
A Case Study on MPEG4 Decoder Design with SystemBuilder

Seiya Shibata, Shinya Honda, Hiroyuki Tomiyama and Hiroaki Takada
Graduate School of Information Science

Nagoya University
Nagoya 464-8603, Japan

{shibata, honda, tomiyama, hiro}@ertl.jp

Abstract— This paper presents a case study on designing an
MPEG4 decoder system using our system-level design toolkit
named SystemBuilder. We start with a sequential specification of
the MPEG4 decoder behavior and generate an FPGA implemen-
tation. In order to improve the performance, we refine the behav-
ioral description based on the analysis result obtained by a pro-
filer. Finally, we achieve over 15fps performance with pipelined
hardware implementation.

I. INTRODUCTION

System-on-a-Chip (SoC) is a key technology for the embedded do-

mains. Advances on manufacturing technologies have enabled more

hardware components to be integrated into one chip, so that larger

scale applications can be executed on it. Due to the advances and

increasing demands for large applications, embedded systems to be

developed have never been more complex. Therefore needs for tools

which lift up design capabilities have been increasing.

Recent growth of high-level synthesis (HLS) tools has enabled

hardware designers to develop hardware modules at behavioral level

using C/C++ like languages [1]. By means of compilers and HLS

tools, whole system can be described in a single behavioral lan-

guage in short time. However, explorations of system architec-

ture should be done properly at system-level which is higher than

software/hardware-level, to obtain optimized software/hardware par-

titioning and communications between them.

Various researches have been conducted on system-level design

tools. PeaCE [2] is a system design tool featuring implementation

generation from models. System modeling should be done by de-

signers using modeling method specially designed for PeaCE. ARTS

[3] provides a simulation platform for multi-processor SoCs modeled

in SystemC. It supports multiple processing element (PE) models and

network model among PEs. ARTS assumes that the application model

simulated on it is already developed and separated properly in order to

explore allocation to PEs. In industrial system design processes, how-

ever, systems are often developed from existing sequential programs

by converting them. Therefore embedded system design should con-

sider system development from sequential programs.

In prior work, we developed a system-level design toolkit, named

SystemBuilder [4]. The main objective of SystemBuilder is to help

designers explore software/hardware partitioning efficiently, based on

iterative evaluations by executing systems on a target FPGA. Sys-

temBuilder takes system-level description written in the C language

and mapping specification to architectures as input, and automati-

cally generates target implementations including software, hardware

and interfaces among them. Since communication interfaces should

be developed on every change of software/hardware partitioning de-

cision, the interface synthesis capability especially affects design

time. SystemBuilder automatically generates interface implementa-

tions and enables designers to avoid describing them such as hard-

ware driver programs and hardware control logics. With this capabil-

ity, system designers need not consider details of interfaces and can

develop system-level description easily.

In this paper, we show a case study on designing an MPEG4

decoder system with using SystemBuilder. MPEG4 decoder is an

industry-strength application used in video cameras and cellphones,

and therefore we have taken it to be suitable as a design example.

Starting from a sequential software program, we develop system-level

description with SystemBuilder by separating and refining it incre-

mentally. We present a whole design process aiming to develop an

MPEG4 decoder system achieving 15fps (frames per second) perfor-

mance, and show effectiveness of SystemBuilder on system-level de-

sign.

This paper is organized as follows. Section II explains a brief

overview of SystemBuilder. Sections III and IV present a case study

on MPEG4 decoder system design. Section V evaluates effectiveness

and problems of SystemBuilder clarified through our case study, and

Section VI concludes this paper.

II. SYSTEMBUILDER

In this section, we show a brief overview of SystemBuilder. Please

refer to [4] for the detail of SystemBuilder.

A. Input description

Figure 1 shows the mapping and synthesis overview of System-

Builder. SystemBuilder takes System-Level Description (SLD, here-

after) and an architecture template as input (illustrated in the left part

of the figure), and generates target implementations of the system

(right part of the figure). SLD represents system functionalities, and

an architecture template specifies target platforms. SLD is described

as a set of processes running concurrently and channels represent-

ing communications among processes. Processes are written in the

C language with communication APIs as interfaces to channels. A

process may be implemented as either a software task on a Real-time

OS (RTOS) or a hardware module with a single FSM, depending on

designer’s decision on software/hardware partitioning. Inter-process

communications are represented as channels. Channels provide three

kinds of communications: blocking channel, non-blocking channel,

and memory channel. Communication APIs used in each process de-

scription are converted to interface programs/logics to communicate

with each other through channels.

SystemBuilder synthesizes target implementations automatically

by mapping system described in SLD to the architecture template.

Note that mapping decision should be done by a system designer.

B. Verification and Analysis

SystemBuilder generates implementations of a system for not only

a target FPGA but also a cosimulation platform. We developed a soft-

ware/hardware cosimulation platform in prior works [5]. Our cosimu-

lation platform enables a designer to verify functionalities of systems

that consist of descriptions at multiple abstraction levels.

978-1-4244-2782-6/09/$25.00 ©2009 IEEE 355



P1

P6P4

P2CP1

CP2 CP4CP3

P3

P7P5

HWCPU1 Memory

HWCPU2 Memory CPU3

HWCPU1 Memory

    HWCPU2 Memory CPU3

RTOS

Driver

CP1
P1 P2

RTOS

Driver

P4 P7

CP2

CP3

CP4

RTOS

Driver

P5

BUS I/F

Device Register

B
U

S
 I

/F

D
ev

ic
e 

R
eg

is
te

r

P6

P2

�������	�
���
���
�������

��
����
����
��������

���
���
������

���������������������

��

�� ��

�� ��

�� � 

�� �� ��

�� � ��
��

!�"�
	�
��

#����� $%�

!�"� �����&
#����� !�"� $%�

!�"� 	�
��
#�����

!�

!� !� !�

!�

!�"�
'�(�

'�(�

'�(�
���
��

���
��

���
��

)���*+,

)
��
�*
+,

��
�
��'��������

�
�

�

��
'
��
��
��
�� $%�

$%�

!�"�

!� !�

!�

�����&
#�����

#�������-
���������

Figure 1. Mapping and synthesis by SystemBuilder.

������

��� ���

������

��� ��������� �����	


��
������

Figure 2. Example of process profiler waveform.

In order to refine system within short time, SystemBuilder provides

a set of analysis tools (denoted as “process profiler” hereafter). Pro-

cess profiler helps a designer find performance bottlenecks out from

processes executing concurrently by visualizing execution histories

in waveforms. Execution histories consists of activation/suspension

timings of each process. Figure 2 shows an example of waveform

available with process profiler. Process profiler gathers histories of

both software processes and hardware processes on a target FPGA,

and shows them on a PC. Using process profiler, designers can eas-

ily decide software/hardware partitioning and find out processes to be

optimized.

III. MPEG4 DECODER SLD

Our case study aims to make an MPEG4 decoder system achieve

15fps performance on a target FPGA.

This section shows the efficiency on developing SLD through our

case study. We start MPEG4 decoder system design from modify-

ing a sequential software program into SLD. The software program

of MPEG4 decoder is selected from EEMBC benchmark suite [6].

At the end of this section, we obtain SLD where most processes can

be implemented as hardware and executed concurrently in pipeline

manner.

A. Preliminary

In this case study, we focus on the fixed architecture, which con-

sists of a single processor, a hardware module, a shared memory and

a bus. Processes specified as software are compiled and linked with

TOPPERS/JSP kernel, which is a popular RTOS in Japanese indus-

tries. Processes specified as hardware are converted to RTL (Register

Transfer Level) description by an HLS tool, as which we used a com-

mercial tool, YXI eXCite 3.2a[7]. FPGA netlist is synthesized from

RTL by Quartus II 8.0 logic synthesizer and implemented on Altera

Stratix II FPGA board with a Nios II soft-core processor. The FPGA

is driven at maximum speed of 100MHz and can generate variable

clock frequencies for user logics with a PLL (phase locked loop). We

configure the PLL to generate maximum clock frequencies available

on designed systems.

B. Initial Decision

We first decided the specifications of MPEG4 decoder system ac-

cording to input files. We have selected two files as inputs from sam-

ple files provided by EEMBC with the benchmark program: “mars-

face” which consists of 49 frames of 192×192 size, and “railgrind”,

97 frames, 320×240 size.

Generally, MPEG4 encoded files are sequences of GOVs (Group

Of VOPs) consisting of several number of picture frames named VOP

(Video Object Plane). There are three kinds of VOPs: I-, P-, and B-

VOP. I-VOP is a base frame for motion compensation, and P- and B-

VOP are differential frames for compaction. In detail, P-VOP consists

of coded blocks and not-coded blocks. We denote them as “coded-P-

VOP” and “not-coded-P-VOP” respectively. Since input files con-

sisted of only I- and P-VOPs, we omitted other decoder features un-

related to I- and P-VOP decoding. Especially, we first focused on

improving decoding performance for coded-P-VOP, which used fre-

quently in the inputs.

C. SLD Construction

The minimum SLD is constructed of a single process and no chan-

nel (illustrated in Figure 3(a)). Such systems are easily made with a

software program specified as a single process. In this way, we first

constructed SLD of an MPEG4 decoder system with a single process

that decodes MPEG4 encoded files on a single processor. We call

the single process as “top process” and confirmed that it is correctly

executed on a Nios II processor with an RTOS.

Figure 3(b) illustrates the MPEG4 decoder system after separating

one process from top process. We first used GNU profiler (gprof) for

analyzing bottlenecks since initial system consists of a single process

and the process profiler cannot analyze the system. From gprof result,

we found that IDCT function consumes the longest execution time on

a processor and should be implemented on hardware. Thus we sepa-

rated IDCT function from top process and made IDCT process. After

this, as we made a new process, we generated implementations with

SystemBuilder and executed the system on cosimulation platform for

early debugging.

After several iterations for process separation, the system consists

of several processes all connected to top process through channels

(illustrated in Figure 4(c)). In the system, most processes act like

software functions called by top process. Because of sequential be-

havior of top process, no two processes can execute concurrently and

356



� �������
�	
����

����������	��
����


���

���������������
���������������������

�

��	��
�������

�����������

���

�

�


�

����������	��
����

����������
������������������

��	����������
�����������
����������

����������	��
����


���

�������������������
�� ��
�����������

�

�

��	���
�������

�����������

���������!
������������!

�����

���������!
������������!

�����

���������!
������������!

�����

����������	��
����

���������������������
�����������������������������

��	��
�������

�����������

���

���


�

�

�

�

�

�

�

Figure 3. Incremental process separation.

��������

	������

�
�����������

�����
���

������


���������

�
�����
����
��������
��������

��������

���

�����


����� 

��

!�	 �" �	
#

����
 �$ �
�� �������

�������

Figure 4. Pipelined system structure for coded-P-VOP.

the system results in low performance. In order to improve perfor-

mance, we detached each connection between top process and others,

and then reconnected them to construct pipeline structure (illustrated

in Figure 3(d)). Note that these transformations can be done by only

changing locations of communication API calls in the source code of

processes written in the C language.

As a result, we developed SLD which consists of ten processes:

top process, header, get mv, VLD, IQ, IDCT, MI, adder, yuv2rgb,

and display. Figure 4 depicts the ten processes with memories for

inter-process communication. Data blocks of coded-P-VOPs to be

decoded are supplied by top process in succession and decoded by

following processes. Processes in Figure 4 except for top process can

be implemented as both hardware and software. In order to output not

only coded-P-VOP but also I-VOP and not-coded-P-VOP, the system

has channels between top process and yuv2rgb process (illustrated

as I VOP MEM and a solid arrow in Figure 4). I- and not-coded-P-

VOP are decoded by top process, and transferred to yuv2rgb process

through the channels.

Table I shows decoding time, frame rates and performance im-

provements on each refinement. Required ALUTs (adaptive look-up

tables) and MEMs (block memories) used in Stratix II FPGA are also

shown in the table. “Software implementation” where all processes

are implemented as software decoded input files at no more than 3

fps performance. “Hardware implementation” where most processes

are implemented as hardware forms pipelined hardware controlled by

top process, and achieves approximately 5× performance compared

with software implementation. While clock frequency was reduced to

75MHz on hardware implementation due to the complexities of hard-

ware processes, it achieved over 13 fps for “marsface” and 6 fps for

“railgrind”. So far, pipeline structured system description was devel-

oped within 2 weeks.

IV. REFINEMENT FOR PERFORMANCE

In order to achieve 15fps performance on the MPEG4 decoder sys-

tem, we analyzed pipeline behavior of processes and refined SLD.

A. Analysis of Process Behavior

Analyses are performed with using the process profiler. Figure 5

shows a snapshot of waveforms representing processes behaviors. In

Figure 5. Wave form of pipelined decoder.

���������	�
������������	� 
������������	�

Figure 6. Profile of P-VOP decoding.

the waveform, processes are listed in control flow order. We can see

that each process forms pipeline execution as we expected, which is

annotated with arrows in Figure 5. However, looking at entire wave-

form illustrated in Figure 6, we found that not-coded-P-VOPs should

also be accelerated the same as coded-P-VOPs. For this reason, we

decided to modify the hardware processes and enable them to handle

both coded-P-VOPs and not-coded-P-VOPs.

B. VOPs Merging

Not-coded-P-VOP was decoded on top process in the SLD devel-

oped in Section III. Although actual work of decoding not-coded-P-

VOP is only to copy image blocks, memory address calculation is ex-

pensive for software processes and it was expected to accelerate exe-

cution by hardware implementation. Because of the similarity of their

programs between not-coded- and coded-P-VOPs, we could easily ex-

tract programs for not-coded-P-VOPs from top process and merge

them with existing hardware processes. Moreover we also merged

I-VOP decoding to existing hardware processes because of the simi-

larity.

Figure 7 illustrates overview of waveform for decoding a frame.

We can see that two more hardware processes (MI and adder) are

used for decoding not-coded-P-VOPs. This improvement (denoted

as “+VOPs merging” in Table I) achieved approximately 6× perfor-

mance compared with software implementation. Additionally, VOPs

merging also led to reduce the number of required ALUTs and memo-

ries on the target FPGA, since two channels between top and yuv2rgb

processes became unnecessary and were removed due to the merg-

ing described above. Available clock frequency was also raised to

81.25MHz due to the logic simplification. So far, system performance

achieved over 15fps for “marsface” but not for “raildrind”. This trans-

formation was performed in a day including synthesis and verifica-

tion.

C. Memory Access Reduction

Figure 8(a) illustrates a part of Figure 7. We found out that two

processes of MI and adder are always active and keep other processes

357



TABLE I. PERFORMANCE IMPROVEMENT OF AN MPEG4 DECODER SYSTEM ON ITERATIVE REFINEMENTS.

Design
clock exec. time (sec) frame rate (fps) improvement hardware usage

(MHz) marsface railgrind marsface railgrind marsface railgrind ALUT MEM

software implementation 100.00 16.4 70.5 3.0 1.4 1.0x 1.0x 5,427 1,112,576

hardware implementation 75.00 3.6 15.9 13.6 6.1 4.5x 4.4x 31,748 1,686,792

+VOPs merging 81.25 2.8 10.8 17.3 9.0 5.8x 6.5x 32,128 1,637,640

+memory access reduction 90.00 1.4 6.0 34.6 16.1 11.6x 11.7x 33,964 1,638,080

Figure 7. Profile after VOPs merging.

(a) Profile before.

(b) Profile after.

Figure 8. Effects of memory access reduction.

waiting. Obviously the two processes were bottlenecks that prevent

from achieving 15fps performance. At this step, in order to improve

performance of these processes, we analyzed in detail and refined

their programs.

In the MPEG4 decoder, input images consists of pixels represented

in 8 bits. In original software programs, pixels were loaded from and

stored to memories one by one in 8 bits. In contrast, target architec-

ture employs 32 bits width bus and memory interfaces. Because each

load/store access leads process to wait long response time of bus and

memories, we transformed the program manually to pack four 8-bit

data into 32 bits for memory accesses. This transformation resulted

in reducing the number of accesses to approximately one fourth.

After memory access reduction, we obtained waveform shown in

Figure 8(b). We can see that execution period of two bottleneck pro-

cesses are shortened roughly in half. This optimization took approx-

imately a day. As a result, our MPEG4 decoder achieved over 15fps

performance on 90MHz for 320×240 movies (shown as “+memory

access reduction” in Table I).

V. SYSTEMBUILDER EVALUATION

This section brings advantages and subjects of SystemBuilder by

referring sections described above.

We found five advantages through this case study as follows. (1)

We could reuse a software program of MPEG4 decoder for initial de-

sign, because SystemBuilder takes SLD written in the C language,

which is one of the most popular language in embedded software

design. (2) Abstract representation of inter-process communications

helped us transform SLD construction, i.e. process separation and

pipelining (shown in Section III). (3) Automatic communication syn-

thesis by SystemBuilder reduced overall design time, although SLD

should be modified manually for transformation, (4) Code refinement

is generally error prone, however, cosimulation support of System-

Builder enabled early verification. (5) We could check visually the ef-

fect of our transformations with using process profiler (demonstrated

in Section IV).

Subjects was also found in this case study. One of them is insuf-

ficiency of process profiler. Although process profiler played impor-

tant part for finding processes to be improved, it lacked capabilities

to detect inner bottlenecks of those processes. Since memory access

reduction mentioned in Section IV was particularly effective, we are

currently working on visualizing memory accesses together with pro-

cess profiler results.

VI. CONCLUSIONS

This paper presented a case study on an MPEG4 decoder system

design with our system-level design toolkit named SystemBuilder.

SystemBuilder can generate target implementations of the system

given as system-level description and architecture mapping specifica-

tion. The MPEG4 decoder system description was developed by con-

verting a sequential software program. Until the completion of system

design, a number of design-implement-evaluate steps were iteratively

performed to construct system-level description and to refine it. Fi-

nally, we designed a system which achieves over 15fps performance

for 320×240 movies by hardware implementation and pipelining on

an FPGA running at 90MHz speed.

The overall design took 5 weeks with a designer. The much iter-

ation was enabled with a short turnaround time of the steps, which

is brought by an automatic synthesis capability of SystemBuilder.

Therefore we conclude that system-level design with SystemBuilder

is efficient.

ACKNOWLEDGMENTS

This work is in part supported by STARC (Semiconductor Tech-

nology Academic Research Center).

REFERENCES

[1] K. Wakabayashi, “CyberWorkBench: Integrated Design Environ-

ment Based on C-Based Behaviour Synthesis and Verification,”

VLSI-DAT, 2005.

[2] S. Ha, et al., “PeaCE: A Hardware-Software Codesign Environ-

ment for Multimedia Embedded Systems,” ACM Trans. Design
Automation of Electronic Systems. vol.12, no.3, 2007.

[3] S. Mahadevan, et al., “ARTS: A SystemC-based framework for

multiprocessor Systems-on-Chip modelling,” Design Automation
for Embedded Systems, vol.11, no.4, 2007.

[4] S. Honda, et al., “RTOS and Codesign Toolkit for Multiprocessor

Systems-on-Chip, ” ASP-DAC, 2007.

[5] S. Honda, et al., “RTOS-Centric Cosimulator for Embedded Sys-

tem Design,” IEICE Trans. Fundamentals, vol.E87-A, no. 12,

Dec. 2004.

[6] EEMBC, http://www.eembc.com/.

[7] Y Explorations, Inc., http://www.yxi.com/.

358


	Copyright
	Words from Conference Chair
	Foreword
	Table of Content
	JOINT PLENARY
	JK1_The Future of Semiconductor Industry - A Foundry’s Perspective
	JK2_From Living Faster to Living Better

	DAT PLENARY
	K1_Microscopic wireless – exploring the boundaries of ultra low-power design
	K2_Semiconductor Industry Prosperity Trough Deeper Horizontal Collaborations

	Industry Session 1 : Building the Next-generation High-Performance CPU
	IS11_Challenges in Microprocessor Physical and Power Management Design
	IS12_Flow Enhancements for Low Power Design Implementations
	IS13_Implementation and Verification Practices of DVFS and Power Gating
	IS14_Toward the Integration of Incremental Physical Synthesis Optimizations
	IS15_The Evolution of Interconnect Management in Physical Synthesis

	Industry Session 2: Breaking through the chip-to-chip interconnect wall
	IS21_The Future of Electrical I/O for Microprocessors (Invited)
	IS22_Communication in macrochips using silicon photonics for high-performance and low-energy computing
	IS23_Past, present and Future of RF Design Wireless Communication
	IS24_Enabling Technologies for Multi-Chip Integration using Proximity Communication

	Session W1: Regulators
	W11_A Compact Rail-to-Rail Buffer with Current Positive-Feedback for LCD Source Driver
	W12_New Design Method of Low Power Over Current Protection Circuit for Low Dropout Regulator
	W13_Digital PWM Controller for SIDO Switching Converter with Time-Multiplexing Scheme

	Session W2: Testing I
	W21_Static and Dynamic Test Power Reduction in Scan-Based Testing
	W22_iScan: Indirect-Access Scan Test over HOY Test Platform
	W23_On Calculation of Delay Range in Fault Simulation for Test Cubes

	Session W3: Memory and Communication Architectures for SoCs
	W31_Allocation of Scratch-Pad Memory in Priority-Based Multi-Task Systems
	W32_Fault-tolerant Router with Built-in Self-test/Self-diagnosis and Fault-isolation Circuits for 2D-mesh Based Chip Multiprocessor Systems
	W33_On Chip Communication-Architecture Based Thermal Management for SoCs

	Session W4: RF & Millimeter-Wave Design
	W41_A Wireless Power Telemetry with Self-Calibrated Resonant Frequency
	W42_Glass Carrier SOP Technology Demonstrated by Design of a 19 GHz 3.8 dB CMOS LNA
	W43_Low-Power 48-GHz CMOS VCO and 60-GHz CMOS LNA for 60-GHz Dual-Conversion Receiver
	W44_Miniature 60-GHz-Band Bandpass Filter with 2.55-dB Insertion-Loss Using Standard 0.13μm CMOS Technology

	Special Session 1: Electronic System Level
	S11_Virtual Prototyping Increases Productivity - A case study (Invited)
	S12_Refinement and Reuse of TLM 2.0 Models: the key for ESL success
	S13_Adaptive Simulated Annealer for High Level Synthesis Design Space Exploration

	Session W5: Physical Design and Manufacturability
	W51_Circuit Acyclic Clustering with Input/Output Constraints and Applications
	W52_A Detailed Router for Hierarchical FPGAs Based on Simulated Evolution
	W53_A Bias-Driven Approach for Automated Design of Operational Amplifiers
	W54_Coupling- and ECP-Aware Metal Fill for Improving Layout Uniformity in Copper CMP

	Session W6: Low-Power Analog Techniques
	W61_Visual Prostheses: Current Progress and Challenges
	W62_A Current Compensated Reference Oscillator
	W63_Improved SPICE Macromodel of Phase Change Random Access Memory

	Special Session 2: mm-Wave Circuit and VCOs
	S21_Transforming RF and mm-Wave CMOS Circuits (Invited)
	S22_Low-Voltage Transformer-Based CMOS VCOs and Frequency Dividers
	S23_A 57-GHz CMOS VCO with 185.3% Tuning-Range Enhancement Using Tunable LC Source-Degeneration

	Session W7: Digital Circuit Techniques
	W71_Novel FFT Processor with Parallel-In-Parallel-Out in Normal Order
	W72_Cost Efficient FEQ Implementation for IEEE 802.16a OFDM Transceiver
	W73_A Low-Jitter All-Digital Phase-Locked Loop Using a Suppressive Digital Loop Filter
	W74_Timing Control Degradation and nbti/pbti Tolerant Design for Write-Replica Circuit in Nanoscale CMOS SRAM

	Session T1: Modern Synthesis and Verification
	T11_Logic Synthesis for Better Than Worst-case Designs
	T12_Leakage Reduction, Variation Compensation Using Partition-based Tunable Body-Biasing Techniques
	T13_Rewired Retiming for Free Flip-flop Reductions without Delay Penalty

	Special Session 3 : Silicon Debugging / Design Validation
	S31_Exploiting advanced fault localization methods for Yield & Reliability Learning on SoCs (Invited)
	S32_A Network-on-Chip Monitoring Infrastructure for Communication-centric Debug of Embedded Multi-Processor SoCs (invited)
	S33_Software-enabled Design Visibility Enhancement for Failure Analysis Process Improvement

	Session T2: Baseband and FEC Circuits
	T21_VLSI Design of Spread Spectrum Encoding Low Power RFID Tag Baseband Processor
	T22_High-Convergence-Speed Low-Computation-Complexity SVD Algorithm for MIMO-OFDM Systems
	T23_Design of High-Speed Errors-and-Erasures Reed-Solomon Decoders for Multi-Mode Applications
	T24_An Area-Efficient Parallel Turbo Decoder Based on Contention Free Algorithm

	Session T3: Data Converters
	T31_A 6-GS/s, 6-bit, At-speed Testable ADC and DAC Pair in 0.13μm CMOS
	T32_A 6-bit 1GS/s Low-Power Flash ADC
	T33_A 6-bit 220-MS/s Time-Interleaving SAR ADC in 0.18-μm Digital CMOS Process

	Session T4: PLL and Divider
	T41_A Frequency Synthesizer for Mode-1 MB-OFDM UWB applications
	T42_Implementation of 6-Port 3D Transformer in Injection-Locked Frequency Divider
	T43_An 18.7mW 10-GHz Phase-Locked Loop Circuit in 0.13-μm CMOS

	Session T5: SoC Design Techniques and Amplications
	T51_A High-Troughput Radix-4 Log-MAP Decoder With Low Complexity LLR Architecture
	T52_Efficient Two-Layered Cycle-Accurate Modeling Technique for Processor Family with Same Instruction Set Architecture
	T53_Content-Aware Energy Prediction for Video Streaming in Mobile Devices

	Session T6: ADC & Clocking
	T61_A Continuous-Time Delta-Sigma Modulator Using Feedback Resistors
	T62_A Third-Order Continuous-Time Sigma-Delta Modulator for Bluetooth
	T63_An All-Digital Clock Generator for Dynamic Frequency Scaling

	Session T7: Testing II
	T71_An Efficient Multi-Phase Test Technique to Perfectly Prevent Over-Detection of Acceptable Faults for Optimal Yield Improvement via Error-Tolerance
	T72_A Built-In Self-Repair Method for RAMs in Mesh-Based NoCs
	T73_Co-Calibration of Capacitor Mismatch and Comparator Offset for 1-Bit/Stage Pipelined ADC
	T74_Built-In Self-Repair Techniques for Content Addressable Memories

	Session T8: Video and Image Processing
	T81_Scalable and Low Cost Design Approach for Variable Block Size Motion Estimation (VBSME)
	T82_An Area Efficient Shared Synapse Cellular Neural Network for Low Power Image Processing
	T83_A Reconfigurable Architecture for Entropy Decoding and IDCT in H.264
	T84_A 1.55ns 0.015 mm2 64-bit Quad Number Comparator

	Poster Session
	PS1_A Comprehensive Linear-regression-based Procedure for Inductor Parameter Extraction
	PS2_Single-Instruction based Programmable Memory BIST for Testing Embedded DRAM
	PS3_2.4 GHz Low-Pass Filters with Harmonic Suppression Using Integrated Passive Device Process
	PS4_A gm/ID-Based Synthesis Tool for Pipelined Analog to Digital Converters
	PS5_A 0.35μm CMOS Divide-by-3 LC Injection-Locked Frequency Divider
	PS6_Transmitter Equalization for Multipath Interference Cancellation in Impulse Radio Ultra-Wideband(IR-UWB) Transceivers
	PS7_Design and Analysis of 1-60GHz, RF CMOS Peak Detectors for LNA Calibration
	PS8_A 200-Mb/s 10-mW Super-regenerative Receiver at 60 GHz
	PS9_Segment based X-Filling for Low Power and High Defect Coverage
	PS10_Power and Noise Aware Test Using Preliminary Estimation
	PS11_Design Of On-Chip Power-Rail ESD Clamp Circuit With Ultra-Small Capacitance To Detect ESD Transition
	PS12_Design of a Dual-Mode Baseband Receiver for 802.11n and 802.16e MIMO OFDM/OFDMA
	PS13_A Memory-Efficient Architecture for Low Latency Viterbi Decoders
	PS14_On the Complexity of the Port Assignment Problem for Binary Commutative Operators in High-Level Synthesis
	PS15_Hierarchical Architecture for Network-on-Chip Platform
	PS16_A Practical Power Model of AMBA System for High-Level Power Analysis
	PS17_Incremental Physical Design Method for Flat SOC Design
	PS18_A Case Study on MPEG4 Decoder Design with SystemBuilder
	PS19_System-Level Development and Verification Framework for High-Performance System Accelerator
	PS20_Prefetching for Array Data in Embedded Java Hardware Accelerator

	Panel Discussion
	Author Index
	Organization



