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In the present study, we analyze the data sets produced by a one-dimensional Vlasov–Poisson
simulation of the weak electron beam-plasma instability to clarify the nonlinearity of the Langmuir
turbulence excited by the weak-beam interaction. The growth of wave number modes is analyzed by
using the momentum equation of the whole electrons. The analysis shows that the primary Langmuir
wave mode is almost linear, while the nonlinear terms play important roles in the growth of the
lower harmonic mode and the secondary higher harmonic mode. After the linear growth saturates,
while the wave power of the primary mode is much larger than the other modes, linear and nonlinear
interactions occurring in both lower harmonic and secondary higher harmonic modes are more
active than those in the primary mode. Nonlinearity in the system comes from the advection rather
than the ponderomotive forces. © 2010 American Institute of Physics. �doi:10.1063/1.3425872�

The amplitude-modulated Langmuir waves are fre-
quently observed in space plasmas.1–3 The past numerical
studies have suggested that some of the Langmuir turbulence
in space plasmas and in type III solar radio bursts are con-
sequences of electron beam-plasma instabilities.4–8,12,10

In the case of weak electron beam-plasma interactions,
the mechanism of the amplitude modulation is thought to be
due to the nonlinear trapping of beam electrons by excited
Langmuir waves.5,6

On the other hand, the previous Vlasov simulations of a
weak electron beam-plasma interaction have shown that
Langmuir waves are not directly modulated by the nonlinear
trapping but are modulated by the nonlinear interaction be-
tween the most unstable primary Langmuir mode and its
sideband modes.8–10 Silin et al.10 has suggested that the tem-
poral change of velocity distribution function �VDF� of beam
electrons due to the nonlinear trapping and the plateau for-
mation lead to a broadband wave number spectrum, which
corresponds to the envelope modulation in the real space,
due to higher wave number shift of the linearly unstable
modes.

The purpose of this Brief Communication is to clarify
the nonlinearity of the Langmuir turbulence excited by the
weak-beam interaction. We analyze the data sets produced by
a one-dimensional Vlasov–Poisson simulation of the weak
electron beam-plasma instability with the same parameters as
Silin et al.10

We adopt the “splitting method”11 and the positive inter-
polation for hyperbolic conservation laws scheme12 sug-
gested for time advancement of the one-dimensional electro-
static Vlasov equation,
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where fe is the VDF of electrons, me is the electron mass,
and e is the elementary electric charge, vx and Ex are the

velocity and electric field along the simulation domain �x�,
respectively. In our run, two electron components, which are
a very weak electron beam and background major electrons,
are initially given with the same plasma parameters as the
previous study.10 The beam and background electrons have
the equal thermal velocity vth=��kBTe� /me=0.125vd, where
kB is the Boltzmann factor, Te is the electron temperature,
and vd�=1� is the beam drift velocity, respectively. The den-
sity ratio of the beam component is R=nb / �nc+nb��0.003,
where the subscripts c and b represent background core elec-
trons and beam electrons, respectively. The total electron
plasma frequency �e, me, ne�=nc+nb�, and e are also as-
sumed to be unity. Since ion dynamics is negligible for the
evolution of the system with the above parameters, as shown
in the previous study,10 we consider ions as an immobile
background in the present study. The simulation domain is
taken along an ambient magnetic field. We use periodic
boundary conditions in the real space, and open boundary
conditions in the velocity space. The number of cells is
Nx=2048 in the x direction and is Nvx=400 in the vx direc-
tion over a velocity range from vmax=1.5vd to vmin=−1.5vd.
The grid spacing is �x=0.25vd /�e=0.03125vth /�e, and the
time step is �t=0.02 /�e. We initially impose a seed density
perturbation �ne� �10−10 as a white noise.13

Silin et al.10 modeled the nonlinear deformations of the
VDFs by using a simple analytic function, which represent
the transition from the initial VDFs �s=1 in Eq. �2�� to the
stationary Maxwellian with a flat shoulder �s=6 in Eq. �2��
as follows:10
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where Z is the plasma dispersion function, Z��z��=−2�1
+z�Z�z���, ze=� / ��2kvth�, and zbn= ��+ �vd− �n−1�vth�k	 /
��2kvth�.
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In the present study, we reperform the numerical simu-
lation with the same parameters as the run in Silin et al.,10

and make more detailed analysis in terms of nonlinearity.
However, before analyzing the numerical simulation result,
let us revisit the linear theory of Silin et al.,10 since we have
two queries in their analysis: one is about the linear disper-
sion relation itself, and another is about comparison between
the linear dispersion relation and the �-k spectrum observed
in their simulation.

The former is that a straight line corresponding to the
electron beam mode ��=vdk� seems to appear �Fig. 9�a� in
Ref. 10�, even when the VDF is a stationary Maxwellian
with a flat shoulder in spite of the beam electrons �s=6 in Eq.
�2�� used. Electron beam instabilities should not appear after
flat shoulder is formed. Thus we expect that there may be
some errors or miscalculations of the dispersion relation
in their analysis.10 In their equations, it seems that the
differences lie in the definition of the thermal velocity used
in the plasma dispersion function.14,15 Actually, by numeri-
cally solving Eq. �2� with the correct definition of vth

�=��kBTe� /me� and z�, the plasma oscillationlike blanch ap-
pears in the stationary Maxwellian with the flat shoulder �the
solid line in Fig. 1�.

The latter is that after the linear instability saturates �Fig.
10�d� in Ref. 10�, the numerical �-k spectrum at k�De�0.2
��De is the Debye length� is not along the linear dispersion
relation, but shows a straight line, whose slope possibly cor-
responds to the group velocity of Langmuir wave packets
due to the nonlinear wave-wave interactions, however there
is no explanation to this in Silin et al.10 It may also be due to
the issues mentioned above: the present linear analysis
agrees better with the numerical dispersion relation of the
primary Langmuir wave mode ����e� than that in Silin
et al.10 �Fig. 1�, while the nonlinear wave-wave interaction in
the primary wave mode is weak as will be shown later. In
summary, we believe there are some errors or miscalcula-
tions of the dispersion relation in Silin et al.,10 although these
errors do not influence their conclusions themselves.

Figure 1, which is the secondary higher harmonic mode
���2�e�, is also excited at around 0.25�k�De�0.32. As
shown in the past theoretical and numerical studies,13,16 these
higher harmonic modes are linearly excited �the bold dashed
line in Fig. 2�. In addition, the lower harmonic mode is also
excited around 0�k�De�0.1, which does not appear in the
quasilinear theory,16 since their growth is nonlinear �the gray
line Fig. 2�.

We will next discuss the growth of these three modes
�primary mode, higher harmonic modes, and lower harmonic
mode� by using the momentum equation of the whole
electrons,
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where jx, ux, �e, and pe are the total parallel current, the total
parallel bulk velocity, the total electron charge density, and
the total electron pressure, respectively. We note that Eq. �3�
is exactly derived from Eq. �1�, which includes both back-
ground and beam electrons. Assuming e /me=1 and rewriting
the second term of the right hand side �RHS� of Eq. �3� using
Gauss’s law, we have
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where the first, second, third, and forth terms of RHS are the
nonlinear terms due to the advection, the linear term indicat-
ing the plasma oscillation, the nonlinear term due to the pon-
deromotive force, and the linear term due to the plasma pres-
sure gradient, respectively. We note that the nonlinear terms
of RHS are negligible and the forth term behaves like the
growth term at the linear stage, since the initial uniform jx

and ux are quite small ��10−10�, due to the small population
of the beam components. By calculating each term of RHS in
Eq. �3�, we can directly evaluate the linear and nonlinear
instabilities. To discuss the growth of primary mode, higher
harmonic modes, and lower harmonic mode, we examine
each term of the RHS in Eq. �4� in the Fourier space. We
write the Fourier transformed variables with the wave
number k as gk= 
gk
exp i	k

g, where g= jx, Ex, ux, pe, and
Px= 1

2Ex
2. Hereafter, the subscripts of x and e are neglected in

FIG. 1. The �-k spectrum of the electric field �Ex� on a logarithmic scale,
and the linear dispersion relation with the initial VDFs �dashed line� and
with the stationary Maxwellian with a flat shoulder �solid line�.

FIG. 2. Time evolution of the wave number spectrum with k�De=0.1488
�solid line�, k�De=0.2976 �bold dashed line�, and k�De=0.03 �gray line�,
respectively.
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the Fourier transformed variables. By Fourier transforming
Eq. �4�, we obtain

d
jk

dt

= Ftot = Fadv + Fosc + Fpon + Fprs,

where
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Figure 3 shows the F� at �a� t�e=600, �b� t�e=770, and
�c� t�e=1500, respectively. As shown in Fig. 3�a�, the
growth of the primary Langmuir mode due to Fprs and Fosc is
dominant at the linear stage. After the modes with the maxi-
mum growth rate saturates, the growth of the other primary
wave modes �0.1�k�De�0.2� and the secondary higher har-
monic mode �0.25�k�De�0.32� is enhanced �Fig. 3�b��.
We note that the nonlinear terms �Fadv and Fpon� are more
active than the linear term Fosc for the secondary higher har-
monic mode, while F� for the lower harmonic wave modes
�k�De�0.1� is weaker at the same time. As time elapses, Fprs

becomes smaller but broader in a wide wave number range
of the primary and the secondary higher harmonic mode,
while the lower harmonic mode begins to grow due to the
nonlinear terms.

After the linear growth saturates, F� for the primary
mode is small, while those for the lower harmonic mode and
the secondary higher harmonic mode remain active �Fig.
3�c��. Namely, while the power of the primary mode is much
larger than the other modes �Fig. 2�, linear and nonlinear
interactions in the primary mode are much smaller than those
in the other modes. Moreover, 
Fadv
 is larger than 
Fpon
 in
both lower and higher harmonic modes. 
Fpon
 is very similar
to 
Fprs
 at t�e=1500.

Figure 4 shows �k=0
kmax
F�
, where kmax=��e /vd. Time

evolution of the total amount of each F� clearly shows
the characteristics described above. Nonlinear interactions
�Fadv and Fpon� among Fourier modes play more important
roles in evolution of the system than the linear interactions
after t�e�1100.

To conclude, we revisit the evolution process of the
Langmuir turbulence excited by the weak-beam interaction.
The present analysis shows that the primary mode is almost
linear, which is in agreement with Silin et al.,10 while the
lower harmonic mode and the secondary higher harmonic
mode are nonlinear after the linear growth saturates. More-
over, nonlinearity in the system comes from the advection
�Fadv� rather than the ponderomotive forces �Fpon�. This re-
sult suggests that the Langmuir turbulence excited by weak-
beam instability is not consistent with one in Zakharov
systems.17,18

FIG. 3. Fadv �black solid line�, Fosc �gray dashed line�, Fpon �gray solid line�,
and Fprs �black dotted line� at �a� t�e=600, �b� t�e=770, and �c�
t�e=1500, respectively.

FIG. 4. �k=0
kmax
F�
 where kmax=��e /vd. What each line indicates is same as

Fig. 3.
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