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A magnetosonic shock wave propagating obliquely to an external magnetic field can trap electrons
and accelerate them to ultrarelativistic energies. The effect of trapped electrons on electromagnetic
fields in a shock wave is studied by theory and particle simulations. The expressions for field
strengths are analytically obtained, including the number of trapped electrons nt as a factor. It is
shown that as nt increases, the magnitude of F increases, where F is the integral of the parallel
electric field, E� = �E ·B� /B, along B. Theoretical analysis also suggests that the increase in F causes
the electrons to be trapped deeper and accelerated to higher kinetic energies. These theoretical
predictions are verified with relativistic electromagnetic particle simulations. © 2009 American
Institute of Physics. �doi:10.1063/1.3264736�

I. INTRODUCTION

Theory and simulations1 have found that prompt electron
acceleration to ultrarelativistic energies with ��100, where
� is the Lorentz factor, can occur in a magnetosonic shock
wave propagating obliquely to an external magnetic field
with ��e� /�pe�1, where �e��0� and �pe are the electron
gyro- and plasma frequencies, respectively. This mechanism
is expected to be important in the generation of energetic
electrons in plasmas with strong magnetic fields such as solar
magnetic tubes2–4 and pulsars.5 In an oblique shock wave,
some electrons are reflected near the end of the main pulse of
the wave and are trapped and energized in the main pulse
region. �The shock wave approximates a train of solitons of
decreasing amplitude6,7 if the damping is small. �See, for
instance, Fig. 3.5 in Ref. 7.� We call the first, leading pulse
the main pulse.� Such electrons can get trapped when a nega-
tive dip of F is formed in the end of main pulse, where
F=−�E�ds with E� and ds being the electric field and infini-
tesimal length along the magnetic field, respectively. The
trapped electrons oscillate in the main pulse region and the
kinetic energies of electrons take maxima near the position
of the peak of F. For this acceleration mechanism, a physical
picture was given in Ref. 1 and a theory for the maximum
energy was developed in Ref. 8 under the assumption that
the wave is stationary. In these works, the effects of trapped
electrons on wave evolution were not concerned, and the
time variations in the electron maximum energy were not
studied.

The simulations also demonstrated that once electrons
are trapped, they cannot readily escape from the wave and
are trapped deep in the main pulse region, which indicates
that the number of trapped electrons increases continually
with time.8 In Ref. 9, the mechanism for the deep trapping
was discussed. It was shown with theory and simulation that
if �F /�t�0 at particle positions, the parallel energies of the

reflected electrons decrease, causing deep trapping. The rea-
son for the increase in F is, however, unclear.

For the case of no trapped electrons, the theoretical ex-
pression for F has been recently given in Ref. 10, which
shows that F can be large when the external magnetic field is
strong. The study of E� and F in nonlinear magnetosonic
waves has also been extended to electron-positron-ion
plasmas11 because E� plays a crucial role in the positron ac-
celeration in oblique shock waves.12

Although the above many studies have been made on
field strength and particle motion in an oblique shock wave,
the feedback of the accelerated particles on the shock wave
has never been investigated. Since the number of the trapped
electrons increases with time, the effects of trapped electrons
on wave evolution should be important. In this paper, we
study this with theory and long-time simulations; we develop
a theory for the field strength including the number of the
trapped electrons as a factor, and compare it with the simu-
lations. It is found that the trapped electrons strengthen E�

and F and that because of this, the magnitude of F increases
with time. These results lead to the conclusion that the elec-
trons are trapped deeper and accelerated to higher kinetic
energies owing to the electromagnetic fields that they pro-
duce themselves.

In Sec. II, we analytically obtain expressions for electro-
magnetic fields in nonlinear magnetosonic waves in a plasma
consisting of ions, electrons passing through the waves, and
electrons trapped in the main pulse region. It is shown that
the magnitude of F increases with the number of trapped
electrons nt. From this and previous simulation results,1 we
expect that F increases with time, in association with the
increase in nt. We then discuss how the time change in F
affects the motions of trapped electrons. This analysis sug-
gests that the electrons are trapped deeper and accelerated to
higher kinetic energies as nt increases. In Sec. III, the theo-
retical prediction is confirmed by a one-dimensional �one
space coordinate and three velocity components� relativistic
electromagnetic particle simulation. We show that both nt

and F continually increase with time. The relation betweena�Electronic mail: toida@cc.nagoya-u.ac.jp.
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the increment in F and that of nt can be quantitatively ex-
plained by the theory. We also show that the maximum ki-
netic energy of the electrons grows, as predicted by the
theory. In Sec. IV, we give a summary of our work.

II. THEORY FOR EFFECTS OF TRAPPED ELECTRONS
ON F

We analytically study a nonlinear magnetosonic wave
paying special attention to the effects of trapped electrons. It
will be shown that the magnitude of F increases with the
number of trapped electrons.

A. Basic equations

We consider a magnetosonic shock wave propagating in
the x direction with a propagation speed vsh in an external
magnetic field in the �x ,z� plane,

Bl0 = Bl0�cos �,0,sin �� , �1�

where the subscript l refers to the quantities in the laboratory
frame and the subscript 0 indicates the far upstream region.
We suppose that the wave is stationary. Then, in the wave
frame, the time derivatives of the quantities are zero, � /�t
=0, and Faraday’s law gives the y and z components of the
electric field as constants;

Ewy = Ewy0 = − �vsh/c�Bwz0 = − �vsh/c��shBlz0, �2�

Ez = Ewz0 = 0, �3�

where the subscript w denotes the wave frame and �sh

= �1−vsh
2 /c2�−1/2. For one-dimensional propagation with

� /�y=� /�z=0, the x component of the magnetic field is
constant,

Bwx = Bwx0 = Blx0. �4�

In the following, we analyze quantities in the wave frame,
for which we omit the subscript w.

We suppose that the plasma consists of ions, electrons
passing through the shock wave, and electrons trapped in the
main pulse region. We can then write Gauss’s and Ampere’s
laws in the wave frame as

dEx

dx
= 4�e�ni − ne − nt� , �5�

dBy

dx
=

4�

c
�Jiz + Jez + Jtz� , �6�

dBz

dx
= −

4�

c
�Jiy + Jey + Jty� , �7�

where the subscripts i, e, and t denote ions, passing electrons,
and trapped electrons, respectively. We assume that the be-
havior of ions and passing electrons are described by the
relativistic cold fluid model with zero time derivatives:

d

dx
�njv jx� = 0, �8�

mjv jx
d

dx
�� jv j� = qjE +

qj

c
v j 	 B , �9�

where j=i or e.

B. Physical picture

In this section, we present a physical picture for the ef-
fect of trapped electrons on F in an oblique shock wave. By
virtue of Eqs. �2�–�4�, we write the parallel electric field E� in
the wave frame as

E� = �ExBx0 + Ey0By�/B , �10�

from which F is given as

F = −� dsE� = − �
x0

x

dxE�B/Bx0, �11�

where x0 is a certain point in the far upstream region. This is
also expressed, with the electric potential 
, as

F = 
 −
Ey0

Bx0
�

x0

x

dxBy . �12�

The trapped electrons can generate By because they
move along the magnetic field with parallel speed v� 	c in
the main pulse region where Bz
B. Assuming that the cur-
rent of trapped electrons is given by Jt	�0,0 ,−entc�, we can
estimate, from the z component of Ampere’s law, the magni-
tude of By produced by the trapped electrons as

By
�t� 	 −

4�

c
Jtz�m 	 4�ent�m, �13�

where �m is the width of the main pulse region and the index
�t� indicates the quantities produced by the trapped electrons.
From Eqs. �12� and �13�, we obtain F�t� as

F�t� 	 − 4�
Ey0

Bx0
nte�m

2 . �14�

If vsh
c cos � and �m	c /�pe, Eq. �14� gives

eF�t� 	 �nt/ne0�mec
2. �15�

This indicates that the magnitude of F increases with nt.

C. Maximum values of Bz and �

We now analyze, in more detail, the effects of trapped
electrons on electromagnetic fields in a nonlinear magneto-
sonic wave. We first derive an expression for Bz including nt

and Jt. We multiply the x component of Eq. �9� by nj and
sum over ions and passing electrons to give

�
j=i,e

mjnjv jx
d�� jv jx�

dx
= �

j=i,e
qjnj�Ex +

v jy

c
Bz −

v jz

c
By
 .

�16�

Combining Eqs. �5�–�7� and �16�, we find that
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d

dx�− �
j=i,e

mjnj0vsh� jv jx +
By

2 + Bz
2 − Ex

2

8�



= eExnt −
Bz

c
Jty +

By

c
Jtz, �17�

where we have used the relation

njv jx = − nj0vsh, �18�

which is obtained from Eq. �8�. Equation �17� is integrated to
give

By
2 + Bz

2 − Bz0
2 − Ex

2

8�
= �

j=i,e
mjnj0vsh��shvsh + � jv jx�

+ �
x0

x

dx�eExnt −
Bz

c
Jty +

By

c
Jtz
 .

�19�

We assume that Bz, the electric potential 
, and F have
maximum values at the same point, x=xm, and that By and Ex

are nearly zero at that point. This assumption is consistent
with simulation results.13 �For small-amplitude waves with
no trapped electrons, this is analytically proved.14� Further,
v jx must be small in magnitude compared with the far up-
stream speed vsh because the plasma density is high at x
=xm. The maximum value of Bz, hence, satisfies the relation

Bzm
2 − Bz0

2

8�

 min0�shvsh

2 + �
x0

xm

dx�eExnt −
Bz

c
Jty +

By

c
Jtz
 ,

�20�

where n0
ne0
ni0. We suppose that in the right hand side
of this equation, the second term, which is related to the
trapped electrons, is much smaller than the first one. We then
obtain Bzm as

Bzm 
 Bm
�0� + Bm

�t�, �21�

where the index �0� indicates the values for the case of no
trapped electrons, and Bm

�0� and Bm
�t� are given as

Bm
�0� 
 �8�min0�shvsh

2

Bz0
2 + 1
1/2

Bz0, �22�

Bm
�t� 


4�

Bm
�0��

x0

xm

dx�eExnt −
Bz

c
Jty +

By

c
Jtz
 . �23�

Equation �22� is identical to Eq. �16� in Ref. 13, which was
derived for the maximum Bz in a large-amplitude oblique
shock wave, based on a cold two-fluid model. If �sh	1 and
vsh�vA, Bm

�0� is approximated as

Bm
�0�/B0 	 vsh/vA. �24�

We next express Ex ,
 ,By, and ve in terms of Bz, nt, and
Jt. We suppose that Bz�By and that the inertia of passing
electrons is small in the momentum equation �9�. Then, from
the x, y, and z components of Eq. �9� for passing electrons,
we have, respectively,

Ex = − veyBz/c , �25�

vex = cEy0/Bz = − vshBz0/Bz, �26�

By = �vey/vex�Bx. �27�

Because ion currents can be neglected in Ampere’s law
�Eqs. �6� and �7�� �see the Appendix�, vey and vez are written
as

vey = −
cvex

4�ene0vsh
�dBz

dx
+

4�

c
Jty
 , �28�

vez =
cvex

4�ene0vsh
�dBy

dx
−

4�

c
Jtz
 . �29�

Combining Eqs. �25�, �26�, and �28�, we find

Ex =
− Bz0

4�ene0
�dBz

dx
+

4�

c
Jty
 . �30�

Integrating this from x=x0 to x=xm, we obtain the maximum
value of the electric potential as

e
m = e
m
�0� + e
m

�t�, �31�

where 
m
�0� and 
m

�t� are given as

e
m
�0� =

Bz0

4�ne0
�Bm

�0� − Bz0� , �32�

e
m
�t� =

Bz0

4�ne0
�Bm

�t� +
4�

c
�

x0

xm

dxJty
 . �33�

From Eqs. �27� and �28�, we have

By =
vey

vex
Bx = −

cBx

4�ene0vsh
�dBz

dx
+

4�

c
Jty
 . �34�

It follows that the assumption �By�
Bz is valid when

�

�c/�pe�
BzM

2

Bx�Bzm − Bz0�
� �mi

me

1/2

, �35�

where � is the characteristic width of the shock transition
region. Substituting Eq. �34� in Eq. �29� gives

vez 

c2BxBz0

�4�ene0�2vshBz
�d2Bz

dx2 +
4�

c

dJty

dx

 +

Bz0

en0Bz
Jtz. �36�

D. Estimate of F

We derive expressions for E� and F. The above Eqs. �30�
and �34� yield E� = �ExBx+EyBy� /B=0. This indicates that to
obtain E� and F, we have to consider the electron inertial
terms that were neglected in the above subsection. Including
those terms in Eq. �9�, we obtain Ex, vex, and By as

Ex = −
vey

c
Bz +

vez

c
By −

mevex

e

d��evex�
dx

, �37�

vex =
c

Bz
Ey0 + vey

Bx

Bz
+

mec

eBz
vex

d��evey�
dx

, �38�
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By =
vey

vex
Bx −

mec

e

d��evez�
dx

. �39�

Substituting Eq. �39� in Eq. �37� gives

Ex = −
veyBz

cvex
�vex − vey

Bx

Bz



−
me

e
�vex

d��evex�
dx

+ vez
d��evez�

dx

 , �40�

which can be rewritten, by virtue of Eqs. �28� and �38�, as

Ex = −
Bz0

4�ene0
�dBz

dx
+

4�

c
Jty
 −

mec
2

e

d�e

dx
. �41�

Also, substituting Eq. �28� in Eq. �39�, we have

By = −
cBx

4�ene0vsh
�dBz

dx
+

4�

c
Jty
 −

mec

e

d��evez�
dx

. �42�

From Eqs. �10�, �41�, and �42�, we find that

E� = −
mec

2

e

Bx0

B

d�e

dx
−

mec

e

Ey0

B
�e

dvez

dx
. �43�

Integrating this, we obtain F as

eF = me��e − �sh�c2 +
Ey0

Bx0
me�ecvez. �44�

If �e ,�sh	1, Eq. �44� can be estimated as

eF 	
Ey0

Bx0
mecvez. �45�

Substituting Eq. �36� in Eq. �45� and using the approximation
Bz0	B0, we get

F = F�0� + F�t�, �46�

where F�0� and F�t� are

eF�0� 	 − mivA
2 c2

�pe
2

1

Bz
�d2Bz

dx2 
 , �47�

eF�t� 	
4�

c

dJty

dx
− mevsh

B0
2

BzBx0

Jtz

ne0e
. �48�

We note that Eq. �47� is valid for both small and large-
amplitude waves if Eq. �35� is satisfied. When the wave am-
plitude is quite small, ���Bz−Bz0� /Bz0
1, F�0� is reduced
to Eq. �30� in Ref. 10, which was obtained using a modified
perturbation scheme assuming that � is in the range
�me /mi�
�
1.15 For large-amplitude waves, we can use
the approximations d2Bz /dx2	−�Bm−Bz0� / �c /�pe�2 and
dJty /dx	Jty / �c /�pe�, because the width of the shock transi-
tion region is of the order of c /�pe, as shown by simulations
in the next section. We then find that the maximum F is
expressed as

Fm = Fm
�0� + Fm

�t�, �49�

where Fm
�0� and Fm

�t� are given as

eFm
�0� 	 mivA

2 �Bm
�0� − B0�/Bm, �50�

eFm
�t� 	 mivA

2 Bm
�t�

Bm
− mec

��e�
�pe

B0

Bm

Jty

ne0e
− mevsh

B0
2

BmBx0

Jtz

ne0e
.

�51�

If the wave amplitude is �	1, Fm
�0� can be estimated as

eFm
�0�	�mivA

2 . This is identical to Eq. �35� with Te=0 in Ref.
10, which is a phenomenological relation that fits well with
the simulation results for the case of Jt
0.

E. Effects of trapped electrons on fields

We have obtained the expressions Bz ,
, and F that in-
clude nt and Jt. In this subsection, by estimating these quan-
tities, we show that the effects of trapped electrons on Bz and

 are negligibly small, while that on F is significant.

We first consider the motion of a trapped electron in a
perfectly stationary, one-dimensional wave. For this particle,
we can derive an energy conservation form1

mec
2� − eF + cpz

Ey0

Bx0
= � , �52�

where � is the Lorentz factor and the energy � is constant.
This can be written as

�h = � + eF �53�

where h is defined as

h = mec
2�1 +

vzEy0

cBx0

 = mec

2�1 −
vzvshBz0

c2Bx0

 , �54�

which indicates that h is positive if Bz0 /Bx0 is of order unity.1

If F is in the region 0�F�Fm, particles with energies in the
region −eFm���0 are trapped.

Using the drift approximation, we write the velocity of a
trapped electron as

v = v�

B

B
+ c

E 	 B

B2 �55�

where we have neglected �B-drift �and other unimportant
drifts� and the gyration velocity. The gyration velocity is
unimportant in this trapping and acceleration mechanism.1

Because Bz
B in the shock region, vx is written as

vx = v�

Bx

B
+ c

Ey0

B
. �56�

Since in the main pulse region, �v�� can be of the order of c
and can be much greater than E	B drift, we can approxi-
mate � as

� 
 �1 + p�
2/�mec�2, �57�

where p� is the parallel momentum �p� =me�v��. Substituting
Eq. �57� in Eq. �52�, we have

mec
2�1 + p�

2/�mec�2 − eF + cp�

Ey0

Bx0
= � . �58�

Differentiating Eq. �58� with t yields
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dp�

dt
= e

Bx

B

�F

�x
, �59�

where we have used Eq. �56�.
We next derive the density and current of trapped elec-

trons, nt and Jt. We suppose that the distribution function of
trapped electrons is written as f t�x , p��. The density of
trapped electrons is then given as

nt�x� = �
−�

�

dp�f t�x,p�� . �60�

The distribution function f t�x , p�� is assumed to satisfy the
stationary Vlasov equation

vx
� f t

�x
+

dp�

dt

� f t

�p�

= 0. �61�

Since the coordinate x and momentum p� are related through
Eq. �58�, f t can be expressed as a function of �; f t��� satisfies
Eq. �61� because of Eqs. �56� and �59�. From Eqs. �56� and
�58�, we get the relation between dp� and d� as

dp� =
Bx

B

d�

vx
. �62�

Since the particles with � in the range 0���eFm are
trapped in the main pulse region, we can write Eq. �60� with
the aid of Eq. �62� as

nt = �
−eFM

0

d�f t���
Bx

B
� 1

vx+
+

1

vx−

 , �63�

where the velocities vx+ and vx− are vx of trapped particles
going forward and backward, respectively. Because �v��	c
in the main pulse region, vx� are estimated as

vx� 	 � c
Bx

B
�1 �

Ey0

Bx0

 . �64�

When vsh
c cos �, they become

vx� 	 � �c cos � � vsh�B0/B , �65�

namely, vx+	0 and vx−	−2c cos �B0 /B. Since the term
proportional to 1 /vx+ is dominant in the right hand side of
Eq. �63�, we obtain nt as

nt 	
cos �

�c cos � − vsh�
�

−eFM

0

d�f t��� . �66�

The current of trapped electrons is written as

Jt 
 − e�
−�

�

dp�f t�x,p���c
B

B
+ c

E 	 B

B2 
 , �67�

which, by virtue of Eqs. �62� and �66�, gives

Jt 
 − entc�B

B
+

E 	 B

B2 
 . �68�

Since Bz	B in the shock region, we have

Jtz 	 − entc , �69�

Jty 	 − entc�By − Ex�/B . �70�

If vsh
c cos � and Bm�B0, �Jtz� is much greater than �Jty�.
This can be explained as follows. Substituting Eqs. �30� and
�34� in Eq. �70�, we can write Jty as

Jty 	 ent�c cos � − vsh�
vA

vsh

c

�pe
�mi

me

1/2 1

B

dBz

dx
. �71�

Using Eq. �24� and the estimation that dBz /dx	�Bm

−B0� /�, we have the ratio between �Jty� and �Jtz� as

�Jty�
�Jtz�

	
�c cos � − vsh�

c

B0�Bm − B0�
Bm

2 �

c

�pe
�mi

me

1/2

, �72�

which is much smaller than unity if Eq. �35� is satisfied.
Using Eqs. �69�–�71�, we now estimate Bm

�t� ,
m
�t�, and Fm

�t�.
Substituting Eqs. �69� and �70� in Eq. �23� gives

Bm
�t� 	 0. �73�

The effect on trapped electrons on Bm is thus negligible.
From Eqs. �33�, �72�, and �73�, we obtain 
m�t� as

e
m
�t� 	 mec�c cos � − vsh�

��e�
�pe

nt

ne0

B0�Bm − B0�
Bm

2 . �74�

We can therefore expect that if vsh
c cos �, 
m
�t� would be

quite small. The magnitude of Fm
�t� can be estimated from Eq.

�51� as

eFm
�t� 	 mevshc

nt

ne0

B0
2

Bx0Bm
	 mec

2 nt

ne0

B0

Bm
, �75�

which is identical to Eq. �15� when Bm /B0 is of order unity.
We thus find that the effect of trapped electrons on Fm is
significant and that the magnitude of Fm increases with the
number of trapped electrons nt.

F. Electron motion in nonstationary F

Particle simulation demonstrates that once electrons are
trapped in the main pulse region, they cannot readily escape
from it and the number of trapped electrons nt continually
increases with time.1,9 Since Eq. �75� suggests that the mag-
nitude of F increases with nt, we here suppose that F gradu-
ally grows with time in association with the increase in nt

and then discuss how the time change in F affects the motion
of trapped electrons.

We assume that F at time t is written as

F�x,t� = F�0��x��1 + �nt�t�� , �76�

where nt�t� is the number density of trapped electrons at time
t, F�0��x� is given by Eq. �47�, and � is of constant order,

� 	
1

nt

Fm
�t�

Fm
�0� 	

1

ne0

�pe
2

��e�2
B0

Bm
�0� . �77�

For nonstationary F, we can derive an energy equation of
electrons as9
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d�

dt
= − e

�F

�t

 − e�F�0��x�

dnt

dt
. �78�

This indicates that if dnt /dt�0, the energy � decreases,
which gives rise to deep trapping of electrons; just as a par-
ticle oscillating in a potential well with damping. We there-
fore find that the electrons become more deeply trapped ow-
ing to the electromagnetic fields that they produce
themselves.

The increase in F enhances the acceleration of trapped
electrons. The theoretical expression for the Lorentz factor �
of trapped particles was given in Ref. 8 where the wave field
was assumed to be stationary. We here extend the theory to
the case for the nonstationary F. We may write � of the
particle at time t and position x as

��x,t� =
��t� + eF�x,t�

mec�c + v�Ey0/Bx0�
. �79�

Since ��t� � 0 for trapped particles and F�x , t��Fm�t�,
where Fm�t���F�xm, t�� is the maximum F at time t, the
upper limit of � is given as

�lim�t� =
eFm�t�cos �

mec�c cos � − vsh�
, �80�

where we have used v� 
c. The upper limit of � of the
trapped particles is proportional to Fm�t�. From Eqs. �50� and
�77�, the value of �lim can be estimated as

�lim 	
�e

2

�pe
2 �1 +

nt

ne0

�pe
2

��e�2
B0

Bm
�0�
�1 −

vsh

c cos �

−1

, �81�

which indicates that if vsh is close to c cos �, � can be much
greater than unity.

We now consider the time variation in � of a trapped
particle. We suppose that the particle gets trapped at time t0

and its � takes maximum values �m at times t1 , t2 ,¯, at
which the particle is near the position x=xm with v� 
c. The
value of �m can then be estimated from Eq. �79� as

�m�tn� =
���tn� + eFm�tn��cos �

mec�c cos � − vsh�
, �82�

where n is an integer. To obtain ��tn�, we integrate Eq. �78�
from t0 to tn, giving

��tn� − ��t0� = − e�
t0

tn

dt�
dnt

dt
F0�x�

	 − e��F�0���nt�tn� − nt�t0�� , �83�

where �F�0�� is the average of F�0� over the main pulse re-
gion. Using the approximation �F�0��	Fm

�0� /2, we can write
�m�tn� as

�m�tn� 	
e�Fm�tn� + Fm�t0� + ��t0��cos �

2mec�c cos � − vsh�
. �84�

From this, we can expect that if Fm increases, �m also
increases.

III. SIMULATIONS

In this section, using a one-dimensional �one space co-
ordinate and three velocities�, relativistic, electromagnetic
particle code with full ion and electron dynamics, we simu-
late an oblique shock wave and confirm that the number of
trapped particles nt, the magnitude of F, and the maximum
energies of electrons grow with time. For the method of par-
ticle simulations and excitation of shock waves, see Refs. 1
and 16.

As in the theory in Sec. II, the shock wave propagates in
the x direction in an external magnetic field B0

=B0�cos � ,0 , sin ��. The propagation angle is set to be �
=45°. The total system length is L=16 384�g, where �g is
the grid spacing. The system length is four times longer than
that in the previous works.1,8,9 The number of ions and elec-
trons are Ni=Ne
1.0	107, which are 50 times greater than
those in the previous simulations. By using these values, we
can reduce noise20 and can clearly show how the trapped
electrons affect the wave evolution for a long-time. The mass
ratio is mi /me=100. The ratio of gyrofrequency and plasma
frequency of electrons is ��e� /�pe=3.0 in the upstream re-
gion. The light speed is c / ��pe�g�=4.0 and the electron and
ion thermal velocities in the upstream region are
vTe / ��pe�g�=0.5 and vTi / ��pe�g�=0.05, respectively. The
Alfven speed is then vA / ��pe�g�=1.2. From Eq. �81�, which
indicates that the value of � is independent of those of
mi /me, c /vA, and vTe /c, we can expect that in the case of
those values being close to real ones, the strong acceleration
would occur if vsh is close to c cos �. We here present the
simulation results for the shock wave with vsh being 96% of
the c cos �.

Figure 1 shows electron phase space plots �x ,�� and
magnetic field profiles of a shock wave with a propagation
speed vsh=2.64 at times �pet=480, 740, and 1300. In the top
panel ��pet=480�, we find some electrons are trapped and
accelerated to ultrarelativistic energies with ��50 in the
main pulse region, 478�x / �c /�pe��485. At �pet=740,
more particles are trapped and the maximum � exceeds 100.
At �pet=1300, the number of trapped electrons increases and
the maximum energy reaches �
200.

Figure 2 displays the profiles of F �dashed line� and Bz

�solid line�. F and B take their maximum values at almost the
same positions. The peak value of F at �pet=480, at which
the number of trapped particles is small, is observed to be
eF / �mec

2�	9. This is in good agreement with the theoretical
value, eF / �mec

2�	7, which was obtained from Eq. �50� us-
ing nt
0 and the observed value of Bm. The peak value of F
at �pet=1300 is greater than those at �pet=480 and 740.

Figure 3 shows the time variations in the maximum val-
ues of Bz, 
, and F. In the bottom panel, the time variation in
the number density of trapped electrons is plotted. �Here, nt

is approximated as Nt /�m, where �m is the width of the main
pulse region and Nt is the number of energetic electrons with
��10 in the main pulse region; the trapped electrons can
have such high energies, while the transmitted ones have
energies of, at most, �=10.� As predicted by the theory �Eqs.
�73� and �74��, Bz and 
 are almost constant although nt

increases with time. The magnitude of F, however, increases
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with an increase in nt. The increment in Fm from �pet=400
to 1300 is observed to be e�Fm / �mec

2�
3, which is the
same order of magnitude as the theoretical value based on
Eq. �75�. Substituting the observed value of the increment in
nt for this period, nt /ne0
5, in Eq. �75� gives
e�Fm / �mec

2�
2. It is thus clearly shown that Fm grows
owing to the effect of the trapped electrons. �The oscillations
of Bm, 
m, Fm, and nt with the period �pet
70�
�2� /3�
	��pe /�i�� are due to the ion reflection at the shock
front.17–19�

We now present results showing that the increase in F
can enhance the electron acceleration. Figure 4 shows time
variations in the observed value of the maximum � of the
electrons �black line�. The maximum � increases on average
with time, due to the increase in Fm. The gray line in Fig. 4
indicates the theory �Eq. �80�� for the upper limit of �, where
we have substituted the observed value of Fm in Eq. �80� and
have averaged over the time period of the amplitude oscilla-
tion due to the ion reflection, �pet=70. The profiles of �m

and �lim are similar and their values are in the same order of
magnitude. We can therefore confirm that the increase in �m

is caused by that of Fm.
The trajectory of a trapped electron is depicted in Fig. 5,

where the time variations in x−xm, �, v�, and v� are shown.
The electron encounters the shock wave at �pet
300. At
�pet
400, it is reflected at the end of the main pulse and

FIG. 2. Profiles of Bz �solid lines� and F �dashed lines� at �pet=480, 740,
and 1300.

FIG. 1. Phase space plots �x ,�� of electrons and magnetic field profiles at
�pet=480, 740, and 1300. FIG. 3. Time variations in Bm,
m,Fm, and the number density of trapped

electrons, nt. The values of Fm and nt increase with time, while Bm and 
m

are almost constant.
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gets trapped in the main pulse region. It moves forward rela-
tive to the shock wave with v� 
c. Its kinetic energy be-
comes maximum near the center of the main pulse, x
xm, at
�pet=700. The electron is then reflected backward in the
shock transition region at �pet
1000. It soon reaches the
end of the main pulse and is again reflected forward. Its
kinetic energy becomes maximum at �pet
1400. Note that
the second peak of � at �pet
1400 is higher than the first
one at �pet
700. This is due to the increase in F. The dif-
ference between the two maximum �’s, ��m
16, can be
explained by Eq. �82�; substituting the observed value of the
increase in Fm from �pet=700 to �pet=1400 in Eq. �82�, we
have ��m
20.

IV. SUMMARY

A magnetosonic shock wave propagating obliquely to an
external magnetic field can trap electrons and accelerate
them to ultrarelativistic energies. Once the electrons are
trapped, they cannot readily escape from the wave and the
number of trapped electrons continually increases with time.
The parallel electric field and its integral F along the mag-
netic field play crucial roles in this trapping and acceleration
mechanism.

In order to investigate the effect of the trapped electrons
on electromagnetic fields in a shock wave, we derive expres-
sions for field strengths in an oblique shock wave in a plasma
consisting of ions, electrons passing through the waves, and
electrons trapped in the main pulse region. We find that the
magnitude of F increases with the number of trapped elec-
trons nt. We suggest that owing to the increase in F, the
electrons are trapped deeper and are accelerated to higher
kinetic energies.

Particle simulations demonstrate that both F and nt in-
crease with time and that associated with this increase, the
kinetic energies of the trapped electrons grow. The theoreti-
cal predictions have thus been verified by the simulations.

We note that the theory and simulations are both one-
dimensional in the present and previous studies. As future
work, it would be important to study multidimensional ef-
fects on the trapping and acceleration mechanisms.

APPENDIX: ION VELOCITIES

We here present the condition for ion currents to be ne-
glected in Ampere’s law. We multiply the y component of
Eq. �9� by nj and sum over ions and passing electrons to give

�
j=i,e

mjnjv jx
d�� jv jy�

dx
= �

j=i,e
qjnj�Ey +

v jz

c
Bx −

v jx

c
Bz
 .

�A1�

Assuming that the electron inertial term can be neglected in
the left-hand side in Eq. �A1�, we obtain viy as

FIG. 4. Time variations in the maximum value of � of electrons. The simu-
lation result �black line� is similar to the theory �gray line� for the upper
limit of � given by Eq. �80�.

FIG. 5. Time variations in x−xm, �, v�, and v� of a trapped electron.
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viy 
 −
Bx0

4�n0mi�ivsh
By −

eEy0

n0mi�ivsh
nt

+
1

min0�ivshc
� dx�JtzBx0 − JtxBz� , �A2�

where we have used the x component of Ampere’s law

e�nivix − nevex� + Jtx = 0. �A3�

In the right hand side of Eq. �A2�, the first term is dominant.
From the z component of Ampere’s law �Eq. �7��, we can
write vey as

vey 
 viy −
cvex

4�en0vsh

dBz

dx
+

1

nee
Jty , �A4�

where we have used the approximation ne
ni. Substituting
Eq. �34� in Eq. �A2�, we can estimate the ratio between the
first and second terms in the right hand side of Eq. �A4� as

viy�� cvex

4�en0vsh

dBz

dx

 	

Bx0
2

BzmB0
. �A5�

This is much smaller than unity. We can therefore neglect the
ion current in the z component of Ampere’s law.

As for viz, we obtain from the z component of Eq. �9�,

viz 
 −
Bx0

4�n0mi�ivsh
�Bz − Bz0�

+
1

min0�ivshc
� dx�JtxBy − JtyBx� . �A6�

The y component of Ampere’s law can be rewritten as

vez 
 viz +
cvex

4�en0vsh

dBy

dx
+

1

nee
Jtz. �A7�

With the aid of Eq. �34�, we can estimate the ratio between
the first and second term in the right hand side of Eq. �A7� as

viz�� cvex

4�en0vsh

dBy

dx

 	 �me

mi

�2�pe

2

c2

Bzm

B0
. �A8�

Assuming that this ratio is smaller than unity, we neglect the
effect of viz in the y component of Ampere’s law.
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