978-0-7695-3914-0/09 $26.00 € 2009 IEEE
DOI 10.1109/PDCAT.2009.36

2009 International Conference on Parallel and Distributed Computing, Applications and Technologies

A Task Selection Based Power-aware Scheduling
Algorithm for Applying DVS

Yuichiro MORI
Department of Systems and Social
Informatics, Graduate School of
Information Science. Nagoya University,
Nagoya, JAPAN
ymori @watanabe.ss.is.nagoya-u.ac.jp

Abstract—Recently, power consumption of server computers
is one of the most important topics. Although DVS (Dynamic
Voltage Scaling) can reduce power consumption, this method is
only used at idle time or low load computation time. generally. In
this paper, we propose a task scheduling algorithm for reducing
power consumption especially at high load computation time.
DVS is applied to tasks that are not in critical path, which can
reduce more power consumption by introducing a task selection
mechanism without increasing the makespan of task graphs.
Experimental results show that our algorithm can reduce about
9.1% and 12.8% of power consumption on 4 and 8 processors
respectively on average in comparison with the existing method.

Index Terms—task scheduling; dynamic voltage scaling

I. INTRODUCTION

Recently, power consumption of server computers is one
of the most important topics[1,2]. Especially. to reduce power
consumplion of processors is very essential since the processor
is the most power-consumed part in servers, Thus, in order to
reduce power consumption of servers, it is effective to reduce
power consumption of processors.

Dynamic Vollage Scaling (DVS) is one of the methods
for reducing power consumption of processors[3]. In DVS,
combinations of an operating voltage and an operating fre-
quency, which are called P-States, are changed dynamically
at run time. Coolin’n’Quiet and PowerNow! by AMD, and
SpeedStep by Intel are examples of implementation for DVS.
Generally, DVS is adopted [or reducing power consumption
of processors at idle time. Namely, DVS does not pay any
attention to power consumption of heavy-load processors.

In this paper, we propose a task scheduling algorithm to
reduce power consumption of multi-processor servers. In our
algorithm, we apply DVS to tasks of a scheduling result
generated by traditional algorithms which do not take power
consumption into account. We consider application of DVS al
heavy load time as well as at idle time without increasing the
makespan of the task graph.

The rest of this paper is organized as follows. Section 2
describes preliminaries of a task scheduling algorithm and
DVS. Section 3 describes our algorithm. Section 4 describes
related work. Section 5 shows experimental results by simula-
tion. Section 6 concludes this paper and mentions our future
work.

Koichi ASAKURA
Department of Information
Systems, School of Informaltics,
Daido University,
Nagoya, JAPAN
asakura@daido-it.ac.jp

518

Toyohide WATANABE
Department of Systems and Social
Informatics, Graduate School of
Information Science, Nagoya University,
Nagoya, JAPAN
watanabe @is.nagoya-u.ac.jp

Fig. 1.

A taskgraph

II. PRELIMINARIES
A. Task scheduling

A task scheduling for parallel systems is the process in
which each task in a lask graph is allocated to a processor. A
task graph is represented as a directed acyclic graph. Figure 1
shows an example of a task graph. Euch node represents
a task and each edge represents a partial order among the
tasks. A computation cost of the task n; is represenied as
comp(n;), and a communication cost between tasks n; and
n; is represented as comm(n;. n;).

A task scheduling process can be divided into two aspects:
spalial and temporal assignments. The former is described as
allocation of each task to a processor. The latter is described
as assignment of a starl time to each task. A result of a task
scheduling is called a schedule, Figure 2 depicts a schedule in
Gantl chart representation. In this figure, each scheduled task
is drawn as a rectangle. The horizontal axis represents lime.
Time scale is represented as unit time. Each communication
between (wo processors, is denoted as an arrow.

B. DVS

DVS is a technology in which combinations of an operating
voltage and an operating frequency of a processor can be
changed dynamically at run time. These combinations are

IEEE
computer
@ psocnety

0 10 20 10 60 80 90 100

4 } } +—t—

{ ' timefut]
P |m n, | L on]
P, [ny | ng | ° |

Fig. 2. A schedule
TABLE [
SPECIFICATION OF A COMPUTER
parts specification

Motherboard Gigabyte GA-K8 VMB0OOM
CPU i AMD Athlon64 3000+

Clock frequency ! 2.00GHz
Number of P-States : 3
RAM ©1L.00GB
0S . Windows XP Professional SP3

called P-States. Recently, many processors equip this technol-
ogy and processors generally have several P-States discretely.
By DVS, the processing speed as well as power consumption
can be changed dynamically by transiling to the other P-
State because the processing speed is proportional o the
operaling frequency and power consumplion is proportional
to the product of the operaling frequency and square of the
operating voltage in CMOS circuits. Namely, DVS can reduce
power consumption by slowing down the processing speed.
Thus. there is a trade-ofl problem between power consumpltion
and the processing speed. For -States 51 and s., the operaling
frequencies f,, and f,,. and elapsed times for task execution
T, and T,, have the following relationship:

fu _ T
f83 T81

In order to make an effect of DVS clear, we conduct a
preliminary experiment. We measure power consumption of a
computer described in Table 1. Since this processor has three
P-States. we measure power consumption of the processor for
each P-State. The experimental resull is shown in Table 2.
This experimental result makes it clear that DVS can reduce
power consumplion at both idle time and heavy loaded time
by stepping down the operating voliage and the operating
frequency although the processing speed becomes slower.

)]

III. POWER-AWARE SCIEDULING ALGORITHM

In this section, an algorithm for reducing power consump-
lion by ulilizing DVS to parallel programs without increasing
the makespan of the program is described. Our algorithm
focuses on a schedule generated [rom a task graph represented
as directed acyclic graph,

A. Overview of the algorithin

The input of our algorithm is a schedule which is produced
by traditional non-power-aware scheduling algorithms such as
ETE. Application of DVS to tasks makes the execulion time of
tasks longer. Thus, in order nol 1o increase the makespan of the

TABLE II
AN EFFECT OF DVS

P-States of the processor | Power consumption[W]

P-State Frequency Voltage | at idic time | at heavy loaded
[MHez] et :
1 2000 87 100
2 1800 7, 87
3 1000 59 61
0 50 100
1 .
! ! timefut]
P [task idle
2000{Mt1z) 1000fMHz]
(a) P-State 1
0 55 100
! timefur}
P, task idle
1800{MHz| 1000{MH?]
(b) P-State 2
0 100
timejut]
Py task

1000{MI1z]
(c) P-Swate 3

Fig. 3. Examples of P-States

task graph. DVS must be applied to tasks whose completion
time modified by DVS does never affect the start times of
other tasks. For this purpose, we [ocus on idle time slots next
to tasks.

If there is a long time slot enough 1o the application of DVS
lo the task, power consumplion of processors can be decreased
without incrementing the makespan of the task graph. In our
algorithm, an idle time slot next to a task is called slack-time
of the task. We give a detailed calculation algorithm of the
slack-time in Section 3.2.

For application of DVS, the lower-frequency P-State has to
be selected as long as the task does not influence the start
times of other tasks. For an example, we consider consumed
energies in each P-State described in Table 2 for the 50 unit-
time-length task. It takes 100 unit times (o execute the task in
the lowest-frequency P-State. Thus, we compare the energies
E from time 0 to 100[ut]. Figure 3 shows task execution in
each P-Slate. In each P-State, power consumplion is calculated
as follows:

El == 100[w] N 50[1‘{] + 59[W] . 50[ul] = 7950[‘.1/.;,(],
Ey = 87w - 55(u + 59w - 451uyy = T440py .0y
E;3 = 61y} - 1007, = 6100y uy)-

From this result, it is clear that we have 0 select the P-State
as lower frequency as possible. Namely, we have 1o select the
task, to which the lowesl-frequency P-Stale can be applied,
from a candidate task set. We give a task selection scheme in
Section 3.4.

519

Figure 4 shows our algorithm. In this algorithm, earliest start
time and earliest completion time of the task n in the processor
p is represented as est(n,p) and ect(n,p). respectively[4].
Generation of candidate task list for DVS application is shown
in lines 5-9 and selection of the most effective task is shown
in lines 10-135.

B. Computation of slack-time

For calculating the slack-time of the task n, siacktime(n),
the relationship between the task n and the successor tasks is
taken into account. Figure 5 shows the computation method
of slack-time of the task n. In Figure 5, slacktime(nl,) is
assumed to be zero. In order not to increase makespan, we do
not increase est of other processors. If the task n is allocated
to a processor p and a successive task ng; is allocated to
the other processor p;, slack-lime between tasks n and ng
represented as slacktime(n,ny) is defined as follows:

slacktime(n,ns) = est(nsy. Ps1)

— ect(n,p) — comm(n,ng). (2)

If a successive task ngq is allocated to the same processor of
the task n, slacktime(n,ny) is defined as follows by using
slacktime(nso):

slacktime(n,ng) = est(nso,p)

— ect(n, p) + slacktime(ng). (3)

From these results, slack-lime of the task n is calculated as
follows:

slacktime(n) =

#

min slacktime(n,n,).
n, Esucc(n))

If there are no successive tasks, slack-time is defined as zero.

If increase in execution time of a task by DVS is within
the slack-time, the makespan of the lask graph schedules
is not changed. Therefore, the algorithm can reduce power
consumption more effectively.

C. Generation of candidate task list for DVS application

Since calculation of slacktime(n) requires the slack-time
for successive task in the same processor, calculation of slack-
time is performed {rom the tail task to the head task for each
processor. If slack-time of the task n is posilive, the task n
is added to a candidute task list nlist. Nexl, a preceding task
of the task n is focused on, If slack-time of the preceding
task of n is also positive, the preceding lask of n is added to
nlist. Next, the task n is substituted for the preceding task
of n. In a similar way, the preceding lask is added to nlist
if the slack-time of the preceding task is positive. This step
is repeated until there are no preceding tasks or slack-time of
the preceding task becomes zero (lines 5-9).

Require: schedule: a scheduling result by non-power-aware
scheduling algorithm
Ensure: schedule: a scheduling result

1: begin
2: for each processor p do
3: n < the tail task of p
4 while (n # head task of p) do
5 nlist + ¢.
6 while (slacktime(n) > 0) do
7 add n o nlist.
8 n « a preceding task of n.
9: end while
10: while (nlist # ¢ V all tasks in nlist cannot be
applied DVS) do
11: Ntarget + argmaz(n in nlist) f(n).
where f(n) is the amount of power reduc-
tion for n.
12: apply DVS 10 n4arget-
13: adjust est and compute slack-time for all
tasks of p.
14: TEMOVE Nyarget [TOm nlist.
15: end while
16: n + a preceding task of n.
17: end while
18: end for
19: end
Fig. 4. Our algorithm
slacktime(n, n ;)
D——
p L_n o Ume | 'y |
\ slacktime(n)
Ps1 ; I N5 l
—
slackti.me(n, ny,)

Fig. 5. A computation method of slacktime

D. Selection of task for application of DVS

In this phase, the lask is selected for application of DVS
from the candidate task list. Firsl, the amount of power
consumption is calculated on a P-State which can reduce
the most power consumption without exceeding slack-time of
each task in nlist. A task of the largest amount of power
consumption to reduce in nlist is selected. The selected task
Niarget 1S applied by DVS on the best P-State. Nexl, earliest
slart lime, slack-time, and power consumption of every lask
in nlist is updated because these parameter are changed by
applying DVS. Then, task selection is activated repeatedly.
This procedure is performed until no task is selected for
application of DVS (lines 10-15).

520

E. Discussion

In this seclion, we explain that our algorithm is more
elfective than Kimura’s algorithm[S]. A schedule is generated
by applying Kimura’s algorithm on processors described in
Table 1 to a schedule shown in Figure 2. The task which is
applied by DVS is depicted as a gray rectangle. In Kimura’s
algorithm, because interprocessor communicalion costs are not
considered, we improve the algorithm so that interprocessor
communication cosls can be dealt with.

In Kimura’s algorithm, if slack-time of a task is positive
and slack-time of a task next o the task is also positive,
these lasks are applied by DVS on average. That is, DVS
is applied to all tasks in connective tasks. However, because
P-State of processors are various operating frequency and
operating voliage, the nonbiased DVS approach does not
always make great contributions to reducing the amount of
power consumption. In addilion. because operating (requency
and operating voltage of P-State is discrele, that of P-State
cannol sel arbitrary value. Therefore, as shown in Figure 6(a),
there is a case in which slack-time leaves after application of
Kimura’s algorithm.

We reduce as longer slack-time as possible afler our algo-
rithm is applied by introducing the features of task selection
in order to reduce more the amount of power consumplion
than Kimura’'s algorithm. As described in Section 3.4, in our
algorithm, if tasks. which each of them has slack-time, are
connective, a task of the most amount of power consumption to
reduce in a task list is selected and DVS is applied to the task.
If tasks which can applied by DVS leave in the task list after
DVS is applied to the target task, the phase are repeated until
there are no tasks in the candidate task list or DVS cannot be
applied to any tasks in the task list. Figure 6(b) shows a result
of applying our proposal algorithm on processors described
in Table 1 to a schedule shown in Figure 2. In Figure 6(b),
task n, is processed at lower operating frequency than that
in Figure 6(a) and task n4 is processed at higher operaling
frequency than that in Figure 6(a). When the amount of power
consumption to surrounded part of Figure 6(a) and that of
Figure 6(b) are calculated on processors described in Table 1,
the former is 6,770[W-ut] and the latier is 5,270[W-ut]. The
result shows that our algorithm is more effective than Kimura’s
algorithm.

IV. RELATED WORK

There are some researches in which the amount of power
consumption is reduced by applying DVS[5-8]. Chen et al.
have proposed a power-aware scheduling algorithm([6]. Input
of the algorithm is a schedule generated from tree lask
graphs. This algorithm can reduce power consumption without
increasing the makespan by applying DVS to tasks which are
not in the critical path. However, this method deals with only
tree task graphs and does not consider interprocessor com-
munication costs. Our proposed algorithm deals with directed
acyclic graph and we consider interprocessor communication
cost based on Chen's method. In addition, our algorithm can

40 43 60 82 90 100

L1 I T I
T

. s 1‘ i timefut]
P n I n, [Jng

] Y

L [[[
(a) Kimura’s algorithm
0 10 2 10 60 70 %0 100
i i ; +— ——
{ 4 = : timefut]
P, |“l n, - I Ny I“él
1 Prd)
_ N B
P, n, | ng | ‘

(b) Our algorithm

Fig. 6. Ganu charts for two mcthods

more power consumption by introducing task selection method
described in Section 3.4.

Kimura et al. have proposed a power-aware scheduling
algorithm based on Chen’s method[5]. Kimura’s method is
improvement of Chen’s method. This method can deal wilth
arbitrary directed acyclic graphs as well as the tree task
graphs. This method focuses on waiting lime among lasks.
Effectiveness of DVS is proved accurately by experiments
in real machines. However, there is a problem that this
method also does nol consider interprocessor communication
costs. Therefore, this method cannot assure proper power-
aware scheduling on condition that communication costs are
not zero for interprocessor communication. Our method can
assure a proper power-aware scheduling even if interprocessor
communicalion costs are not zero. Additionally, our algorithm
can achieve good power consumption on task graphs having
various CCRs.

Varatkar el al. have proposed a task scheduling algo-
rithm based on a power consuming model according to
communications traffic in interprocessor communication[7].
In this method, firstly a allowable deadline of ‘makespan is
defined preliminary. Secondly, interprocessor-communication-
minimized task scheduling is performed so that the makespan
does not exceed the deadline in order to reduce the amount
of power consumption. However, this method focuses on only
reducing interprocessor communications, and applying method
of DVS is not discussed in detail. In addition, this method does
not consider inlerprocessor communication time generated
from interprocessor communication cost. Our approach deals
with application of DVS mainly in order to reduce more power
consumplion and consider interprocessor communication vol-
ume and inlerprocessor communication lime.

Houa et al. have proposed an algorithm in which after a
target program is divided into several [ragments, each fragment
is processed at proper operating frequency, respectively[8].
In this method, profiling information of programs for each
P-State must be achieved. Then, processing time and power
consumption of each fragment of the application are obtained

and the oplimal operating frequency is decided. However, this
method requires preprocessing because data of each fragment
of the application must be obtained by processing at various
operating {requencies.

V. EVALUATION

We evaluate how effective our algorithm is to reduce the
amount of power consumption by simulation. As input, our
algorithm deals with schedules by ETF algorithm.

We use Standard Task Graph set (STG) for generaling
examples of lask graphs for the experiments[9]. For experi-
ments, we use 180 task graphs with 50 tasks and also 180
task graphs with 100 tasks in STG. Communication cost is
assigned for each task graph according to Communication (o
Computation Ratio (CCR)[4]). The CCR is proposed for an
index that represents properties of a task graph. The CCR is
defined as follows:

Let task graph G = (V,E.w,c).

PTG
Lnev w(n)

For each ask graph in STG, we generate three lask graphs
whose CCRs are about 0.1, 1 and 10, which means the task
graphs have low, middle and high frequency of communica-
tion, respectively[4]. In addition. for each task graph, 10 kinds
of communication cost are generated randomly. Thus, in total,
we use 21600 task graphs for experiments.

For the target processor, we assume lhe AMD Athlon64
3000+ processor described in Table 1. and the target machine
assumes (o have 4 or 8 processors.

CCR(G) =)

A. Power consumption model

A relationship of power consumption P, an operating fre-
quency f and an operating voliage V is represented as follows:

Pxf-V? (6)

From the results of Table 2 and the equation (6), power
consumption model is defined in this section. When we define
power consumption excepl processor as zjw), lhere is an
equation described as follows:
P 89—z 8-z

f-V¥2 7 1000-1.12 ~ 2000 - 1.52
From the equation (7), power consumption excepl processors
at idle time is calculated and this value is about 49[W]. We also
assume that power consumption ratio of a processoris 1 : 0.75
: 0.25 at 2000MHz, 1800MHz and 1000MHz, respectively.
From this consideration, we can define the power consumption
model of the processor in Table 3. In Table 3, the item of
”Idle” represents power consumption at the idle state. The item
of “Execulion” represents power consumption of the state of
processing a task.

In general. there is an overhead in changing among P-States
in DVS. The overhead is defined as some dozens of micro
seconds generally[8]. For example, the overhead is 10[us]
in Intel Speed Step. This overhead is less than 1% since

)

~

TABLE 111
POWER CONSUMPTION MODEL OF PROCESSOR

Frequency[MHz] Volage[V] . Idle[W] F.xeculion[\rY]_
2000 1.50] 40 52
1800 1.40 ! 30 39
1000 L10 | 10 13

average compulation costs of task graphs of STG are 3.1[ms].
Therefore, in these experiments, the overhead in changing
among P-States can be ignored.

B. Experimental results

Based on the above power consumption model, Table 4-
6 show the result of applying our algorithm to the original
schedule generated by ETF algorithm. The amount of power
consumplion is shown in Table 4 and Table 5. Percentages
of reducing the amount of power consumption compared
with that of power consumption before applying power-aware
algorithm in average are shown in Table 6. Both the effecls
of Kimura’s algorithm and our algorithm are shown.

From the experimental results, we can observe that our
algorithm can reduce the more amount of power consumption
than Kimura’s algorithm in all cases.

Table 6 shows that our algorithm can also reduce the most
amount of power consumption in task graphs which have high
CCR. This is because waiting time of communication increases
as communication cosls increase. Although in the case of 8
processors shown in Table 6, our algorithm looks as if the
amount of reduced power consumption does nol depend on
CCR, this is because percentages of the. amount of power
consumption at idle time in 8 processors are larger than that
in 4 processors. Our algorithm is not applied to idle time.

In addition, when the number of processor is large, the
percentages of reducing the amount of power consumption are
large. When the number of processors is large, much commu-
nication occurs. This makes waiting time of communication
increase. Therefore, we consider that this is because slack-time
of each task increases as well as the case of task graphs which
have high CCR.

VI. CONCLUSION

In this paper, we proposed a power-aware task scheduling
algorithm by applying DVS which is electrical power saving
technology of processors based on features of task selection.
The input of our algorithm is a schedule generaled from a
task graph represented as directed acyclic graph by applying
task scheduling algorithm such as ETF algorithm. The output
is a schedule in which the amount of power consumption is
reduced. In order not to spoil advantage of parallel processing,
DVS is applied to lasks without increasing makespan of
the task graph. From the experimental results by simulation,
our algorithm can reduce about 9.1% and 12.8% of power
consumption on 4 and 8 processors respectively on average.

In our experiments, the overhead in changing among P-
States in DVS is regarded as very small and the effect assumes
to be ignored. However, there is the case that the overhead

TABLE IV
EXPERIMENTAL RESULTS | (AMOUNT OF POWER CONSUMPTION)

Number of Tasks : 50

| The amount of power consumption [W - 5]

Processor | CCR Original __ Kimura’s method — Our method
01 22718 210107 30168

4 1 2287.2 2129.9 2042.8

' 10 0 255011 2287.9 2191.8

o 26331 2349.6 22414

8 1 2675.4 2397.7 2300.3

! 10 | 3299.1 2946.7 2872.8

TABLE V

EXPERIMENTAL RESULTS 2 (AMOUNT OF POWER CONSUMPTION)

Number of Tasks : 100

The amount of power consumption [W - s]

Processor | CCR - Original Kimura’s method Our method
0.1 43220 4105.1 39024

4 1 43345 4106.9 3918.1
10 . 4565.3 4173.1 39775
00 48076 436738 41148
8 | 4846.8 44016 4172.5

. 10 | 54765 4870.6 4664.8

TABLE VI

EXPERIMENTAL RESULTS (RATIO OF REDUCING POWER CONSUMPTION)

Number of Tasks 50 100
Processor T CCR T Kimura’s method — Our method | Kimura’s method Our method
.01 7.1% 11.3% 4.8% 9.4%
4 1 6.9% 10.8% 5.0% 9.3%
C 10 10.3% 14.1% 9.0% 13.8%
0.1 11.3% 15.7% | 8.9% 14.3%
8 1 10.8% 147% : 10.6% 16.5%
S0) 10.8% 13.3% 11.2% 15.1%

cannot be ignored because granularity of tasks of a task graph
is very small. Even if a schedule is generated from a task
graph whose granularity of tasks is low, we should construct
a power-aware algorithm considering the overhead.

In addition. experimental results are oblained by simulation.
We do not verify the effect of our algorithm in real machine. In
order to verify that our algorithm is effective in real machine,
there is a method that DVS routine is inserted Lo ranges
between MPI routine in real parallel processing program{ 10].
To evaluate in real machine by utilizing such method is also
our future work.

REFERENCES
(1
(2]

L.A.Barroso: “The Price of Performance”, Queue, Vol. 3, No. 7, pp. 48—
53 (2005).

X.Fan, W.D.Weber and L.A.Barroso: “Power Provisioning for a
Warehouse-sized Computer”, Proc. of the 34th Annual Int’l. Symp, on
Computer Architecture, pp. 13-23 (2007).

Y.Zhang, X.S.Hu and D.Z.Chen: “Task Scheduling -and Voltage Selection
for Energy Minimization™, Proc. of the 39th Conf. on Design Awtomation,
pp. 183-188 (2002).

O.Sinnen: “Task Scheduling jor Parallel Systems”, Wiley-Interscience
(2007).

H.Kimura, M.Sato, Y.Hotta, $.Matsuoka, T.Boku and D.Takahashi: “Em-
pirical Study on Reducing Encrgy of Parallcl Programs using Slack
Reclamation by DVFS in a Power-scalable High Performance Cluster”,
Proc. of 8th IEEE Im’l. Conf. on Cluster Computing (CLUSTER), CD-
ROM, (2006)

13]

(4]
151

[6] G.Chen, K.Malkowski, M.Kandemir and P.Raghavan: “Reducing Power
with Performance Constraints for Parallel Sparse Applications”, Proc. of
Workshop on High-Perfomance, Power-Aware Cotputing (IPDPS), pp.
231-250 (2005).
G.Varatkar and R.Marculescu: “Communication-Aware Task Scheduling
and Voltage Selection for Total Systems Energy Minimization™ Proc.
of 2003 In’l. Conf. on Compuier-aided design (ICCAD), pp. 510-517
(2003).
Y.Hotta, M.Sato, I.Kimura, S.Matsuoka, T.Boku and D.Takahashi;
“Profile-based Optimization of Power Performance by using Dynamic
voltage Scaling on a PC cluster”, Proc. of Workshop on High-Perfomance,
Power-Aware Computing (IPDPS), CD-ROM, (2006).
T.Tobita and H.Kasahara: “Performance Evaluation of Minimum Execu-
tion Time Multiprocessor Scheduling Algorithms Using Standard Task
Graph Sct”, Pmc. of 2000 Im’l. Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pp. 745-751 (2000).
[10] L.Choy, S.G.Petiton and M.Sato: “Toward Power-Aware Computing with
Dynamic Voltage Scaling for Heterogencous Platforms”, Proc. of 2007
Ini’l. Conf. on Cluster Computing, pp. 550-557 (2007).

71

18

-

9]

