
Automatic Instrumentation of Profilers for
FPGA-based Design Space Exploration

Seiya Shibata #∗1, Yuki Ando #2, Shinya Honda #3, Hiroyuki Tomiyama #4, Hiroaki Takada #5
Graduate School of Information Science, Nagoya University, Nagoya 464-8603, Japan

1{ shibata, 2 y_ando, 3 honda, 4 tomiyama, 5 hiro}@ertl.jp
∗ The Japan Society for the Promotion of Science

Abstract—In the system-level design of MPSoCs (Multi-
Processor System-on-a-Chips), system designers start from de-
scribing functionalities of the system as processes and channels,
and then decide mapping of them to various Processing Elements
(PEs) including CPUs and dedicated hardware modules. A
mapping decision is evaluated by simulation or FPGA-based
prototyping. Designers iterate mapping and evaluation until all
design requirements are met. We have developed two profilers,
a process profiler and a memory profiler, for FPGA-based
performance analysis of design candidates. The process profiler
records a trace of process activations, while the memory profiler
records a trace of channel accesses. According to mapping of
processes to PEs, the profilers are automatically configured and
instrumented into FPGA-based system prototypes by a system-
level design tool that we have developed. Designers therefore
need to manually modify neither the system description nor
the profilers upon each change of process mapping. In order
to demonstrate the effectiveness of our profilers, a case study on
MPEG4 decoder design was conducted.

I. INTRODUCTION
As the complexity of embedded systems grows to the extent

of MPSoCs (Multi-Processor System-on-a-Chip), design space
exploration at a system level plays a more important role than
before. In the system-level design, system designers start from
describing functionalities of the system as processes and chan-
nels which indicate computations and communications among
processes, respectively. Then the designers decide mapping of
them to various Processing Elements (PEs) including CPUs
and dedicated hardware modules [1]. A mapping decision
is evaluated by simulation or FPGA-based prototyping. The
designers iterate mapping and evaluation until all design
requirements are met.
Performance evaluation of mapping decisions requires timed

descriptions. Recent system-level design tools provide auto-
matic synthesis capabilities of timed descriptions from un-
timed descriptions and mapping [2][3][4]. These tools convert
processes and channels into compilable software programs and
synthesizable RTL circuits depending on their mapping. The
generated timed descriptions can be evaluated by simulation
or FPGA-based prototyping.
A number of researches on simulation-based evaluation

were conducted in the past [5][6][7] and cycle-accurate hard-
ware simulation tools [8][9] were widely accepted in the in-
dustrial domain. However, since there are a trade-off between
speed and accuracy on simulations on a host PC, simulations

are often inappropriate for design space exploration which
needs both speed and accuracy, especially for recent complex
systems.
Another approach to performance evaluation is FPGA-

based prototyping. FPGA-based prototypes achieve both high
accuracy and speed, and are appropriate for iteration of
evaluation. One disadvantage of FPGA-based prototypes is
that internal states of the system are unobservable without
additional modification for system descriptions. Since recent
systems have complex dependencies and concurrency among
processes, profiling capabilities are essential to find out bot-
tlenecks and to help designers decide mapping alternatives.
However, manual modification for profiling is time-consuming
and error-prone. In order to prune design candidates efficiently
and find the best choice quickly, automatic instrumentation for
profiling is necessary.
We have developed two profilers, a process profiler and

a memory profiler, for FPGA-based performance analysis of
design candidates. The process profiler records a trace of
process activations, while the memory profiler records a trace
of channel accesses. In our framework, systems are described
at a high level and FPGA-based system prototypes are auto-
matically synthesized by our system-level design tool, named
SystemBuilder. According to mapping of processes to PEs,
the profilers are automatically configured and instrumented
into the FPGA-based system prototypes by SystemBuilder.
Designers therefore need to manually modify neither the sys-
tem description nor the profilers upon each change of process
mapping. The profilers allow fast and accurate performance
evaluation of the systems using an FPGA.
In summary, major contributions of our profilers on design

space exploration are

• automatic instrumentation of the profilers with support of
a system-level design tool,

• fast and accurate FPGA-based evaluation and profiling,
• and profiling capabilities for concurrent multi-processor
systems (MPSoCs).

The rest of this paper is organized as follows. First, section
II explains our system-level design toolkit and then section
III describes two proposed profilers. Section IV shows the
effectiveness of the profilers through a case study. Finally
Section V concludes this paper with a summary.

978-1-4244-4377-2/09/$25.00 © 2009 IEEE FPT 2009292

Fig. 1. Design flow of the SystemBuilder

II. SYSTEMBUILDER

SystemBuilder is a system-level design toolkit developed in
our prior work [3]. In this work, we extended SystemBuilder
to automatically instrument the systems with a process profiler
and a memory profiler. In this section, we explain a brief
overview of the design flow achieved by SystemBuilder.
Fig. 1 shows the design flow with SystemBuilder. First,

a system designer develops a “system level description” to
capture functionalities of the target system. The system level
description consists of “processes” and “channels”. Processes
are described in the C language and represent computation
components of the system. Channels are provided as C-APIs
by SystemBuilder and represent inter-process communications
at a high abstraction level. Currently SystemBuilder provides
three types of channels: blocking channels, register channels
and memory channels. Blocking channels are used for syn-
chronization between two processes, and register channels
and memory channels are used for storage of data which are
sent/received among processes.
The processes may be mapped onto CPUs and hardware

modules, and the channels onto buses, memories and other
communication devices. The designer also specifies mapping
of the processes and the channels. SystemBuilder automat-
ically synthesizes descriptions of interconnections between
processes. The synthesized communication descriptions are
generated in the C language and VHDL, depending on map-
ping of the processes and the channels. Next, SystemBuilder
makes use of a cross-compiler of the CPUs for software and
a behavioral synthesis tool for hardware module in order to
obtain an executable binary and synthesizable RTL circuits,
respectively. Finally, a configuration bitstream of hardware
architecture for an FPGA is synthesized by a logic synthesis
tool from the RTL circuits and IPs of the CPUs and essential
peripherals.

III. SYSTEM-LEVEL PROFILERS

We propose two profilers, a process profiler and a memory
profiler, which are automatically configured and instrumented

into FPGA-based system prototypes by SystemBuilder. In this
section, we describe detail of the profilers.

A. Profiling Flow
The introduction of the profilers to the design flow of

SystemBuilder is easy. After a system designer describes the
functionalities in “system level description” (shown in Fig.
1), SystemBuilder automatically generates an FPGA-based
prototype. If the designer turns on the profiler synthesis option
of SystemBuilder at the prototype generation, the process
profiler and the memory profiler are automatically configured
and instrumented in the prototype. Process trace and memory
trace are recorded on execution of the prototype. Finally, the
traces are transferred from the FPGA to the host PC and the
designer analyzes the system using them.
Since capacities of memories are limited, the profilers can-

not record traces of an entire system execution. SystemBuilder
therefore provides APIs to specify the timings where the
profilers start and end. Designers write the API calls in any
point of the process descriptions and get traces during the
period they are interested in.

B. The Process Profiler
The process profiler records a trace of activation/wait tim-

ings of processes through the execution period specified by a
designer.
Fig. 2 illustrates the overall structure of our profilers. The

process profiler consists of processes which are instrumented
for profiling and “process profiler module” hardware (denoted
on the upper right side of “hardware module” in Fig. 2). The
process profiler module consists of “process trace extractor”,
“process trace writer”, a timer module, a FIFO and a memory
module. At a runtime of the system, processes send signals
to registers of the trace extractor. The process trace extractor
periodically collects the values of the registers, and sends them
to the process trace writer through the FIFO. The process trace
writer writes data to the memory module whenever it receives
values from the FIFO. Since we made a dedicated memory
module and a dedicated access interface for the memory

293

Fig. 2. Overall structures of the process profiler and the memory profiler

module, the memory accesses of the process trace writer do
not conflict with other communications among processes, and
have no effect on performance of the system.
All accesses for blocking channels, which are used to

activate processes, are automatically transformed to send sig-
nals to the process trace extractor by SystemBuilder. The
transformed channel accesses write “0” signal to registers
of the trace extractor at the beginning of their blocking
communication, and write “1” signal at the completion of the
communication.
After the execution, the trace data are read from the memory

module and are output to a host PC. The process profiler also
provides the trace analyzer for the traces obtained from an
FPGA. The trace analyzer generates a VCD (Value Change
Dump) file. The VCD file can be visualized as waveforms
using tools such as GTKWave [11]. In the waveforms, high
states mean execution of the processes and low states mean
waiting times of them. Visualization of the system behavior
can support designers to intuitively grasp complex parallelism
of the processes.

C. The Memory Profiler
The memory profiler records traces of shared memory

accesses including access cycles and blocked cycles. Since the
memory accesses are performed frequently and tend to cause
exhaustion of memories for the traces, the memory profiler
records the sum of the access/blocked cycles for every n cycles
specified by designers in order to use limited memory capacity
efficiently.
The recording part of the memory profiler is implemented

in hardware, which is illustrated on the lower right side of
the hardware module in Fig. 2. We designed the memory
profiler focusing the feature that all processes mapped on
hardware accesses outside memories through “bus bridges”
synthesized by SystemBuilder (illustrated in Fig. 2). In order
to record memory accesses, “memory access watcher” inside
the bus bridge tells the occurrence of memory accesses to
“access counter”. The access counter records the sums of
the access/blocked cycles of individual channels in a certain
period, and sends the sums to “memory trace writer”. The
period is specified by designers using an API. For each period,
the memory trace writer sends the sums of access/blocked
cycles to the dedicated memory module.
After profiling, the traces are read from the memory module

and are transferred to a host PC. The trace analyzer generates
various graphs which show the entire trace and periodic
changes.

IV. A CASE STUDY: MPEG4 DECODER SYSTEM DESIGN
In order to demonstrate the effectiveness of a process

profiler and a memory profiler, we show a case study of
MPEG4 decoder system design. The case study was performed
targeting an Altera Stratix II FPGA board with Nios II soft-
core CPUs at 50 MHz of clock frequency. eXCite 3.2a [12]
was used for behavioral synthesis, and logic synthesis and
P&R were done by Quartus 8.1.
We designed an MPEG4 decoder system with System-

Builder. Based on the MPEG4 decoder developed in the past
[13], we improved performance of the design using the process
profiler and the memory profiler.
The MPEG4 decoder consists of 11 processes, mp4 main,

header, get mv, VLD, IQ, IDCT, MI-1, MI-2, adder, yuv2rgb
and display. The mp4 main process handles inputs and the
display process outputs decoded images to VRAM of a VGA
device. The mp4 main process should be implemented in
software, and the other processes can be implemented in
software and hardware. So the term of “all hardware imple-
mentation” in this section denotes that all processes except
for the mp4 main process are implemented in hardware. All
processes can execute concurrently in a pipelined manner on
all hardware implementation.
First, we explored several number of process mapping deci-

sions and found that the all hardware implementation was the
fastest implementation among them. However, its performance
was yet 11.6 fps (frames per second) for 320 × 240 sized
movies and needed further improvements. We therefore used
the process profiler in order to find the bottleneck processes.
Fig. 3(a) shows the waveforms of the all hardware system. We
could see that the yuv2rgb process (on the 2nd row from the
bottom of the figure) could not be activated until the display
process (on the bottom of the figure) finished its execution,
and the display process was always active. In other words, the
display process was a bottleneck. However, no solution was
gained by reviewing the C program of the display process. We
therefore used the memory profiler to obtain more information
about the bottleneck.
Fig. 4 illustrates a graph obtained by the memory profiler.

White bars on the back side of Fig. 4 illustrates the sums

294

(a) MPEG4 decoder with a single bus interface

(b) MPEG4 decoder with two bus interfaces
Fig. 3. The process profiler results of two MPEG4 decoder implementations

of blocked cycles (on x-axis) for individual channels which
access off-chip memories (on y-axis) of the all hardware
implementation. From the rightmost bar of Fig. 4, we could
see that the “VRAM MEM display” channel which transfers
decoded images to VRAM of the VGA device was frequently
blocked by other channels. This indicates that the execution
of the display process was delayed by the conflicts and that
the reduction of the conflicts may make the display process
faster.
There are three points at which conflicts are possible to

be caused: the bus, an interface of the VRAM for the VGA
device and the bus interface of the hardware module (shown
as “Bus bridge” in Fig. 2) which manages bus accesses from
processes mapped on hardware. Since the VRAM is accessed
by the display process only, the memory accesses cannot
conflict with others at the interface of the VRAM. We therefore
concluded that the conflicts were caused at the bus and the
bus bridge. We solved the conflicts by making a special bus
bridge for the display process. Since the bus is implemented
as crossbar switches in the FPGA, conflicts cannot occur at
any point on accesses to the VRAM MEM display channel
if the special bus bridge is made. As a result, the special
bus bridge enabled the display process to access the VRAM
exclusively. We obtained the process profile shown in Fig.
3(b) and memory profile shown as black bars in front side
of Fig. 4. In comparison with waveforms at the bottom of
Fig. 3(a), that of Fig. 3(b) shows that the execution time
(high state time in the waveform) of the display process was
reduced. The memory profile shown in Fig. 4 shows evidently
that the blocked cycles of the VRAM MEM display channel
were removed. In conclusion, we achieved to overcome the
bottleneck on the display process with the profilers.

V. CONCLUSIONS
We proposed two profilers, a process profiler and a memory

profiler, for design space exploration at a system-level. The

Fig. 4. Sums of blocked cycles for each channels

process profiler records activation/wait timings of processes
and the memory profiler records access/blocked cycles of
shared memory accesses. The profilers are automatically in-
strumented into the FPGA-based system prototypes by our
system-level design toolkit. Automatic instrumentation of the
profilers enables smooth iterations of evaluation.
We demonstrated the effectiveness of the profilers through

a case study on MPEG4 decoder system design. The case
study presented a performance improvement example using
the profilers considering parallelism of processes and conflicts
at memory accesses.

ACKNOWLEDGMENTS
This work is in part supported by STARC (Semiconductor

Technology Academic Research Center).

REFERENCES
[1] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-

Vincentelli, “System level design: orthogonalization of concerns and
platform-based design,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 19, no. 12, 2000.

[2] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. D. Gajski, “System-on-chip environment: a SpecC-based framework
for heterogeneous MPSoC design,” EURASIP Journal on Embedded
Systems, vol. 2008, no. 3, 2008.

[3] S. Honda, H. Tomiyama, and H. Takada, “RTOS and codesign toolkit
for multiprocessor systems-on-chip,” ASP-DAC, 2007.

[4] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere, “A framework for rapid system-
level exploration, synthesis, and programming of multimedia MP-SoCs,”
CODES+ISSS, 2007.

[5] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada, “Rtos-centric
cosimulator for embedded system design,” IEICE Trans. Fundamentals,
vol. E87-A, no. 12, 2004.

[6] Y. Yi, D. Kim, and S. Ha, “Fast and accurate cosimulation of MPSoC
using trace-driven virtual synchronization,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 26, no. 12, 2007.

[7] F. Fummi, M. Loghi, M. Poncino, and G. Pravadelli, “A cosimulation
methodology for hw/sw validation and performance estimation,” ACM
Trans. Des. Autom. Electron. Syst., vol. 14, no. 2, 2009.

[8] Carbon Design Systems, Inc. http://www.carbondesignsystems.co.jp/.
[9] CoWare Inc. http://www.coware.com/.
[10] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo, “PeaCE:

A hardware-software codesign environment for multimedia embedded
systems,” ACM Trans. Design Automation of Electronic Systems, vol. 12,
no. 3, 2007.

[11] GTKWave, http://intranet.cs.man.ac.uk/apt/projects/tools/gtkwave/.
[12] Y Explorations, Inc. http://www.yxi.com/index.html.
[13] S. Shibata, S. Honda, H. Tomiyama, and H. Takada, “A case study of

MPEG4 decoder design with SystemBuilder,” VLSI-DAT, 2009.

295

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
