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The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a
representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such
as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity,
and dielectric relaxation spectrum are analyzed. Molecular dynamics �MD� simulation is also
performed on the same system for comparison. The theory captures the characteristics of the
dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times
larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the
dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments.
The relaxations of the self-diffusion coefficients are also found in the same frequency region. The
dielectric relaxation spectrum is divided into the contributions of the translational and
reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly
stems from the translational modes. The zero-frequency electric conductivity is close to the value
predicted by the Nernst–Einstein equation in both MD simulation and theoretical calculation.
However, the frequency dependence of the electric conductivity is different from those of
self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz
region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The
analysis of the theoretical calculation shows that the difference in their frequency dependence is due
to the different contribution of the short- and long-range liquid structures. © 2010 American
Institute of Physics. �doi:10.1063/1.3354117�

I. INTRODUCTION

The room-temperature ionic liquid is the molten salt
whose melting temperature is below or close to the ambient
temperature. It usually contains organic cation or anion as its
component, and we can design the ionic liquid by tailoring
the organic ions or changing the combination of ions. It can
dissolve many organic molecules as well as inorganic ionic
species, and it is expected to be a novel reaction media that
can replace conventional organic solvents. Many researchers
are thus attracted by ionic liquids at present, and there are a
lot of studies on their static and dynamic properties.1

One of the promising applications of ionic liquids is that
to the electrolyte of electrochemical devices such as lithium
secondary battery and supercapacitor. Contrary to conven-
tional organic solvents, ionic liquid possesses ionic conduc-
tivity by itself because it is composed of ions. In addition,
some ionic liquids show wide electrochemical window that
is suitable for high-energy electrochemical devices.

Transport properties such as electric conductivity, shear
viscosity, and self- diffusion coefficients are important quan-
tities for the applications of ionic liquids described above.
Therefore, these transport properties have been measured
from the beginning of the study on ionic liquids, and their
experimental data have been accumulated.

The transport properties of ionic liquids have also been a
target of molecular dynamics �MD� simulations. However,
there are many problems in the application of MD simulation
to the transport properties of ionic liquids. One of the largest
difficulties is the slow structural relaxation intrinsic to many
ionic liquids. Since transport coefficients are given in MD
simulation by the integrals of time correlation functions over
the whole time or the long-time limiting behavior of the time
correlation functions, the existence of the slow structural re-
laxation requires the calculation of time correlation functions
over long time, which then leads to the long simulation runs
and poor statistics. The problem of poor statistics becomes
even worse for collective properties such as electric conduc-
tivity and shear viscosity in spite of their importance in prac-
tical applications of ionic liquids. Even if these transport
properties can be determined by long MD simulation and the
agreement with experimental values is attained, it is much
more difficult to analyze the slow dynamics of ionic liquid in
order to unravel the relationship between the intermolecular
interactions between ions and transport coefficients.

In this work, we apply the mode-coupling theory to an
ionic liquid in order to investigate the transport coefficient
and relaxation spectra. The mode-coupling theory is the
theory on the dynamics of liquids that can calculate various
dynamic properties from the information on static structures.
It was originally developed for simple liquids, and it has
been applied to analyze the dynamics of monoatomic
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liquids.2–4 However, Chong and co-workers5,6 extended the
mode-coupling theory to molecular liquids based on the
interaction-site model about a decade ago, which enabled us
to study the molecular systems of chemical interests such as
high-pressure water7 and aqueous solutions.8–10 In addition,
the mode-coupling theory for atomic liquids was extended
also to atomic mixtures,11,12 and successfully applied to the
dynamics of inorganic molten salts.13,14

The mode-coupling theory is superior to MD simulation
in the following two points. First, it can evaluate the long-
time dynamics without statistical errors that is inevitably in-
volved in MD simulation. Second, it can analyze the origin
of the long-time dynamics in terms of the analytical expres-
sion of the memory function. On the other hand, it suffers
from the errors due to the approximation to derive the closed
expression for the memory function. In this work, the results
of the mode-coupling theory is compared with MD simula-
tion to test the ability of the former to describe the transport
properties and slow dynamics of ionic liquids, and the origin
of the slow relaxation of ionic liquids is discussed in terms of
the theoretical calculation.

II. NUMERICAL METHODS

A. Model system

The model system employed in this work is dimeth-
ylimidazolium chloride, hereafter described as �mmim�Cl,
which is a representative model of ionic liquids used in
various simulation and theoretical studies.15–23 Since mmim
cation does not possess the intramolecular degree of freedom
associated with an alkyl chain, we can treat it as a rigid
molecule. The potential parameters determined by Hanke
and co-workers15 for the united atom model of mmim cation
are employed, and the intramolecular geometry of mmim
cation is determined as is proposed by Lopes and
co-workers.24 In the united atom model of Hanke and co-
workers, the methyl groups of the mmim cation are regarded
as united atoms, and other hydrogen atoms are handled ex-
plicitly.

The temperature of the system is 400 K, and the number
density of each ion is 0.005 29 molecule /Å3. The latter
value is reported by Hanke and co-workers as the number
density at 400 K and ambient pressure.15

B. MD simulation

An MD simulation run is performed under the microca-
nonical condition. The shape of the simulation cell is cubic,
and the periodic boundary condition is employed. The num-
ber of ion pairs in the simulation cell is 250. The length of
the equilibration run is 2.5 ns, and the simulation run of 25
ns length is performed subsequently in order to calculate the
correlation functions. The reorientational degree of freedom
is described by quartanion, and the symplectic algorithm pro-
posed by Miller and co-workers25 is employed for the inte-
gration of the equation of motion with the time step of 5 fs.
The long-range Coulombic interaction is treated with the
Ewald method. The temperature of the system is controlled
by scaling the linear and angular velocity of the molecules
during the equilibration run.

C. Static structure as the input of mode-coupling
theoretical calculation

The site-site static structure factor is required as the in-
put of the theoretical calculation based on the mode-coupling
theory. Although the static structure factor can be evaluated
from the intermolecular interaction analytically by reference
interaction-site model �RISM� integral equation
theory,19,20,22,23 we calculate the static structure factor from
the site-site radial distribution function obtained in our MD
simulation in order to exclude the additional errors through
the static structure. Since the radial distribution functions
from the MD simulation are limited to the half-length of the
simulation cell, we extend them to infinite distance with the
help of the RISM theory in the following way.

The RISM theory requires a closure equation, which is a
local relationship between the radial distribution functions
�g���r��, direct correlation functions �c���r��, and site-site
interaction potential �u���r��, where � and � are used for
indices for interaction sites. One of the representative closure
is the Kovalenko–Hirata �KH� one, which is given by26

gKH,���r� = �1 + ����r� �����r� � 0�
exp�����r�� �����r� � 0� ,

� �1�

����r� � h���r� − c���r� −
u���r�
kBT

, �2�

where h���r��g���r�−1 denotes the total correlation func-
tion, and kB and T stand for the Boltzmann constant and
absolute temperature, respectively.

In this work, the closure equation is modified as

g���r� = ��r�gMD,���r� + �1 − ��r��gKH,���r� , �3�

where gMD,���r� stands for the radial distribution function
obtained by the MD simulation. The switching function ��r�
is determined so that g���r�=gMD,���r� in the short-range
region, whereas the long-range behavior is given by the KH
closure. The explicit functional form of ��r� employed in
this work is given by

��r� = �1

2
	1 − sin
��r − r0�

2�r
�� �r − r0 � �r�

1 − 	�r − r0� �r − r0 � �r� .
� �4�

The values of r0 and �r are 5 and 2 Å, respectively.
The combination with the integral equation theory is a

traditional way to extend the radial distribution function ob-
tained by MD simulation of simple liquids,27 and we con-
sider our method described above is its natural extension to
molecular liquids.

D. Mode-coupling theoretical calculation

The mode-coupling theory is the theory that deals with
the time dependence of the site-site dynamic structure factor
and its self-part, denoted as F�k , t� and Fs�k , t�, respectively,
which denote the matrices whose suffices are indices for in-
teraction sites. The definitions of F�k , t� and Fs�k , t� are
given by
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F���k,t� �
1

V
�
�

��k,t = 0�
��k,t�� , �5�

F��
s �k,t� � �
�

s��k,t = 0�
�
s �k,t�� , �6�

where 
��k , t� and 
�
s �k , t� stand for the density field of the

whole � site and those of the � site within a tagged mol-
ecule, respectively. The time dependence of these correlation
functions is given by the generalized Langevin equation de-
scribed as28

F̈�k,t� + k2J�k� · �−1�k� · F�k,t� + �
0

t

d�K�k,t − �� · Ḟ�k,��

= 0 , �7�

F̈s�k,t� + k2Js�k� · �−1�k� · Fs�k,t� +�
0

t

d�Ks�k,t − �� · Ḟs�k,��

= 0 . �8�

Here, the static correlation functions that appear in the equa-
tion above are defined as

��k� � F�k,t = 0� , �9�

��k� � Fs�k,t = 0� , �10�

J�k� � −
1

k2 F̈�k,t = 0� , �11�

Js�k� � −
1

k2 F̈s�k,t = 0� . �12�

The memory functions, denoted as K�k , t� and Ks�k , t�
for collective and self-dynamics, respectively, stand for the
frictional force on the dynamic structure factor and its self-
part, respectively. The mode-coupling theory approximates
the memory function as the bilinear product of the dynamic
structure factor as6

�J−1�k�KMCT�k,t����

=
1

8�3� dq�qz
2�c�q� · F�q,t� · c�q����F���k − q,t�

+ qz�k − qz��c�q� · F�q,t�����F�k − q,t�

· c�k − q����� , �13�

�Js,−1�k�KMCT
s �k,t����

=
1

8�3� dqqz
2�c�q� · F�q,t� · c�q����Fs,���k − q,t� , �14�

where z-axis is defined to be parallel to the direction of
k-vector. The correction of the memory function proposed by
Yamaguchi and Hirata29 to include the interaxial coupling is
not employed in this work for simplicity.

III. RESULTS AND DISCUSSIONS

A. Shear viscosity

The zero-frequency shear viscosity, denoted as �0, is re-
lated by the Kubo–Green formula to the time-integration of
the time correlation function of the shear stress as3,4

�0 = �
0



dt��t� , �15�

��t� �
V

kBT
��xz�0��xz�t�� , �16�

where ��t� stands for the stress tensor.
In the mode-coupling theory employed in this work, the

expression for the time- dependent shear viscosity ��t� is
derived as the long-wavelength limit of the memory function
for the transverse current as

��t� =
kBT

60�2�
0



dkk4 Tr	�dc�k�
dk

· F�k,t��2� . �17�

Figure 1�a� shows the time-dependent shear viscosity
��t� and its running integral calculated by the mode-coupling
theory as the function of time. The relaxation of the shear
stress is clearly observed in 100 ps region, and the zero-
frequency shear viscosity is determined by this slow relax-
ation. There are many MD simulation studies on the shear
viscosity of ionic liquids, and the relaxation of the shear
stress in the time scale of 100 ps is observed also in MD
simulations.18,30,31 The theoretical value of �0 is 122 mPa s.
Bhargava and Balasubramanian18 performed the MD simula-
tion with a potential model different from ours, and they
obtained 48 mPa s as the value of the shear viscosity at
425 K, which is about half of our theoretical value. The

FIG. 1. The time- or frequency-dependent shear viscosity calculated by the
mode-coupling theoretical calculation are exhibited. In panel �a�, the time-
dependent shear viscosity ��t� and its running integral are plotted as the
solid and dotted curves, respectively. In panel �b�, the real and imaginary
parts of the frequency-dependent shear viscosity are shown as the solid and
dotted curves, respectively.
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difference is probably due to the approximation in the theo-
retical calculation because the mode-coupling theory tends to
underestimate the molecular mobility as will be shown later.

The slow relaxation in the time correlation function as-
sociated with the transport coefficient is usually observed in
experiments as the frequency dependence of the transport
coefficient. The frequency-dependent complex shear viscos-
ity is given by

�̃��� = ����� − i����� = �
0



dte−2�i�t��t� . �18�

The frequency-dependent shear viscosity is exhibited in
Fig. 1�b�. A large relaxation is found in the 100 MHz region.
Experimentally, Makino and co-workers measured the ultra-
sonic absorption coefficients of some ionic liquids at three
different frequencies between 10 and 100 MHz and found
the relaxation in the longitudinal viscosity in this frequency
region.32 Since the longitudinal viscosity is closely related to
the shear viscosity, one can expect similar relaxation also in
the shear viscosity. The existence of the ultrasonic relaxation
in 100 MHz region is also reported by Fukuda and
co-workers33 as the frequency-dependence of the sound ve-
locity. In addition, our preliminary experimental result shows
that the shear viscosities of some ionic liquid depend on
frequency between 5 and 200 MHz at the ambient
condition.34

B. Self-diffusion and single-molecular reorientational
relaxation

Figure 2 shows the mean-square displacements of the
centers-of-mass of ions obtained by the MD simulation as
the function of time. Linear relationship is found at
t�500 ps, and the diffusion coefficients are determined
from the slope between 1.0 and 2.5 ns as D+=4.23
�10−11 m2 /s and D−=2.30�10−11 m2 /s, where D+ and D−

stand for the diffusion coefficients of cation and anion, re-
spectively. These values are several times smaller than the
corresponding values reported by Hanke and co-workers,15

D+=11�10−11 m2 /s and D−=8�10−11 m2 /s. We consider
that the reason for the difference between their values and
ours is because the time length of the mean-square displace-
ment was short in their simulation. The mean-square dis-

placement of our MD simulation between 0 and 20 ps is
exhibited in Fig. 3�a�, which agrees well with the corre-
sponding functions demonstrated in Fig. 4 of Ref. 15. How-
ever, as is demonstrated in Fig. 3�b�, the slopes of the mean-
square displacement become smaller with an increase in time
in the 100 ps region. Therefore, the diffusion coefficient de-
termined from the slope at shorter time must be larger than
that from the slope at longer times. In our MD simulation,
because the diffusion coefficients determined from the slope
between 0.5 and 1.0 ns agree with that from the slope be-
tween 1.0 and 2.5 ns within 5%, we consider that the length
of our mean-square displacement is sufficiently long to de-
termine the diffusion coefficients. The similar relaxation in
the slope of mean-square displacement has been reported in
previous MD simulation studies of ionic liquids.35,36 The ex-
istence of the slow relaxation in the diffusion coefficient is in
harmony with the corresponding relaxation in shear viscosity
since the diffusion coefficient is often correlated with the
shear viscosity.

The diffusion coefficients obtained by the mode-
coupling theory are D+=0.65�10−11 m2 /s and D−=0.63
�10−11 m2 /s, which is several times smaller than those of
our MD simulation. Since mode-coupling theory tends to
underestimate the molecular mobilities of supercooled

FIG. 2. The mean-square displacements ��r�t�2� obtained by the MD simu-
lation are plotted as the function of time. The mean-square displacements of
cation and anion are plotted as the green solid curves with squares and the
black solid curves with circles, respectively. The red solid curve denotes
their average and the mean-square displacement of the charge center, de-
fined by Eq. �30�, is shown as the blue dashed curve.

FIG. 3. The self-motions of ions from MD simulation and theoretical cal-
culation are compared. Panels ��a� and �b�� show the mean-square displace-
ments of ions obtained by theoretical calculation �curves without symbols�
and those from MD simulation �curves with circles�. The functions for cat-
ion and anion are plotted as the solid and dashed curves, respectively. In
panel �c�, the memory function of anion from theoretical calculation �dotted
curve� are exhibited together with that from MD simulation �solid curve�.
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liquids,37 the smaller diffusion coefficients of the mode-
coupling theory are regarded as the general behavior of the
mode-coupling theory.

The theoretical mean-square displacements are com-
pared with MD simulation in Figs. 3�a� and 3�b�. The theory
reproduces the simulation results qualitatively in the 10 ps
scale, as is demonstrated in Fig. 3�a�. In particular, the slopes
of the mean-square displacement agree with each other
around 10 ps. Since the diffusion coefficient is determined by
the slope of the mean-square displacement, it can be said that
the mode-coupling theory describes the diffusive motion of
ions in the 10 ps scale. On the other hand, the difference
between the theory and simulation increases with an increase
in time, as is shown in Fig. 3�b�. Although the decrease in the
slopes is observed both in theory and simulation, the magni-
tude of the decrease in slope is larger in the theory than in
the MD simulation, which leads to the smaller diffusion co-
efficients in the theoretical calculation. In addition, the dif-
ference between D+ and D−, which stems from the long-time
dynamics in MD simulation, is not described sufficiently in
the theoretical calculation.

Figure 3�c� compares the memory functions for the self-
diffusion of anion evaluated by the theory and MD simula-
tion. The memory functions of the MD simulation is calcu-
lated from the velocity autocorrelation function as was
performed by Yamaguchi and co-workers.38 The theoretical
memory function qualitatively resembles to that of MD
simulation, although the amplitude of the former is larger
than the latter. The memory function consists of fast binary
part and slow relaxation, as is the case of simple liquids.2,38

Since the relaxation of the latter is quite slow, the former
contributes little to the diffusion coefficient in the long-time
limit.

The rank-1 reorientational relaxation times of the vectors
along C2 axis and that connecting two nitrogen atoms, here-
after called �1x and �1y, respectively, are calculated by both
mode-coupling theory and MD simulation. The reorienta-
tional relaxation times are determined as the time-integration
of the normalized rank-1 reorientational correlation func-
tions. The values of �1x and �1y are 151 and 270 ps, respec-
tively, in our MD simulation, and 836 and 1160 ps in the
mode-coupling theory. The relaxation times of the theory are
several times larger than those of MD simulation, as is the
case of self-diffusion coefficient. The relaxation times of our
MD simulation are larger than those reported by Hanke and
co-workers,15 �1x and �1y are 88 and 145 ps, respectively. The
reorientational correlation functions deviate from the expo-
nential functional form within 100 ps, although the result is
not shown for brevity. We therefore consider that the differ-
ence in the length of the calculated correlation functions is
also the reason for the difference in the relaxation times.

C. Electric conductivity and dielectric relaxation

The frequency-dependent electric conductivity is related
to the low-wavenumber limit of the dynamic structure factor.
First, the frequency-dependent electric susceptivity, denoted
as �el���, is given by4

1

�el��
−

1

�el���
= ��t = 0� − 2��i�

0



dte−2�i�t��t� , �19�

��t� � lim
k→0

1

�0kBTk2�
��

z�z�F���k,t� , �20�

where �0 and z� stand for the dielectric constant of vacuum
and the partial charge on the � site, respectively. The
frequency-dependent electric conductivity ���� is then ob-
tained as

���� � ����� + i����� = 2���0i��el��� − 1� . �21�

The dielectric constant at the infinite frequency �el�� is
unity in our model because the electronic polarization of ions
is not included.

The real-part of the electric conductivity ����� is plotted
as the function of frequency in Fig. 4. The direct-current �dc�
electric conductivity is 0.367 S/m, and the conductivity
shows large dispersion above 100 MHz, as is the case of
shear viscosity.

The dielectric relaxation spectrum ���� of conductive
liquids is usually defined by subtracting the effect of dc con-
ductivity �0����=0� from �el��� as

���� � �el��� −
�0

2���0i
= 1 +

���� − �0

2���0i
. �22�

The dielectric relaxation spectrum calculated from the
frequency-dependent conductivity is demonstrated in Fig. 5.
The real and imaginary parts are plotted separately in panels
�a� and �b�, respectively. A large and broad relaxation is
found in 100 MHz region, as has been reported in literatures
for various ionic liquids.39–42 The static dielectric constant,
which is defined as the zero-frequency limiting value of the
real part of ����, is 22. The experimental values of static
dielectric constant measured by microwave experiments
ranging from 10 to 30, and we consider that the relaxation
amplitude in our theory is also in harmony with the experi-
ments. In addition, a resonance-shaped structure is found at
several terahertzs, as was observed by terahertz spectroscopy
experimentally.43

The definition of the dielectric relaxation spectrum in
Eq. �22� assumes implicitly that the translational diffusive
motion of ions is Markovian, that is, the translational mobil-
ity of ions does not depend on frequency. The relaxation

FIG. 4. The frequency-dependent electric conductivity determined by the
theoretical calculation is plotted as the solid curve, and compared with the
result of the frequency-dependent Nernst–Einstein relationship, Eq. �34�
�dotted curve�.
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observed in 100 MHz region has thus been assigned to the
reorientational relaxation of cations in the analysis of
experiments.39–42 On the other hand, the shear viscosity also
shows a relaxation in the same frequency region as is shown
in Fig. 1. Correspondingly, the slope of the mean-square dis-
placement of the center-of-mass of ions depends on time in
the 100 ps region, which indicates that the single-molecular
translational diffusion of ions is dependent on frequency in
the 100 MHz region. It is therefore natural to consider that
the translational mobility of ions is also frequency-dependent
which leads to the contribution of the translational modes to
the dielectric relaxation spectrum.

The contribution of the translational modes to the dielec-
tric relaxation of ionic liquids was suggested by theoretical
study,44 and some MD simulations indicate that the dielectric
relaxation spectrum is affected by the translational motion of
ions.45–47 In MD simulations, the relaxation due to the trans-
lational mode is faster than that due to the reorientational
relaxation, and the slowest relaxation is generally ascribed to
the reorientational mode. However, it is difficult for MD
simulation to determine the translational part of the dielectric
relaxation spectrum in the 100 MHz region, because it re-
quires the calculation of the slow and small relaxation of the
time correlation function of the collective ionic current.

The translational part of the frequency-dependent con-
ductivity, denoted as �T���, is defined in terms of the re-
sponse of the center-of-mass motion of ions to the applied
electric field. It is also related to the low wavevector limit of
the dynamic structure factor as

�T��� = 2��i�0�el���	�T�0� − 2��i�
0



dt e−2��ti�T�t�� ,

�23�

�T�t� � lim
k→0

1

�0kBTk2�
�

z� �
���

m�

m�
�
�

F���k,t� , �24�

although the derivation is omitted for simplicity. Here, � is
used for the index of ionic species, and z� and m� denote the
total charge and mass of the ion �, respectively. The transla-
tional part of the dielectric relaxation, �T��� is then defined
through �T��� as

�T��� �
�T��� − �T�0�

2��i
. �25�

The reorientational parts of the conductivity and dielectric
relaxation spectra, denoted as �R��� and �R���, respectively,
are obtained as

�R��� � ���� − �T��� , �26�

�R��� �
�R���
2��i

. �27�

The contribution of dc conductivity does not appear in
Eq. �27� because �R�0�=0. The dielectric relaxation spec-
trum is divided into the translational and reorientational parts
and is demonstrated in Fig. 5. As is clearly seen, the dielec-
tric relaxation stems from the translational mode of ions. In
particular, the principal relaxation observed in 100 MHz re-
gion, which has been ascribed to the reorientational relax-
ation of cation, is assigned mainly to the translational mode.
Although the contribution of the reorientational mode also
exists in the similar frequency region, its relaxation ampli-
tude is much smaller than that of the translational mode. In
addition, the structure at several terahertzs is assigned exclu-
sively to the translational mode. It can therefore be inter-
preted as the vibrational motion of ions within the cage
formed by their respective counterions.

One may consider that the dominance of the translational
mode in the dielectric relaxation spectrum in our calculation
is because the dipole moment of the mmim cation is small
due to high symmetry of mmim cation in our model. We
admit that the contribution of the reorientational mode of
cation will be larger if the length of one of the alkyl chains of
the cation is increased. However, we consider we can safely
say that the translational mode makes non-negligible contri-
bution to the principal relaxation of ���� of imidazolium-
based ionic liquids in general.

Although the dielectric relaxation of ionic liquid has
been discussed in terms of the reorientational relaxation of
cations, it possesses some properties that require special ex-
planation in order to interpret as the reorientation of cations.
First, the change in the static dielectric constant with increas-
ing the alkyl chain length of imidazolium cation is rather
small compared with the increase in the dipole moment of
cations.40,41 Second, the absolute value of the static dielectric
constant of an ionic liquid is too large compared with the
value estimated from the dipole moment and the number
density of the cation, and one needs to assume strong posi-
tive correlation between cations in order to explain the di-
electric constant by the reorientational relaxation alone.42

Third, the dielectric relaxation times of some ionic liquids

FIG. 5. The real and imaginary parts of the dielectric relaxation spectra
obtained by the theoretical calculation are plotted in panels ��a� and �b��,
respectively. The total relaxation spectrum �solid curves� is divided into the
contributions of translational �dotted curves� and reorientational �dashed
curves� modes.
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do not agree with the values from other experiments
such as nuclear magnetic resonance or depolarized light
scattering.41,48 We consider that the contribution of the trans-
lational mode to the dielectric relaxation can be a candidate
to resolve these problems.

D. Cooperativity in ionic transport

Under the assumption that the diffusive motions of dif-
ferent ions are not correlated, the Nernst–Einstein relation-
ship describes the dc electric conductivity in terms of the
self-diffusion coefficients of ions as

�NE,0 = �
�


�z�
2D�

kBT
, �28�

where 
� and D� stand for the number density and diffusion
coefficient of ion �, respectively. The theoretical value of
�NE,0 is 0.316 S/m, and the ratio of �0 to �NE,0, called ion-
icity in the field of ionic liquid, is 1.16 in our theoretical
calculation. On the other hand, the experimental values of
ionicity are usually smaller than unity, and they are discussed
in terms of the formation of ion pairs.49–52

In order to clarify the reason of large ionicity, the electric
conductivity is also calculated in our MD simulation. The
electric conductivity can be evaluated in MD simulation
from the slope of the mean-square displacement of the
charge center, denoted as ��rel�t�2�, as

�0 =

e2

12kBT
lim
t→

d

dt
��rel�t�2� , �29�

��rel�t�2� �
1

N+ + N−
�rel�t� − rel�0�2� , �30�

rel�t� � �
i

zi

e
ri�t� , �31�

where i is used for the index of ions, and ri�t� stands for the
center-of-mass position of ion i. N+ and N− mean the number
of cation and anion, respectively, and 
 denotes the number
density of ion pairs. Since the ionic liquid we study in this
work is monovalent, the charge on ion i is zi= �e. When the
motion of different ions is not correlated, ��rel�t�2� is related
to the average of the mean-square displacements of indi-
vidual ions as

��rel�t�2� = 1
2 ���r+�t�2� + ��r−�t�2�� . �32�

The substitution of Eq. �32� into Eq. �29� reduces to the
Nernst–Einstein relationship, Eq. �28�.

The mean-square displacement of the charge center is
shown in Fig. 2. The average of the mean-square displace-
ments of cation and anion, which is the right-hand side of
Eq. �32�, is plotted together. They agree with each other well,
which indicates that the Nernst–Einstein relationship holds
approximately. From the slope between 1.0 and 2.5 ns, the
electric conductivity is 1.70 S/m, and the value of ionicity is
1.06.

Since the ionicity is close to unity in both MD simula-
tion and theory, the disagreement with experiments is as-

cribed to the model employed in this work, and our theoret-
ical calculation describes the cooperativity of the ionic
transport rather well. Castro and Vega30 performed MD
simulations on 1-ethyl-3-methylimidazolium chloride, and
they also obtained the electric conductivity close to the pre-
diction of Nernst–Einstein relationship.

We extend here the Nernst–Einstein relationship to the
frequency-dependent one as follows. First, frequency-
dependent diffusion coefficient of ion � is defined as

D���� �
1

3
�

0



e−2��tiZ��t�dt , �33�

where Z��t� stands for the velocity autocorrelation function
of ion �. Then the electric conductivity and the diffusion
coefficients in Eq. �28� are replaced with the frequency-
dependent ones as

�NE��� = �
�


�z�
2D����
kBT

. �34�

In Fig. 4, �NE��� is plotted and compared with ����. The
peak frequency at several terahertzs is larger for the latter
than for the former, and the collective mobility is smaller
than the single-molecular one at the frequency above 10
GHz. In previous MD simulations, the damping and oscilla-
tion of the collective electric current correlation function are
faster than those of the single-molecular velocity autocorre-
lation functions.30,35,46 Since faster damping and oscillation
correspond to the smaller mobility and the higher peak fre-
quency, respectively, our theoretical result is consistent with
these MD simulation results. The smaller mobility of the
collective mode is then canceled by the weaker dispersion in
the gigahertz region, and the Nernst–Einstein relationship for
dc conductivity holds approximately. The ionicity close to
unity is the result of the cancellation of the fast and slow
dynamics, and it does not mean that the correlation between
the diffusive motion of ions is weak.

Since both the self-diffusion coefficients and the electric
conductivity are often discussed in terms of shear viscosity, it
is interesting to compare the frequency dependence of these
mobilities with the relaxation of shear viscosity shown in
Fig. 1�b�. Figure 6 exhibits �̃��� /�0, �0 /����, D+ /D+���,
and D− /D−��� as the functions of frequency. Despite they are
complex functions, only the real parts are plotted. The func-

FIG. 6. The normalized friction spectra are compared with each other. The
red solid, blue dashed, black dotted, and green dash-dotted curves denote
�̃��� /�0, �0 /����, D+ /D+���, and D− /D−���, respectively.
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tions associated with mobility, ����, D+���, and D−���, are
inverted because mobility is inversely proportional to fric-
tion.

Comparing the shear relaxation and conductivity disper-
sion, it is found that the relaxation frequency of the former is
smaller than that of the latter. These spectra of ionic liquid
were measured experimentally at low temperature, and the
faster relaxation of the electric conductivity was actually
observed.53 Our preliminary experimental result shows that
such disagreement between the shear relaxation and electric
conductivity dispersion also exists at room temperature.34

The difference between the shear relaxation and
ionic mobility is usually attributed to the dynamic
heterogeniety.54,55 However, it is not the case of the present
calculation because the relaxation of the self-diffusion is not
faster than that of shear viscosity. The dispersion of the dif-
fusion coefficient of anion follows the shear relaxation and
that of cation is even slower. The electric conductivity is
theoretically coupled to the shear viscosity through the self-
diffusion of ions. The Stokes–Einstein relationship relates
the self-diffusion coefficient to the shear viscosity, and the
Nernst–Einstein relationship describes the electric conductiv-
ity in terms of the self-diffusion coefficients of ions. In our
calculation, the decoupling between the shear viscosity and
the electric conductivity dispersion is caused by the break-
down of the frequency-dependent Nernst–Einstein relation-
ship, Eq. �34�.

Figure 7 shows the memory function on the ionic current
at k=0, denoted as �el�t�, defined by

�el�t� �
1



�
��

����J−1�k = 0� · K�k = 0,t����, �35�

where ���=1 when � and � sites belong to the same species
and ���=−1 otherwise. The corresponding function for self-
diffusion, given by

�s�t� � �
��

����Js,−1�k = 0� · Ks�k = 0,t���� �36�

is also plotted for comparison. The memory functions �el�t�
and �s�t� are so defined that they agree with each other when
the random forces on different molecules are uncorrelated.

The collective memory function �el�t� is larger than �s�t�
at t�10 ps which explains the lower mobility of the collec-
tive mode in the high frequency region. On the other hand,

the longer time tail is smaller for the collective mode, which
is the reason for the weaker dispersion in the 100 MHz re-
gion and the dc electric conductivity larger than the predic-
tion of Nernst–Einstein relationship.

According to the expression of the memory functions in
the mode-coupling theory, Eqs. �13� and �14�, the time-
integrated values of �el�t� and �s�t� can be divided into the
contributions of liquid structures at different wavevectors as

�
0



�el�t�dt = �
0



�el�q�dq , �37�

�
0



�s�t�dt = �
0



�+�q� + �−�q�dq � �
0



�s�q�dq , �38�

�el�q� �
1

6�2�
��

����
0



dt�q2�c�q� · F�q,t� · c�q����F���q,t�

− q2�c�q� · F�q,t�����F�q,t� · c�q����� , �39�

���q� �
1

6�3 �
�,���

�
0



dtq2�c�q� · F�q,t� · c�q����Fs,���q,t� .

�40�

The wavenumber-resolved frictions are plotted in Fig.
8�a�. According to the resemblance of �+�q� and �−�q�, the
diffusive motions of cation and anion are coupled to the liq-
uid structure in a similar way. On the other hand, the profile
of �el�q� is quite different from that of �s�q� in that the effect
of the structure of large wavenumber �q�1 Å−1� is larger on
the former than on the latter, which is canceled by the con-
tribution at lower wavenumber.

The contribution of large-q liquid structure represents
the short-range force such as collisional interaction. Since

FIG. 7. The memory functions and their running integrals for the collective
��el�t�, solid curves� and single-molecular ��s�t�, dashed curves� modes are
exhibited.

FIG. 8. The zero-frequency values of the memory functions are divided into
the contributions of the liquid structures at various wavenumbers. In panel
�a�, the results on the memory functions on ionic currents are demonstrated.
The meanings of the curves and symbols are the same as those in Fig. 2
except for the red solid curve that shows �s�q�. Panel �b� shows the
wavenumber-resolved shear viscosity ���q�.
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the time scale of the collisional interaction is expected to be
short, the larger contribution of the large-q region on �el�q� is
in harmony with the larger value of �el�t� in the short-time
region as is shown in Fig. 7. Due to the strong electrostatic
interaction between ions, an ion is likely surrounded by its
counter ions. The repulsive collision thus occurs between a
cation and an anion. In such a case, there is negative corre-
lation between the forces on the cation and anion because of
the action-reaction principle, which is the origin of the cor-
relation that leads to the difference between �el�t� and �s�t�
in the short-time region.

The smaller contribution of the small-q structure to the
collective charge current than to the single-molecular modes
has already been found in aqueous systems and molten salts
by Yamaguchi and co-workers.7,14 In their discussion, the
small-q contribution to the collective charge current mainly
originates in the electrostatic interaction, and it is described
as the product of the fluctuations of charge- and number-
density modes. Since number-density fluctuation is sup-
pressed in dense liquids due to the small compressibility, the
electrostatic friction on the collective charge current is also
reduced compared with that on single-molecular modes. We
consider that the same scenario holds on our present calcu-
lation on �mmim�Cl ionic liquid, and the small contribution
of small-q structure is the reason for the weaker long-time
tail of �el�t� than that of �s�t�.

Although the decoupling between the frequency depen-
dence of electric conductivity and ionic diffusivity seems to
be explained by the difference in the liquid structure coupled
to these modes, the situation is more complicated if shear
viscosity is also taken into consideration. Shear viscosity is
also divided into the contributions of different wavevectors
according to Eq. �17� as

�0 = �
0



���q�dq , �41�

���q� �
kBT

60�2q4�
0



dt Tr	�dc�q�
dq

· F�q,t��2� , �42�

which is plotted in Fig. 8�b�. The zero-frequency shear vis-
cosity comes almost exclusively from the high-wavenumber
region �q�1 Å−1�, as is the case of collective charge cur-
rent. However, the relaxation frequency of the shear viscos-
ity is close to those of the self-diffusion coefficients of ions,
and the shear viscosity is decoupled from the electric con-
ductivity, as is demonstrated in Fig. 6. Therefore, the relax-
ation time of the memory function is not determined solely
by the wavenumber of the liquid structure, and we might
need to analyze the contribution of each matrix elements of
F�k , t�.

Finally, we shall discuss on the large value of ionicity in
both MD simulation and theoretical calculation. We consider
at present that there can be two reasons as follows. The first
one is that the electronic polarizability of ions are not con-
sidered in our model. In the case of MD simulation of inor-
ganic simple molten salts such as KI, the inclusion of the
electronic polarizability leads to the increase in the self-
diffusion coefficients of ions with little effect on the electric

conductivity, and the ionicity is thereby reduced.56 The same
scenario can also hold in the case of molecular ionic liquids.

The second possible reason is because the length of the
alkyl chain of cation is short in our calculation. The experi-
mental study indeed shows that the value of ionicity de-
creases with increasing the length of the alkyl chain.51 The
structure of room-temperature ionic liquids is considered to
be inhomogeneous, consisting of polar and nonpolar do-
mains. The heterogeneity increases with increasing the
length of the alkyl chain of cation, and the inhomogeneous
structure is experimentally confirmed by small angle x-ray
scattering measurement when the chain length is sufficiently
long.57 The theoretical analysis shows that the number den-
sity fluctuation coupled to the memory function on the
charge current is the fluctuation of the density mode
weighted by the squared partial charges.7,14 When the hetero-
geneous structure is present, the charge-square weighted
number density fluctuation can be large even if the com-
pressibility is small, which leads to the increase in the elec-
trostatic friction on the charge current mode.

IV. SUMMARY

The mode-coupling theory for molecular liquid based on
the interaction-site model is applied to a representative ionic
liquid �mmim�Cl and the results are compared with MD
simulation. Although the absolute values of the mobility are
several times larger in the theoretical calculation than in the
MD simulation, the theory describes the dynamics of the
ionic liquid qualitatively well.

The theoretical dielectric relaxation spectrum shows a
large relaxation in the 100 MHz region, as has been reported
by microwave experiments for many ionic liquids. In addi-
tion, a resonance-shaped structure at several terahertzs,
which was observed in a terahertz spectroscopic measure-
ment, is also reproduced by the theory. The dielectric relax-
ation spectrum is divided into the contributions of transla-
tional and reorientational modes, and the theory shows that
the dielectric relaxation is mainly ascribed to the transla-
tional mode. Although the dominance of the translational
motion in the dielectric relaxation disagrees with the conven-
tional assignment of dielectric relaxation experiments, it is in
harmony with the mean-square displacements of ions whose
slope is time-dependent in the time scale that is close to the
dielectric relaxation time.

The large dispersion in the 100 MHz region is observed
theoretically in all the transport properties studied here, that
is, shear viscosity, self-diffusion coefficients, and electric
conductivity. A detailed comparison of these dispersion spec-
tra shows that the relaxation frequencies of shear viscosity
and self-diffusion are close to each other, whereas that of
electric conductivity is slightly higher than others. The
higher relaxation frequency is related to the weaker tail in the
memory function on the collective charge current, which is
in turn attributed to the weaker coupling with the low-
wavenumber liquid structure which represents the electro-
static friction.

In summary, the transport properties of the model ionic
liquid are described by the mode-coupling theory qualita-
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tively well, although the quantitative agreement is not so
good. The theory enables us to analyze the molecular origin
of the slow relaxation that is essential to understand the zero-
frequency values of the transport coefficients. In a future
plan, the theory can be applied to the solute-diffusion in
ionic liquids, transport properties of the mixture of ionic liq-
uid with water, carbon dioxide or lithium salts.
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