi

, δφi
∈ R

in the inverse directions of (θi, φi). In the right of Fig. 4 (b),
the contact frame ΣCFi

is attached at the contact point,
which is defined such that the xCFi

- and yCFi
-axes are in

the longitude and latitude through the contact point and the
zCFi

-axis is in the normal to the finger surface. The torsion
deformation with respect to the contact surface is expressed
by the shearing deformation angle δφi

about the zCFi
-axis

in the inverse direction. Define the deformation coordinates
as δi := [δri

δθi
δφi

δψi
]T ∈ R

4.
From Hook’s law, the forces produced by the deformations

are derived as the functions of the deformations δi:

Fri
(δri

)=kri
πδ2

ri

Mθi
(δθi

, φi)=
1

10
kθi

πr4
i

{
1 + cφi

(1 + cφi
)(1 + c2

φi
)
}
δθi

Mφi
(δφi

, φi)=
2

3
kφi

r3
i

(
1

π − φi

+
1

φi

)
δφi

Mψi
(δri

, δψi
)=

1

10
kψi

π
{
r2
i − (ri − δri

)2
}2

δψi
. (24)

Fri
is the force in the radial direction and Mθi

and Mφi
are

the moments about the x′

Fi
- and z′Fi

- axes in the left figure
of Fig. 4 (b) where cφi

:= cos φi. Mψi
is the moment about

the zCFi
-axis in the right figure of Fig. 4 (b).

B. Rolling Contact with Deformation

Let us denote the variables to express the contact con-
figuration without the deformation in order to consider the
rolling contact. Fig. 5 represents the neighborhood of the ith
contact. ΣCFi

and ΣCOi
are the coordinate frames attached

on the surfaces of the ith finger and the object with the
origins at the ith contact point. The zFi

- and z
i
-axes of

the frames are outward and normal to the surfaces of the

iF
Cx

iF
Cy

iF
Cz

iO
Cx

iO
Cy

iO
Cz

iψ

iF
C

iF
Cx

F inger i
Object

iF O

iO
C

)(
iiF

i
fC

F p )(
iiO
oC

O p

Fig. 5. Contact coordinates before the deformation.
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ith finger and the object, respectively. The contact point
in the finger surface is represented by the position vector
FipCFi

(θi, φi) ∈ R
3. Similarly, the contact point on the

object surface is represented by OpCOi
(xoi

, yoi
) ∈ R

3. Note
that (θi, φi), i.e., the some of the previous polar coordinates
of the soft-finger, and (xoi

, yoi
) are the 2D local coordinates

on the finger and object surfaces in x- and y-axes of ΣCFi

and ΣCOi
. In addition, since x- and y-axes of ΣCFi

and ΣCOi

are in the same contact tangent surface, let ψi be the angle
between the x- axes of ΣCFi

and ΣCOi
without the torsion

deformation δψi
as shown in Fig. 5. Then, the configuration

of the contact points is described by the contact coordinates
ηi := (θi, φi, xoi

, yoi
, ψi) [14].

Considering the deformations δi into the contact coordi-
nates ηi, the contact point FipCFi

after the deformation and
the contact frame RFCFi

are expressed as

FipCFi
=

[
RisΦi

RicΘicΦi

RisΘicΦi

]
, RFiCFi

=

[
0 cΦi sPhii

−sΘi −sΦicΘi cΘicΦi

cΘi −sΦisΘi sΘicΦi

]
(25)

where cΘi
=cos Θi, sΘi

=sin Θi, cΦi
=cos Φi, sΦi

=sin Φi,

Ri := ri − δri
, Θi := θi − δθi

, Φi := φi − δφi
. (26)

In this paper, we consider the pure rolling contact [14].
The pure rolling contact means that the finger does not slip
on the object without rotationally slipping around the zCFi

-
axis. The relationship between the contact coordinates is
given by [15][

dxoi

dyoi

]
=

[
cos Ψi − sin Ψi

− sin Ψi − cos Ψi

]
︸ ︷︷ ︸

Rψi

[
Ri cos Φi 0

0 Ri

]
︸ ︷︷ ︸

Mgfi

[
dθi

dφi

]
(27)

dψi = dθi sin Φi, (28)

where (dθi, dφi), (dxoi
, dyoi

) and dψi are the small displace-
ments of the contact coordinates and

Ψi := ψi + δψi
. (29)

(27) means that the contact displacements of the finger and
object on the contact surface equal to each other. Rψi

is the
rotation matrix between the (x, y) coordinates of ΣCFi

and
ΣCOi

. Mgfi
translates the angle displacements to the linear

ones. (28) means that the angle displacements in the zCFi

due to ψi and θi around the xFi
-axis equal to each other

because the angle between the zCFi
- and xFi

-axes is π−Φi.
Remark 2: Note that there do not exist the small dis-

placements of the deformations δi in the rolling contact
equations of (27) and (28). This is because the deformations
δi do not include the displacements on the finger surface and
can denote only the shift of the contact point expressed in
ΣCFi

due to the deformed soft-finger.

C. Derivation of Moment due to Object Rotation

The problem setting is mentioned for preliminary. The left
of Fig. 6 shows an object grasped by the soft-fingers. The
object is assumed to be a convex polyhedron. FCi

∈ R
3 and

Fig. 6. An object grasped by soft-fingers.

MCi
∈ R are the contact force and moment expressed in

ΣCFi
and they satisfy the following equilibrium equations:

NX
i=N

ROCFi
FCi = 0, (30)

NX
i=1

“
S(pi)ROCFi

FCi + MCi ROCFi
ez

”
= 0, (31)

where ez := [0 0 1]T, ROCFi
:= R(θFi

)RFiCFi
, R(θFi

)
is the rotation matrix from ΣFi

to ΣO. FCi
and MCi

are
expressed by the deformation forces and moment of (24) as

F x
Ci

=
Mθi

−Mψi
sin Φi

Ri cos Φi

, F y
Ci

=
Fφi

Ri

, F z
Ci

=Fri
, Mz

Ci
=Mψi

.

(32)
In the right figure, pLi

∈ R
3 is the center of the finger and

pFiCi
∈ R

3 is the vector from the center of the finger to the
contact point expressed in ΣO. Therefore, the contact point
pi is given by

pi = pLi
+ pFiCFi

, pFiCFi
:= RFi

FipCFi
. (33)

phi
∈ R

3 is the point with the minimum distance hi of the
object surface from the CM and n0

hi
∈ R

3 is the normal to
the object surface in the initial situation. nxoi

, nyoi
∈ R

3

are the unit vectors to express the x- and y-axes of ΣCOi
.

We consider the moment produced by the soft-fingers
when the object is rotated about k-axis through ζ from the
equilibrium conditions (30) and (31). Because the contact
force and moment (FCi

, MCi
) and the contact point pi

obviously depend on them from (24), (32), (33) and (25), it
is necessary to obtain the changed contact coordinates ηi(ζ)
and the deformation δi(ζ) due to the rotation (ζ,k):

θi(ζ) := θ
0

i + Δθi(ζ), φi(ζ) := φ
0

i + Δφi(ζ)

xoi(ζ) := x
0

oi
+ Δxoi(ζ), yoi(ζ) := y

0

oi
+ Δyoi(ζ)

ψi(ζ) := ψ
0

i + Δψi(ζ)

δθi
(ζ) := δ

0

θi
+ Δδθi

(ζ), δφi
(ζ) := δ

0

φi
+ Δδφi

(ζ)

δψi
(ζ) := δ

0

ψi
+ Δδψi(ζ), (34)

where the variables with the superscript 0 are the initial
variables satisfying the initial equilibrium equations of (30)
and (31), and the ones with the Δ is the increments from the
grasping equilibrium due to the rotation (ζ,k). The scheme
to obtain ηi and δi is shown in the following:

1) To obtain δri
(ζ) and (Δxoi

(ζ), Δyoi
(ζ)) from the

geometric viewpoint.
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2) To obtain (Θi(ζ), Φi(ζ)) and Ψi(ζ) from the geometric
viewpoint.

3) To obtain (Δθi(ζ),Δφi(ζ)) and Δψi(ζ) by solving
the rolling contact equations (27) and (28) with the
obtained Φi(ζ) and Ψi(ζ).

4) To obtain (Δδθi
(ζ), Δδφi

(ζ)) and Δδψi
(ζ) by (26) and

(29) with the obtained (Θi(ζ),Φi(ζ)) and Ψi(ζ) and
(Δθi(ζ), Δφi(ζ)).

1) Derivation of δri
(ζ) and (Δxoi

(ζ), Δyoi
(ζ)): Since the

contact surface equals to the object surface as seen in Fig. 6,
the vector pFiCFi

is in the same direction of phi
given by

phi
(ζ) = Rk(ζ)(hin

0
hi

) = hinhi
(ζ), nhi

(ζ) :=Rk(ζ)n0
hi

.
(35)

Therefore, by considering the distance between the center of
the finger and the CM in the direction of phi

, the magnitude
Ri(ζ) of pFiCFi

is given by

Ri(ζ) = Lhi
(ζ) − hi, Lhi

(ζ) := nT
hi

(ζ)pLi
, (36)

where Lhi
(ζ) ∈ R is the distance between the center of the

finger and the CM in the direction of phi
. From (26), δri

(ζ)
is obtained as

δri
(ζ) = ri + hi − Lhi

(ζ). (37)

Next, from pFiCFi
= −Ri(ζ)nhi

(ζ), (33) and (35), the
contact point pi expressed on the object surface with ζ = 0
is given by

p0
i (ζ) = RT

k (ζ)pLi
− Ri(ζ)n0

hi
. (38)

Therefore, (Δxoi
(ζ), Δyoi

(ζ)) are obtained as

Δxoi
(ζ)=(n0

xi
)TΔp0

i (ζ), Δyoi
(ζ)=(n0

yi
)TΔp0

i (ζ), (39)

where Δp0
i (ζ) := p0

i (ζ) − p0
i and p0

i is the initial state.

2) Derivation of (Θi(ζ), Φi(ζ)) and Ψi(ζ): Substituting
pFiCFi

= −Ri(ζ)nhi
(ζ) and (25) into (33) yield⎡

⎣ sin Φi(ζ)
cos Θi(ζ) cos Φi(ζ)
sin Θi(ζ) cos Φi(ζ)

⎤
⎦=

⎡
⎣αi(ζ)

βi(ζ)
γi(ζ)

⎤
⎦:=RT

Fi
(θFi

)nhi
(ζ). (40)

From (40), (Θi(ζ), Φi(ζ)) are obtained as

Φi(ζ) = sin−1 αi(ζ), Θi(ζ) = sin−1

(
γi(ζ)

cos Φi(ζ)

)
. (41)

From Fig. 5, Ψi(ζ) is the angle between the xCFi
-

and xCOi
-axes defined by the following corresponding unit

vectors:

nxCFi

:=

⎡
⎣ 0
− sin Θi(ζ)
cos Θi(ζ)

⎤
⎦ , nxCOi

:= Rk(ζ)n0
xoi

, (42)

where nxCFi

is the first column of RFiCFi
of (25). Consid-

ering the sign of Ψi(ζ) which equals the sign of ψi(ζ), we
obtain the following Ψi(ζ):

Ψi(ζ) = aΨi
cos−1

(
(nxCFi

)TnxCOi

)
, (43)

Fig. 7. A rectangular object grasped by two soft-fingers.

where

aΨi
:= sign

{
(nxCFi

× nxCOi

)TpFiCFi

}
.

3) Derivation of (Δθi(ζ), Δφi(ζ)) and Δψi(ζ): From the
pure rolling equations (27) and (28), (Δθi(ζ),Δφi(ζ)) and
Δψi(ζ) are given by[

Δθi(ζ)
Δφi(ζ)

]
=

∫ ζ

0

M−1
gfi

(ζ̃)RT
ψi

(ζ̃)

⎡
⎣d(Δxoi

(ζ̃))

dζ̃
d(Δyoi

(ζ̃))

dζ̃

⎤
⎦ dζ̃ (44)

Δψi(ζ) =

∫ ζ

0

d(Δθi(ζ̃))

dζ̃
sin Φi(ζ̃)dζ̃. (45)

It is difficult to obtain (Δθi(ζ), Δφi(ζ)) and Δψi(ζ) as
functions of ζ by integrating (44) and (45) analytically
because the obtained analytical functions of Ri(ζ), Θi(ζ)
and Ψi(ζ) are complex. Therefore, (Δθi(ζ), Δφi(ζ)) and
Δψi(ζ) are obtained numerically in this paper.

4) Derivation of (Δδθi
(ζ), Δδφi

(ζ)) and Δδψi
(ζ): From

(26), (29) and (34), (Δδθi
(ζ), Δδφi

(ζ)) and Δδψi
(ζ) are

obtained as

Δδθi
(ζ) = −Θi(ζ) + Δθi(ζ) + (θ0

i − δ0
θi

)

Δδφi
(ζ) = −Φi(ζ) + Δφi(ζ) + (φ0

i − δ0
φi

) (46)

Δδψi
(ζ) = Ψi(ζ) − Δψi(ζ) − (ψ0

i + δ0
ψi

).

IV. NUMERICAL EXAMPLE AND DISCUSSION

A Numerical example is shown to confirm the moment
stability of the soft-finger grasp.

Fig. 7 shows the case where the rectangular object is
grasped at the lower contact points. The radius of the
finger is ri = 10[mm] and the stiffness coefficients are
kri

= 0.377, kφi
= 0.166[N/mm2], kθi

= 0.0266, kψi
=

0.0488[N/mm3] [15]. The height, width, depth and mass
of the object are 100[mm] and m = 1.0[kg] respectively.
The initial contact points are p0

1 = (0,−50,−25), p0
2 =

(0, 50,−25)[mm]. The contact angles are θ0
1 = θ0

2 = 0[deg],
φ0

1 = 131, φ0
2 = 49[deg]. The initial deformations are

δ0
r1

= δ0
r2

= 2.1[mm], δ0
θ1

= −δ0
θ2

= 0[deg], δ0
φ1

= −δ0
φ2

=
11[deg], δ0

ψ1
= δ0

ψ2
= 0[deg]. The rotation axis and angles

are k = 1/
√

3[1 1 1]T and ζ = ±2[deg], which generates
the rotation with respect to the all axes.
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Fig. 8. Simulation result.

Fig. 9. Simulation result seen from the x-axis rotation.

Fig. 8 shows the simulation result. The left figure shows
the inner product between the rotation axis ζk and the
resultant moment M(ζ,k). It is confirmed that the moment
stability is satisfied. Furthermore, the right figure shows the
moments with respect to all the (x, y, z)-axes. It is confirmed
that the signs of the moments are inverse with respect to
the rotation directions. When the two moments are not the
restoring moments, the moment stability could hold if the
last moment is the restoring one and its effect is much bigger
than the effects of the others. However, the stability of its
case may reduce. Figs. 9–11 show the results seen from the
x-, y- and z-axes respectively, where the the deformation
contact forces are illustrated as the solid sick black arrows.
In the each figure, it is confirmed that the resultant moment
due to the deformation contact force with respect to the
corresponding axis is the restoring moment.

Fig. 10. Simulation result seen from the y-axis rotation.

Fig. 11. Simulation result seen from the z-axis rotation.

Remark 3: The torsion moments of the soft-fingers effect
on the moment about the y-axis, which have been expected
to be the effective restoring moments, e.g., in [8], [14]. Since
this effect may be difficult to be illustrated in Fig. 10, the
contact moments are shown in Fig. 12 in order to check its
effect. Note that the contact moments effect the y-axis. The
sum of the contact moments is not the restoring moment
because it is positive when ζ > 0. This fact imply that the
torsion moments may not effective to the moment stability
while its is effective to the force-closure.

Let us consider its reason. The change of the torsion
deformation Δδψi

is effected on by Ψi and Δψi from (46),
which are the terms to reduce each other. The changes are
illustrated in Fig. 13, where the upper and lower figures show
the the changes on the first finger-tip and the left side of the
object respectively when the object is rotated from ζ = 0
to 2 [deg]. The bule and red arrows represent the xCF1

-
and yCF1

- axes of ΣCF1
at the contact point on the finger.

The solid sick bule lines represent the shifts of the contact
point on the finger-tip surface due to the object rotation and
the rolling contact. The black and red circles represent the
first and end of the shifts of ζ = 0, 2 [deg]. In the upper
figure, the changes ΔΨ1 and Δψ1 are shown as the changes
of the xCF1

-axes. ΔΨ1 is directly caused by the relative
motion of the finger and object from (43) and very small
becuase of small object rotation ζ. On the other hand, Δψ1

is caused by the rolling contact from (45). Note that the shift
due to the rolling contact is equal to the shift on the object
surface in the lower figure, and is relatively bigger than the
shift due the object rotation. This implies that Δψ1 has the
dominant effect on the change of the torsion deformation
Δδψ1

. Furthermore, Δψ1 is caused by the object rotation
about the zO-axis becuse it depends on the change Δθ1 while

ψ

ζ

ψ

ζ

Fig. 12. The contact moments expressed in ΣO .
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Fig. 13. The changes of the contact configurations on the 1st finger and
the object.

Fig. 14. The illustrations of the changes Δθ1 and ΔΨ1.

ΔΨ1 is caused by the object rotaion about the yO-axis as
shown in Fig. 14. Therefore, the moment about the yO-axis
due to the torsion deformation can not effect on the restoring
moment when the object is rotated about the zO-axis. In that
grasp situation, it is necessary to add the third soft-finger
which has to produce the inverse moment against the sign of
ζ about the y-axis. A example of its contact position of the
third finger is in the surfaces perpendicular to the x-axis.

V. CONCLUSIONS AND FUTURE WORKS

This paper analyzed stability of an object grasped by soft-
fingers in 3-dimensional space based on moment stability.
In the case of the hard-finger grasp, we indicated that
contact points to satisfy the condition were restricted to upper
locations of the center of mass and the class of the object
shape was only a kind of hollow objects. In the case of the
soft-finger grasp, the consideration showed a novel result
that two-fingered grasp could satisfy the moment stability

with only two fingers while the hard-fingers needed at least
three numbers for the force-closure and could not satisfy the
moment stability. On the other hand, it was indicated that the
torsion moments did not effect on the moment stability well
and it was necessary to add the third finger in a condition
of the contact points.

In the case of the dynamics, there are some different
points from the static analysis in this paper. Since the rolling
relationships of (44) and (45) does not hold becuase of its
kinematic forms, it is necessary to consider the acceralation
form. Furthremore, it is ncessary to consider an appropriate
control method to satisfy the moment stability, an example
of which is shown in [15]. A very simple method is the
PID control of the finger-tips rigidly. This idea is based on
the static analysis in this paper because the finger-tips are
assumed to be fixed. The method would utilize the elastic
property to satisfy the moment stability.

In future works, it is necessary to consider the friction
condition and the limitation of finger joints. We will try to
optimize the soft-finger grasp with respect to the mentioned
conditions.
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