
Heuristics for Static Voltage Scheduling Algorithms on
Battery-Powered DVS Systems

Tetsuo Yokoyama, Gang Zeng, Hiroyuki Tomiyama, and Hiroaki Takada
Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
{yokoyama,sogo,tomiyama,hiro}@ertl.jp

Abstract

The principles for good design of battery-aware voltage
scheduling algorithms for both aperiodic and periodic
task sets on dynamic voltage scaling (DVS) systems are
presented. The proposed algorithms are based on greedy
heuristics suggested by several battery characteristics and
Lagrange multipliers. To construct the proposed algo-
rithms, we use the battery characteristics in the early
stage of scheduling more properly. As a consequence, the
proposed algorithms show superior results on synthetic
examples of periodic and aperiodic tasks from the task sets
which are excerpted from the comparative work, on uni-
processor platforms. Especially, for some large task sets,
the proposed algorithms enable previously unschedulable
task sets due to battery exhaustion to be schedulable.

1. Introduction

Increase in battery capacity and improvements of bat-
tery utilization have proved to be indispensable due to
higher demand for functionality resulting in drastic in-
crease of energy consumption. On the other hand, the
energy density of the battery, though gradually improved,
already reached a half or one third of the theoretical
limits [1]. It is therefore of great importance to reduce
the energy consumption by controlling software in the
battery-powered embedded systems. The challenge is to
appropriately handle the non-trivial battery characteristics,
such as recovery and non-linearity of battery capacity
which are dependent on the current load history [1]–[3].
A real battery recovers its charge when it is idle. The
current load affecting the total capacity of batteries is
not uniform but rather depends on the load history. Once
the voltage of the battery reaches its threshold, a battery
becomes exhausted. Then, its current is unavailable and

never recovers without an external power supply. To use
battery capacity to the greatest extent, it is impossible to
apply existing energy optimization technics as they are.
Therefore, the aforementioned battery characteristics must
be reflected.

Battery characteristics have been widely studied [4]. Al-
though computationally expensive low-level electrochem-
ical models (e.g., Dualfoil [5]) are accurate, high-level
battery models provide reasonably accurate approximation
gained by lightweight computation [6]–[11]. Based on
those models, a number of battery-aware voltage schedul-
ing algorithms on dynamic voltage scaling (DVS) systems
are proposed [2], [3], [12].

Specifically, incorporating battery properties, such as
recovery effect and non-linearity, Rakhmatov and Vrud-
hula [6], [7] developed a high-level analytical battery
model with only two configuration parameters for each
battery instance. Accuracy of their model was confirmed
by the low-level electrochemical simulation Dualfoil [5]
within approximately 5 % error according to their report.
Rakhmatov and Vrudhula [2] specified various impor-
tant properties of their mathematically formulated cost
function, and several efficient static battery-aware voltage
scheduling algorithms. Chowdhury and Chakrabarti [3]
identified several insightful battery properties and extended
the work of Rakhmatov, Vrudhula, and Chakrabarti’s [2],
[13]. They proposed battery-aware voltage scheduling
algorithms not only for periodic tasks on uniprocessor
platform but also for both aperiodic and periodic tasks on
both uni- and multi-processor platforms.

Their improvement relies on heuristics derived from
battery characteristics, such as the steepest profile and non-
increasing ordering in the early stage of scheduling. In this
paper, we investigate the implications caused by battery
properties, which are identified in the aforementioned
previous work [2], [3]. As the result of the proper investi-
gation of those properties, we propose new static voltage
scheduling algorithms for the battery-powered embedded
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systems, based on greedy heuristics suggested by several
battery properties and Lagrange multipliers. We target
uniprocessor systems. Our method shows better results in
the aperiodic task sets of time varying load used in the
periodic task sets on uniprocessor systems. For periodic
tasks, we need a special care, not necessarily considered
in energy minimization; the optimal profiles are not always
the same among different hyperperiods.

This paper is organized as follows. First, we present the
non-ideal battery characteristic using a motivating example
(Section 2). After representing the system and battery
models we rely on (Section 3), we propose our voltage
scheduling algorithms (Section 4). The proposed algo-
rithms are evaluated through comprehensive experiments
(Section 5). Finally, we conclude with a few remarks
(Section 6).

2. Motivation

Fig. 1 represents four profiles of two identical tasks
(current 250 mA, duration 2 min in the highest voltage
setting, deadline 6 min) on a battery-powered uniproces-
sor system, in which processor speed and power change
continuously.

Fig. 1(a) shows the increase current profile. Since the
idle time increases the nominal residual charge in batteries,
the later we measure the nominal battery capacity, the
higher value we obtain. The consumed capacity is mea-
sured by the objective function σB (see Section 3 in detail).
Intuitively, the higher σB stands for the smaller residual
charge available in batteries at observation time B. Once
σB reaches some threshold (denoted as α in this paper),
the batteries become exhausted; The batteries are inactive
and no longer recoverable without external power supply.
The objective function at time 6 min (σ6) is 1566 mA·min
and it decreases to 1115 mA·min at time 12 min (σ12).
Each of two objective functions is the worst in the four
cases.

For battery-unaware scheduling, it is well-known that
only a single processor speed is sufficient to obtain the
optimal profile [14]. The time between the end of task
execution and deadline is called slack time. If we distribute
the slack time equally among two identical tasks, we
obtain level current profile (Fig. 1(b), cf. [12]), which
is an optimal profile in terms of the amount of energy
dissipated from batteries. However, due to non-linearity of
the objective function, it is not always an optimal profile as
far as optimization of battery residual charge is concerned.
As we will see later on, this profile is optimal in case of
ideal battery.

The decrease current profile results in better battery
performance compared to increase current profile. Fig. 1(c)
is an optimal profile minimizing the objective function σ12.

σ6 = 1566 mA·min
σ12 = 1115 mA·min

I (mA)

t (min)
0

50 mA

3.41

115 mA

6.00

(a) Increase current

σ6 = 1306 mA·min
σ12 = 710 mA·min

I (mA)

t (min)
0

74 mA

3.00

74 mA

6.00

(b) Level current

σ6 = 1274 mA·min
σ12 = 708 mA·min

I (mA)

t (min)
0

81 mA

2.91

68 mA

6.00

(c) Gradual decrease current

σ6 = 1226 mA·min
σ12 = 734 mA·min

I (mA)

t (min)
0

115 mA

2.59

50 mA

6.00

(d) Decrease current

Figure 1. Motivating example.

INPUT: SV , Sφ, SI , Sr, SΔ, Sd, G,B, α, β, p
OUTPUT: SV ∗ , St

OBJECTIVE:

minimize σB s.t. σB =
n−1∑
k=0

I∗kF (B, tk, tk + Δ∗
k, β)

CONSTRAINTS:

1) rk ≤ tk
2) ∀t. #(t ∈ [tk, tk + Δ∗

k) ) ≤ p
3) k′ depends on k in G ⇒ tk + Δ∗

k ≤ tk′

4) ∀k. tk + Δ∗
k ≤ dk and ∀k. tk + Δ∗

k ≤ B

5) ∀t ≤ B.

n−1∑
k=0

I∗
kF (t, min{t, tk}, min{t, tk+Δ∗

k}, β) ≤ α

Figure 2. Battery-aware voltage scheduling
problem.

Despite higher energy consumption in the level current
approach (Fig. 1(b)), the battery charges σ6, σ12 are
reduced.

Fig. 1(d) is an optimal profile minimizing σ6. This
decrease current is obtained by swapping the two tasks
in the increase current profile in Fig. 1(a). Those two
profiles consume exactly the same amount of energy, but
the residual available charges differ (34.2 % improvement
with respect to σ12). This implies the importance of the
task order (i.e., the history of charge) in the battery-aware
voltage scheduling. The gradient of this task load is steeper
than in the gradual decrease current profile (Fig. 1(c)), and
this results in the worse effect on σ12. Namely, the steepest
non-increasing load current profile is not always optimal.
Hence, heuristics for choosing the steepest non-increasing
load current profile [3] is not always the best choice.

This example becomes an intratask voltage scheduling
problem [15], if we regard two identical tasks as one
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piece of task and have opportunity to change the speed
when a half of the task is finished. In the battery-aware
voltage scheduling, even when each task consumes power
uniformly, there is still room to optimize the total available
capacity in the battery by switching voltages during the
task execution. The difference of σ6 between Fig. 1(b) and
Fig. 1(d) shows not negligible improvement (6.1 %).

Energy minimization is not exactly equivalent to battery
optimization. In summary, when considering the battery-
aware voltage scheduling, we need to pay attention to the
recovery effect and the history of charge, and we should
not rely too much on the steepest non-increasing profile
heuristics to obtain an efficient profile.

The importance of the research on the better battery
utilization is also reinforced by the fact that it is somewhat
independent of the energy optimization of the other parts of
the systems. For example, if a subsystem, which consumes
10 % of the total energy, reduces the energy consumption
by 50 %, only 5 % is reduced in total. However, if energy,
which remained in a battery after battery failure, is used
in the system it is exactly equal to the increase of the
available energy for performing system.

3. Preliminaries

This section explains the assumptions used in the fol-
lowing sections, in order to make this paper self-contained.

3.1. System Configuration

We assume DVS-enabled uniprocessors. For the sake of
simplicity, the DC-DC conversion efficiency is assumed to
be 100 %. The ratio of the initial task duration Δ and the
new task duration Δ∗ after scaling the task voltage Vdd

down by factor s (i.e., Vdd/s) is

Δ∗

Δ
= s

(
1 +

2(s − 1)Vth

Vdd − Vth

)
(1)

with Vth a threshold voltage. The battery current Ibatt

scales by s3, i.e.,
I∗batt

Ibatt
=

1
s3

(2)

with I∗batt a battery current after scaling the task voltage.
Our target processor is compatible with the Stron-

gARM SA-1100 microprocessor [16]. The operating volt-
age ranges over set {3.3, 3.0, 2.7, 2.5, 2.0}. The threshold
voltage Vth is 0.4 V. For the sake of simplicity, we assume
no time and energy overhead due to the change of voltage
setting.

In most modern embedded systems, dynamic energy
consumption is dominant. Therefore, in this paper, static
energy consumption is ignored, although it is one of major

concerns in the near future. All the assumptions above
are consistent with the work on battery-conscious voltage
scheduling [3] for comparison purpose.

3.2. Battery Model

There has been no single model capturing the behavior
of both charge and voltage at the same time. We focus on
charge sensitive model and ignore voltage sensitive mod-
els [5], [17]. As a model for variable load, we use the high-
level analytical model of Rakhmatov and Vrudhula’s [6],
[7]. The load on battery i(t) and battery life time L are
related by equation

α =
∫ L

0

i(t)dt+
∫ L

0

i(t)

(
2

∞∑
m=1

e−β2m2(L−t)

)
dt (3)

with α (mA·min) and β (min−1/2) being constants,
uniquely determined for each battery. Intuitively, α repre-
sents the battery’s theoretical capacity and β the recovery
rate.

The first term on the right hand side sums up the
discharged capacity from the battery from time 0 to L. The
second term represents the residual charge in the battery,
unavailable at time L. It should be noted that once battery
voltage becomes lower than some threshold, the residual
charge in the battery cannot be used any more. If the
second term on the right hand side is negligible (e.g.,
β → ∞), the battery behavior is nearly optimal. If α is
significantly large, we do not have to consider the battery
failures (exhaustion). By means of insertion of the period
of no load, i.e., i = 0, or low load, the battery life L
increases; the battery at rest recovers its charge. Let τk

(k in short) be tasks executed during the period of Δk

starting at time tk. For brevity, we estimate the load of
each task k on the battery to be a constant Ik in the highest
voltage setting. If the tasks are sequentially computed and
the battery life ends at task u, the battery capacity equation
computed with continuous current function (3) becomes
the discrete equation [2], [6]

α =
∑

k∈Su

IkF (L, tk, tk +Δk, β)+IuF (L, tu, L, β) (4)

with a set Su consisting of the tasks executed before task
u and auxiliary function

F (T, s, f, β) = f − s+2

mmax∑
m=1

e−β2m2(T−f) − e−β2m2(T−s)

β2m2

(5)
in which s represents the start time, f the finishing time,
and T the observation time. If t �∈ [tk, tk + Δk) for all
τk ∈ Su + {τu} in the uniprocessor systems, then t is in
the idle time. Since in theory mmax is infinite, the number
of terms in the sum of infinite series provides a tradeoff
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between the accuracy and the amount of computation. In
[6] and [7], a graph ranging 1 ≤ β2L ≤ 102 shows that the
sums of the first 10 and 100 000 terms create negligible
difference. This fact implies that the first 10 terms are a
good approximation.

We justify this observation analytically. Since the for-
mula (summands) under Σ notation in F is monotonically
decreasing with m and T , by using the solution of Basel
problem,1 we obtain, for any mmax

mmax∑
m=1

e−β2m2(T−f) − e−β2m2(T−s)

m2
< e−β2(T−f) π

2

6
.

(6)
Given mmax and the upper bound of f−s, the upper bound
of error is obtained. For example, assuming f−s ≥ 1 min,
mmax = 10, β = 0.637 min−1/2, T − f = 10 min, error
is bounded by 1.03× 10−3. The sum of the first 10 terms
has approximately at most 0.2 % error. Therefore, we use
mmax = 10 in the formula of F (5).

We focus on the task sets of the middle duration range
(0.5 min to 20 min). This is because firstly the load
frequencies higher than 1 Hz can be filtered owing to
the late response of the battery device [1] and battery-
charge optimization is not effective for very fine-grained
(< 10 ms) tasks [18]. Secondly, for very coarse-grained
(> 30 min) tasks, battery-aware voltage scheduling is not
much superior to energy optimal scheduling [18]; Battery
optimization is almost equivalent to energy minimization
in this range. Not a few tasks of PDA, such as playing
music and movie, and controllers, reside in this middle
time range.

In this paper, we do not consider self-discharge mecha-
nisms, aging caused by discharge/recharge repetition, and
dependence on temperature, since this model does not take
them into account

3.3. Cost Function

A profile of n tasks consists of a set of the current
Ik, the starting time tk, and the duration Δk. For a given
profile of n tasks and the observation time B, the battery-
aware cost function [7]

σB =
n−1∑
k=0

IkF (B, tk, tk + Δk, β) (7)

is to be minimized. The subscript B of σ is omitted if it
is insignificant or obvious from its context. Intuitively, σB

models a measure of the residual capacity in the battery
available to use at time B. When battery parameter β or
the observing time B becomes large (β → ∞, B → ∞),

1. Euler solved the Basel problem and obtained the formula∑∞
m=1

1/m2 = π2/6.

the third term on the right hand side in the formula of F (5)
disappears, and the battery becomes ideal (limβ→∞ σB =
σ∞).

To make the value σ meaningful, two conditions must
be satisfied. Firstly, all tasks must terminate before obser-
vation time B:

∀k. tk + Δk ≤ B . (8)

Secondly, the battery must satisfy the endurance con-
straint; the battery must not be exhausted before B:

∀t ≤ B. α ≥
n−1∑
k=0

IkF (t, min{t, tk}, min{t, tk + Δk}, β) .

(9)
It should be noted that if the values of the second and third
arguments of F are equal, F becomes zero.

For comparison purpose, we use the same battery
parameters in all profiles (including motivating examples
in Section 2) as in [2], [3], [7] (α = 40 375 mA·min,
β = 0.273 min−1/2).

We will use the largest deadline of given tasks for the
observation time B, instead of the end time of each profile,
which was used in the previous work [2], [3]. As a result,
even if all tasks finished earlier than the deadline, it is
not always disadvantageous because of the usage of the
remaining time for recovery.

4. Battery-Aware Voltage Scheduling

A voltage scheduling problem for the battery-powered
DVS system can be formulated as a non-linear optimiza-
tion problem (Fig. 2). In this paper, we do not consider
task preemption. The input consists of six ordered sets of
voltages SV on which a system operates, frequency Sφ,
current SI , release time Sr, duration SΔ, and deadline
Sd, task dependency graph G, observation time B, battery
parameters α, β, specified in Section 3.3, and the number
of processors p. The output consists of two ordered sets
representing scheduled voltage SV ∗ and start time St

for each task. SV ∗ is uniquely determined by scheduled
current I∗s and/or scheduled duration Δ∗s.

The objective function to be minimized is σB in the bat-
tery-aware cost function (7). Five constraints are imposed:
1) release time, 2) number of processor, 3) dependency, 4)
deadline, and 5) current load endurance. First, release time
of each task must be smaller or equal to each starting time.
Second, the number of processes running simultaneously
must be smaller or equal to the number of processors.
Third, the task dependency represented by G must be
preserved. Fourth, the deadline dk for each task k should
be met, and the length of profile must be smaller than
observation time B. Fifth, the battery must survive all the
tasks without battery exhaustion until observation time B.
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A voltage scheduling problem is NP-hard, even if tasks
have the fixed-priorities [19]. Therefore, the efficient and
effective heuristics is needed. The energy minimization
problem is in general an instance of the battery-aware
energy optimization problem, since the latter becomes the
former when α, β → ∞.

We will add the following assumptions and make the
problem simpler. For simplicity we do not consider intra-
task voltage scheduling [15], i.e., the power and perfor-
mance are uniform within a single task. The arrival time,
the deadline, the current, and the dependence relation are
known in advance before execution. These conditions are
not too restrictive in the embedded systems.

Our major idea is simple greedy heuristics. The objec-
tive function σ reaches its minimum if the equation

∂σ

∂Δ1
=

∂σ

∂Δ2
= · · · =

∂σ

∂Δn
(10)

is satisfied. This equation is obtained by the Lagrange
multiplier method. Here, we assume there is no slack
time between tasks. The performance of the task will be
decreased, so that the energy increase is the most effective.
The effectiveness of the energy increase is measured by
the decreased cost per the decreased duration ∂σ/∂Δk.
Since we focus on discrete DVS and configurations, the
effectiveness is measured by

σ∗ − σ

Δ∗
k − Δk

. (11)

It should be noted that this expression does not assume
any specific function σ.

4.1. Voltage Scheduling for Uniprocessor Systems

The proposed algorithm consists of two phases (Fig. 3):
I) obtain a feasible solution and II) distribute slack time.

In Phase I, battery-unaware scheduling algorithm with-
out voltage scaling is used. In this paper, we use the
earliest deadline first (EDF) algorithm, but this choice is
not essential. The power is scaled down starting from the
highest power initial solution, which hopefully satisfies
the deadline constraints. When it does not satisfy the
endurance constraint, our scheduling algorithm returns
“Failure”.

To repair the battery failure, we repeatedly scale down
the speed of the failed tasks or the tasks appeared before
them, in such a way that reduction of their speed by
one level results in the greatest value using the discrete
voltage downscaling effectiveness measure (11) within
timing constraints (greedy choice). It should be noted that
the downscaled task is not always the failed task unlike
in case of the scheduling algorithms in [3], where even
the failed task is not assigned the lowest voltage. If the

Schedule w/o scaling

Schedulable? n

y

Failing
load? n

y

Scalable
task? n

y

Scale down the most
effective task by one level
until the first failing load

Phase I

Scale down the most
effective task by one level
until the first failing load

Updated? y

n

Swap tasks most effectively

Updated? y

n Phase II

Start

SuccessFailure

Figure 3. Battery-aware uniprocessor voltage
scheduling algorithm.

task is not a failing task, the voltage downscaling is not
guaranteed to be superior to the insertion of the battery
idle time. But such slack time tends to be relatively larger
compared to our time range. Therefore, as in [3] and
unlike in [2], [13], we do not consider the insertion of
the idle time. If the effectiveness of DVS evaluated by the
discrete voltage downscaling effectiveness measure (11) is
negative, the voltage of the task is not scaled down. This
case never occurs if assumption

V ≥ V ′ ⇒ Δ(V ) ≤ Δ(V ′) and I(V )Δ(V ) ≥ I(V ′)Δ(V ′)
(12)

holds at any moment. Strictly speaking in our assumption,
due to duration scaling equation (1), it does not always
hold, but the effect is limited and can be ignored when
designing scheduling algorithm.

In Phase II, we repeatedly use the available slack time
by scaling down speeds of tasks to achieve the most
effective decrease of the cost with respect to the discrete
voltage downscaling effectiveness measure (11). Next, we
swap the task order if the result has lower cost without
violating the deadline constraints. We repeat this phase
until no tasks can be swapped. Consideration of batteries
is a necessary condition for this new method of swapping
tasks to optimize the energy efficiency. It should be noted
that, if all tasks have the same release time and deadline,
the scheduled subprofiles are always placed in the non-
increasing order [2], [3].

Generally, the energy efficiency is achieved only if
σ has an asymptotic lower bound being the function
proportional to an exponential function of Δ, in which
exponent x is greater than one, i.e., σ > Δx(x > 1). If σ
is monotonic with respect to Δ, scaling down the voltage
to the next level is more effective than to any other levels.
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This observation justifies the reduction of the speed of the
most effective task by one level at each time.

The proposed algorithm depends on heuristics and thus
it is not guaranteed to return the optimal solution, as
we will see in the next example (Fig. 4). Nevertheless
experiments in Section 5 show that for the same task
set proposed algorithm results in better schedules when
comparing to previous works [3].

We do not assume continuity and differentiability of
the objective function, and we can apply our method to
the practical objective functions, most of which are neither
continuous nor differentiable, especially when we consider
memory accesses and peripherals.

Table 1 describes an initial task set of aperiodic tasks.
Fig. 4(a) shows the load profile given by EDF scheduling
algorithm in the highest voltage setting. The value of
objective function at infinite time σ∞ is 28.0 % smaller
than its value at time 38 min, i.e., σ38. The difference
shows the theoretical maximum bound of recovery. This
profile returns the worst result among four profiles given
in Figure 4. It should be noted that to schedule the tasks
we used the objective function at time 38 min.

Fig. 4(b) shows the load profile achieved by two existing
approaches, i.e., non-increasing [3] and exclusive down
scaling [13]. These two accidentally result in the same
profile. Both algorithms assign all tasks to the highest
available voltage, schedule tasks by the battery-unaware
algorithm, recover the failure if any occurs by downscaling
the task, and repeatedly distribute the remaining slack
to preceeding tasks whose voltage can be lowered (as
the result, the profile becomes steep) without violating
deadline constraints.

Fig. 4(c) shows the load profile achieved by the pro-
posed algorithm. Unlike two previously presented algo-
rithms, our algorithm does not always return the non-
increasing profile, as this figure shows. However, both
objective functions σ38 and σ∞ show the improved values.

Fig. 4(d) shows the load profile by the exhaustive
search, resulting in the optimal solution at time 38 min.
While the proposed algorithm is not optimal, even when
there are no task dependencies, objective function obtained
in our approach differs from the optimal solution by at
most 4 %. Note that the optimal solution was obtained
by brute-force search. The optimal solution does not al-
ways result in a non-increasing order. The simultaneous
reduction of the objective functions at different observation
times is by no means inevitable. In fact, the value of σ∞
in Fig. 4(c) is more optimal than one in Fig. 4(d).

It should be noted that, for the task set in Table 1,
proposed algorithm returns more efficient profile than the
previously proposed algorithms. This result implies that,
on the contrary to the intuition described in [3], the non-
increasing scheduling algorithm is not optimal for the case

Table 1. Initial task specifications

Task # Duration (min) Deadline (min) Current (mA)
1 7 18 650
2 5 10 800
3 8 26 400
4 10 38 380

Table 2. Initial task specifications of periodic
tasks

Task # Duration (min) Deadline (min) Current (mA)
1 0.5 2 250
2 0.2 4 100
3 1.0 6 500

when there is no task dependency.

4.2. Scheduling Periodic Tasks

The least common multiple (LCM) of the periods of all
periodic tasks is called a hyperperiod. In a conventional
voltage scheduling problem, the simple repetition of the
optimal profile for hyperperiod is optimal. However, in
a battery-aware voltage scheduling, it is not true due to
the non-linearity of the objective function (see the experi-
mental result in Section 5). For different hyperperiods, the
optimal profile is not always the same.

Fig. 5 illustrates the comparison of slack utilization
by three algorithms, for the periodic tasks specified in
Table 2. Profile shown in Fig. 5(a) is generated by the
level current algorithm [12], which aims to reduce the
peak power. Fig. 5(b) is substantially improved due to
the non-increasing task ordering achieved by battery-aware
periodic task voltage scheduling algorithm in [3], even
though the peak current is significantly greater than in
case of the level current profile. The objective function
σ12, the value after execution of the first hyperperiod,
shows significant improvement (45.6 %). All sequential
subprofiles are non-increasing, but the profile in Fig. 5(b)
still has a lot of unused slack time.

The profile produced by the proposed algorithm
(Fig. 5(c)), in which swapping task ordering plays an
important role, further distributes the slack time. The
objective function σ12 shows the further considerable im-
provement (33.7 % from the non-increasing profile, 63.3 %
from the level current profile). The resulting profile of the
proposed algorithm does not always have a non-increasing
task ordering. In fact Fig. 5(c) contains a non-increasing
subprofile, while the overall tendency is non-increasing.
Better slack time utilization, however, shows better battery
efficiency.
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σ38 = 21595 mA·min
σ∞ = 15550 mA·min

I (mA)

t (min)
0

800 (3.3 V)

2

5.00

650 (3.3 V)

1

12.0

400 (3.3 V)

3

20.0

380 (3.3 V)

4

30.0

(a) Highest voltage

σ38 = 20401 mA·min
σ∞ = 12922 mA·min

I (mA)

t (min)
0

800 (3.3 V)

2

5.0

650 (3.3 V)

1

12.0

173.9 (2.5 V)

3

23.5

165 (2.5 V)

4
37.9

(b) Non-increasing and exclu-
sive down scaling

σ38 = 20185 mA·min
σ∞ = 11676 mA·min

I (mA)

t (min)
0

348 (2.5 V)

2

7.2

356 (2.7 V)
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Figure 4. Load profiles for tasks in Table 1.
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Figure 5. Profiles of the first hyperperiod.

5. Experimental Results

For comparison purposes, throughout this paper, we
used the same task sets as in the existing work [3]. Table 3
shows the current of the real-time applications running on
ITSY [3]. The arrival time of all tasks was assumed to be
time 0 to use the greatest freedom of schedulability.

Aperiodic tasks on uniprocessor systems. Four task
graphs are presented in Fig. 6: the strictly increasing profile
(Case I), the independent tasks (Case II), and randomly
generated task sets (Case III and IV). The number in the
circle denotes the number of tasks specified in Table 3.
Each task has a pair of duration (min) and deadline (min).

Table 3. Task specifications
Task # Name Current (mA)

1 MPEG 208.92
2 DICT206high 186.53
3 TTS206 102.89
4 TTS74high 98.77
5 TTS74low 98.77
6 WAV206high 79.28
7 WAV59 70.71
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Figure 6. Aperiodic task graphs.

For comparison purpose, we used exclusive down scal-
ing algorithm (ExclusivDownScaling2(·) in [2, p.304]),
which showed the best result among algorithms described
in [2] for their example task sets, and the profile produced
by non-increasing algorithm [3]. Table 4 shows that all the
resulting profiles of the proposed algorithm were not worse
than exclusive down scaling profiles and non-increasing
profiles. The proposed algorithm was approximately 2 %
superior on average and 3 % at the maximum.

Non-increasing algorithm did not return the result for
the long profiles, e.g., 160 identical tasks of task #1 (dura-
tion 1 min in the highest voltage, deadline 240 min). Non-
increasing algorithm cannot recover the battery exhaustion,
since it does not take into account downscaling of tasks
preceding failing task. The proposed algorithm, however,
successfully returned the feasible profile.

Periodic tasks on uniprocessor systems. Fig. 7
presents task sets of the same period dependent tasks
(Case I) and the different period independent tasks (Case
II). Each periodic task set was executed 20 times and
the results are presented in Table 5. The first column of
each case describes the battery charge imposed by the first
period and the second column by the 20th period. In all
cases, our profiles are superior to non-increasing profiles,
in the way that the improvement is up to 19.0 %, with an
average of 15.5 %. Interestingly, in our result, the different
periods had the different voltage profiles, while in non-
increasing profiles those were the same.
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Table 4. Charges given by the aperiodic task
voltage scheduling for uniprocessor systems
for tasks in Fig. 6

Algorithm\task sets I II III IV
Exclusive down scaling 3258 3039 3039 5265

Non-increasing 3258 2834 2928 5807
Proposed algorithm 3254 2799 2800 5265
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Figure 7. Periodic task graphs.

6. Concluding Remarks

We have proposed static voltage scheduling algorithms
for battery-powered DVS systems based on the studied
battery characteristics and our analysis. The proposed algo-
rithms are extensions to Chowdhury and Chakrabarti’s [3],
and are designed by using greedy heuristics. Periodic and
aperiodic voltage scheduling on uniprocessor platforms
outperformed those in the comparative work [6], [7].
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