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Abstract

This thesis deals with acoustic feature transformations in automatic speech recognition to im-

prove basic performance of a speech recognizer. The aim of acoustic feature transformations is

to reduce dimensionality of long-term speech features without losing discriminative information

among the different phonetic classes.

First, we focus on optimizing acoustic feature transformations using criteria with which to

maximize the ratio of between-class scatter to within-class scatter. This approach is based on a

family of functions of scatter or covariance matrices, which is frequently used in practice. Typical

methods in this approach include linear discriminant analysis (LDA), heteroscedastic linear

discriminant analysis (HLDA), and heteroscedastic discriminant analysis (HDA). Although LDA,

HLDA and HDA are the most widely used in speech recognition, the connections between

them have been disregarded so far. By developing a unified mathematical framework, close

relationships between them are identified and analyzed in detail. The framework termed power

LDA (PLDA) can describe various criteria by varying its control parameter. PLDA includes

LDA, HLDA and HDA as special cases. In order to determine a sub-optimal control parameter

automatically, a control parameter selection method is also provided.

The effectiveness of the combinations of acoustic feature transformations and discriminative

training techniques of acoustic models is investigated and additional performance improvement

is obtained. Unfortunately, the transformation methods mentioned above may result in an

unexpected dimensionality reduction if the data in a certain class consist of several clusters,

because they implicitly assume that data are generated from a single Gaussian distribution.

This study provides extensions of HDA and PLDA to deal with class distributions with several

clusters.

Second, we focus attention on acoustic feature transformations which minimize a kind of

classification error between different phonetic classes. As the performance of speech recognition

systems generally correlates strongly with the classification accuracy of features, the features

should have the power to discriminate between different classes. The existing methods for this

approach attempt to minimize the average classification error between different classes. Although

minimizing the average classification error suppresses total classification error, it cannot prevent

the occurrence of considerable overlaps between distributions of some different classes with low

frequencies, which is critical for speech recognition because there may be class pairs that have

little or no discriminative information on each other. Instead of the average classification error,

minimization methods of maximum classification error are proposed herewith so as to avoid

considerable error between different classes. In addition, interpolation methods that minimize

the maximization error while minimizing the average classification error are also proposed and

achieved the best results.
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Chapter 1

Introduction

1.1 Background

Human speech is the most natural communication tool between human beings. If a computer

recognizes human speech, then we can expect realization of a natural interface that links a person

and a computer. Therefore, automatic speech recognition (ASR) technology has long been

studied, and has been available for various applications, for example, an automated collect call,

a word processor, a mobile phone, remote control, voice portal, disabled accessibility, a home-use

game, and a robot. Moreover, speech communication has such a distinct advantage that we can

make use of it without line-of-sight movement. Hence, ASR can be used in a restricted condition

such as an in-car situation. Therefore, ASR has been commercially produced to operate a car

navigation system.

Despite the significant progress of ASR in the past several decades, ASR technology use is

hardly widespread. The key reason for this is that recent speech recognizers have not yet de-

livered adequate speech recognition performance. In other word, basic recognition performance

of a speech recognizer does not yet reached the level of user satisfaction. Only one false recog-

nition may give a speech recognizer bad reputation. There is still a considerable gap of speech

recognition performance between human and machine even if we attempt to recognize an iso-

lated word from among a small vocabulary. Therefore, we should improve the basic recognition

performance of a speech recognizer.

1.2 Approaches

Hidden Markov model (HMM) [1, 2] is one of the fundamental theories concerning general au-

tomatic speech recognition. It is a stochastic method, into which some temporal information

can be incorporated. With recent advances, speech recognizers based on HMMs have achieved a

high level of recognition performance. Since HMM has several advantages in modeling temporal

1



2 CHAPTER 1. INTRODUCTION

sequence data, it has been applied with considerable success to other pattern recognition fields

such as handwriting character recognition, gesture recognition, part-of-speech tagging, machine

translation and bioinformatics [3].

However, several assumptions are imposed in the theory of HMMs for the sake of math-

ematical and computational tractability. HMMs usually assume successive observations are

independent given a hidden state variable. Since this assumption may not sufficient to model

speech, a hidden Markov model-based speech recognition system cannot precisely model the

temporal change of speech. Therefore, to improve basic recognition performance of a speech

recognizer, it is important to capture speech dynamics. To overcome this limitation of HMMs,

a number of extensions have been proposed [4–7]. For example, Gupta et al. introduced regres-

sion coefficients along a time axis [8]. Deng et al. used HMMs with a polynomial regression

function as a non-stationary state [9]. Wellekens provided explicit correlation in HMM [10].

Ming et al. used a conditional Gaussian mixture to model the inter-frame dependence in an

HMM [11]. Ostendorf et al. proposed a stochastic segment model for phoneme-based speech

recognition [12].

The simplest and most effective approach to represent long-term dynamic information of

speech signals is to concatenate several successive frames as an input vector [13]. The concate-

nated vector may give higher speech recognition performance because it contains useful infor-

mation for discrimination. The present study concentrates on this approach. Unfortunately,

the concatenated high-dimensional vectors often include nonessential information and incur a

heavy computational load. Added to this, it is generally known that needless high-dimensional

vectors may cause degradation of speech recognition performance because an increase in feature

dimension increases the number of model parameters to be estimated. This phenomenon is

generally known as “curse of dimensionality” [14, 15]. The drawback of high-dimensional con-

catenated vectors would especially become a serious problem in the case of an application to an

embedded device such as a car navigation system. In order to avoid this, an acoustic feature

transformation method is usually applied to concatenated vectors to reduce dimensionality. In

an acoustic feature transformation, it is important to preserve discrimination power between

different phonetic classes, while reducing dimensionality.

In this study, acoustic feature transformations to reduce dimensionality of feature vectors

are investigated in detail. Acoustic feature transformations with dimensionality reduction can

be divided into two groups as follows:

1. Maximization of the ratio of between-class scatter to within-class scatter

2. Minimization criteria of classification error

The former approach is based on a family of functions of scatter (or covariance) matrices, which

is frequently used in practice. The latter approach is based on a family of criteria which give
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some sort of classification error such as upper bounds of the Bayes error [16]. More detailed

explanations of the two approaches are given in the following.

1.2.1 Maximization of Ratio of Between-class Scatter to Within-class Scatter

We first describe a criterion which maximizes between-class scatter and minimizes within-class

scatter. The basic idea of the criterion is that data in the same class are close to each other while

data in different classes are separate from each other. The criterion is usually defined as the ra-

tio of the between-class scatter to the within-class scatter. The most popular method using the

criterion is linear discriminant analysis (LDA) [16,17]. LDA is widely used to reduce dimension-

ality and serves as a powerful tool to preserve discriminative information. Its objective function

to be maximized is defined as the between-class scatter normalized by the within-class scat-

ter. LDA assumes that the class distributions are Gaussians with different means and common

covariance [18]. Due to this constraint of common covariance, LDA may give unsatisfactory per-

formance when the class distributions are heteroscedastic. In order to overcome this limitation,

several extensions have been proposed. Heteroscedastic linear discriminant analysis (HLDA) can

deal with unequal covariances because the maximum likelihood estimation was used to estimate

parameters for different Gaussians with unequal covariances [19]. Heteroscedastic discriminant

analysis (HDA) was proposed as another objective function which employed individual weighted

contributions of the classes [20].

The work focuses on the conventional three methods in the speech recognition field: LDA,

HDA and HLDA. The effectiveness of these methods for some data sets has been experimentally

demonstrated. We first point out that there exists a close relationship among them. Then, we

provide a unified view of them and a generalization framework to integrate them. However,

these methods may result in an unexpected dimensionality reduction if the data in a certain

class consist of several clusters, i.e., multimodal, because they implicitly assume that data are

generated from a single Gaussian distribution. We provide two extensions of these conventional

methods in order to overcome the drawbacks.

(1) Generalization of LDA, HDA and HLDA (Chapter 3)

First, we demonstrate that these three methods have a strong mutual relationship although

they were proposed independently. Then, a unified view of the three methods is presented.

All three methods can be formally described in a common framework. The novel framework,

called power linear discriminant analysis (PLDA), can describe various criteria by varying a

control parameter of PLDA. PLDA includes LDA, HLDA, and HDA as special cases. Since

PLDA can describe various criteria for dimensionality reduction, it can flexibly adapt to various

environments. Thus, PLDA can provide robustness to a speech recognizer. Unfortunately, we

cannot know which control parameter is the most effective before training HMMs and testing
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the performances of each control parameter. In general, this training and testing process incur

high computational costs. Moreover, the computational time is proportional to the number of

variations of the control parameters tested PLDA requires considerable time to find an optimal

control parameter because its control parameter can be chosen within a real number. In order to

slash time, this work provides an efficient selection method of a sub-optimal control parameter

without training of HMMs or testing recognition performance.

(2) Locality Preserving Extensions (Chapter 4)

Speech signals for acoustic model training tend to be multimodal because they are generally col-

lected under various conditions, such as gender, age and noise environment. Therefore, each class

such as a phone is generally represented as a Gaussian mixture model (GMM) or HMM, whose

states are represented by GMMs, in a speech recognizer. Hence, dimensionality reduction meth-

ods without handling multimodality may give unsatisfactory performance, so a dimensionality

reduction method for multimodal data is desired to improve speech recognition performance.

Recently, several methods have been proposed to reduce the dimensionality of multimodal

data in the machine learning community [21–24]. It is important to preserve the local structure

of data in reducing the dimensionality of multimodal data appropriately. Locality preserving

projection (LPP) [22] finds a projection so that the data pairs close to each other in the original

space remain close in the projected space. Thus, LPP reduces dimensionality without losing

information on local structure. Local Fisher discriminant analysis (LFDA) [23] is also proposed

as a supervised method for multimodal data, while LPP is an unsupervised method. To deal

with multimodal data, LFDA combines the ideas of LPP and LDA. LFDA maximizes between-

class separability and preserves within-class local structure. Thus, LFDA is an extension of LDA

to reduce the dimensionality of multimodal data.

Since LFDA is based on LDA which assumes homoscedasticity, the effectiveness of LFDA

may be limited. We extend HDA which assumes heteroscedasticity to reduce the dimensionality

of multimodal data appropriately. To deal with multimodal data using HDA, we combine the

ideas of LPP and HDA, and propose a locality-preserving HDA. In addition, we also propose a

locality-preserving PLDA. These extensions can be expected to yield better performance because

they reduce the dimensionality of multimodal data appropriately.

Locality-preserving methods such as LFDA and the proposed methods require considerable

computational time to obtain optimal projections when there are many features. In order to

reduce computational time, we propose an approximate calculation scheme.

1.2.2 Minimization of Classification Error

The other acoustic feature transformation approach is to minimize some sort of classification

error among classes. The criterion has been extensively applied to several pattern recognition
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problems [25–29]. However, their performance in speech recognition has not been carefully in-

vestigated. If classification error becomes small after acoustic feature transformation, promising

speech recognition performance can be obtained. The most natural criterion regarding a classi-

fication error is the Bayes error [16]. The Bayes error is the best criterion to classify features.

If this error becomes small after an acoustic feature transformation, discriminative informa-

tion would be preserved to classify features. Unfortunately, to directly measure Bayes error is

difficult, although it is a superior criterion to reduce dimensionality.

Instead of calculating the Bayes error directly, several methods are taken to represent

the Bayes error as an indirect approach. Several researchers proposed an objective function

which uses symmetric KL divergence as a measure of the distance between two class distribu-

tions [25–27]. KL divergence can be considered as the dissimilarity between two distributions.

Torre et al. [27] introduced an effective computation scheme, called oriented discriminant anal-

ysis (ODA), for calculating the objective function using symmetric KL divergence. Nenadic

introduced another measure of distance, called µ-measure, which is based on mutual informa-

tion [29]. The resulting objective function with this µ-measure is similar to HDA. Loog et al.

proposed a heteroscedastic extension of LDA using the Chernoff distance [28]. This measure of

affinity of two probability densities considers the mean difference as well as the covariance differ-

ence. Torkkola [30] used measures based on Renyi entropy [31,32] instead of Shannon’s entropy.

As another technique, Decell et al. and Saon et al. employed the Bhattacharyya coefficient to

measure the Bayes error indirectly [25,26]. The Bhattacharyya coefficient is an upper bound of

the Bayes error. This coefficient can be regarded as a dissimilarity between two classes. If the

Bhattacharyya coefficient in the reduced space becomes small, the reduced data will preserve

discriminative information. This study focuses on the Bhattacharyya coefficient instead of the

Bayes error. To deal with multi-class problem, extended objective functions that minimize the

average Bhattacharyya coefficient were proposed [25,26]. That is, the conventional methods are

used to search for a projection so that the average classification error is minimized. Although

minimizing the average classification error can suppress total classification error among classes,

it cannot prevent the occurrence of considerable overlaps between distributions of some classes,

which is critical for speech recognition because there may be class pairs that have little or no

discriminative information on each other.

Another issue regarding the Bhattacharyya coefficient must be addressed. While it has a

closed-form expression for two Gaussians, no closed-form expression exists for two GMMs. In

other words, the Bhattacharyya coefficient for GMMs is not feasible. Therefore, the existing

methods impose the single Gaussian assumption for classes, although a single Gaussian is too

simple to represent a class distribution. Recently, efficient approximations of the Bhattacharyya

coefficient under a GMM assumption have been derived [33]. Nevertheless, this study also

assumes a single Gaussian for a class distribution because of tractability. We do not further

discuss the Bhattacharyya coefficient under a GMM assumption because the proposed method
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in the present study, which assumes a single Gaussian for classes, could be extended to the

approximations dealing with GMMs.

(1) Minimization of Maximum Classification Error (Chapter 5)

As described above, although minimizing the average classification error can suppress total

classification error among classes, it cannot prevent the occurrence of considerable overlaps

between distributions of some classes. Therefore, the conventional method is critical for speech

recognition because there may be class pairs that have little or no discriminative information on

each other. For example, when the discrimination power between a certain class pair becomes

small after an acoustic feature transformation, all words which include either of the two classes

may degrade recognition performance. To overcome the drawback of the conventional method,

we introduce an alternative objective function that minimizes the maximum classification error

among distributions of all class pairs. The method is able to avoid considerable error between

classes, unlike the method which minimizes the average classification error.

However, there is still a problem with this approach. If a large number of class pairs have an

overlap comparable to the maximum one, the total error increases significantly. In such a situ-

ation, speech recognition performance will deteriorate because most class pairs have only small

discrimination power. Therefore, an interpolated criterion that minimizes maximum classifica-

tion error while minimizing average classification error would be effective. We here introduce

two types of interpolated criteria between the average and the maximum classification errors.

1.3 Overview of Thesis

The remainder of the thesis is organized as follows.

Chapter 2 describes a standard framework of an ASR system. Especially, acoustic feature

transformation techniques are described in detail.

Chapters 3 and 4 investigate the criterion that maximizes the ratio of between-class scatter

to within-class scatter. Chapter 3 proposes a new framework which can describe various cri-

teria including LDA, HLDA, and HDA with one control parameter. In addition, the chapter

provides an efficient control parameter selection method, which can find a sub-optimal control

parameter without training HMMs nor testing recognition performance. The effectiveness of

acoustic feature transformations, discriminative training techniques, and their combinations is

also investigated. In Chapter 4, two extensions of HDA and PLDA are provided to reduce the

dimensionality of multimodal data appropriately. The chapter also proposes an approximate

calculation scheme to calculate sub-optimal projections rapidly.

Chapter 5 investigates the criterion that minimizes some sort of classification error. We

propose a novel criterion that minimizes the maximum classification error among distributions
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of all class pairs. In addition, we propose two types of interpolated criteria between the average

and the maximum classification errors.

Chapter 6 gives the overall conclusions and suggests research directions for the future.





Chapter 2

Theoretical Framework for
Automatic Speech Recognition

2.1 Overview of Automatic Speech Recognition Systems

The purpose of an automatic speech recognition system is to convert input speech waveforms

to correct transcriptions in text. The speech waveform is typically recorded by a microphone

and samples a certain fixed frequency (typically, 8 kHz or 16 kHz). Then, the recorded speech

waveform is transformed into a sequence of observation vectors, O = {o1, . . . ,oT }, where ot is

the short-time speech vector observed at time t. We would like to obtain a correct hypothesis

sequence w = {w1, . . . , wN} given the observation O. Finally, the system outputs the hypoth-

esis transcription with the highest probability. We can obtain the desired output given the

observation through the maximum a posteriori decision:

ŵ = argmax
w

P (w|O), (2.1)

where P (w|O) denotes the posterior probability given the observation. The desired hypothesis,

ŵ, is the word sequence with the highest probability given the observations. In general, this

probability is not feasible directly. Instead, the following expression can be used:

ŵ = argmax
w

p(O|w)P (w)

p(O)
, (2.2)

where Bayes’ theorem has been applied. It plays a central role in pattern recognition and

machine learning. Of the two terms on the right-hand side, the first, p(O|w), is the probability

of the observation given the word sequence, and the second term, P (w), is the prior distribution

of the word sequence. These probabilities are represented as an acoustic model and a language

model, respectively.

9
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Since the likelihood of the observation sequence p(O) is independent of the hypothesis se-

quence w, it can be omitted as follows:

ŵ = argmax
w

p(O|w)P (w). (2.3)

Thus, the right-hand side of Equation (2.1) is replaced with the combined score from the acoustic

and the language model.

Since the present study attempts only to carry out an isolated word recognition with a uni-

form prior, the language model P (w) is not needed. Hence, language modeling is not discussed

in this thesis. Therefore, the following expression which omitted P (w) from Equation (2.3) and

replaced w with wi is used to obtain the output in an isolated word recognition task as follows:

ŵ = argmax
i

p(O|wi), (2.4)

where ŵ denotes the isolated word with the highest probability.

Recently, direct modelings of posteriori probability P (w|O) in Equation (2.1) have been pro-

posed, including, for example, speech recognizers based on Support Vector Machine (SVM) [34,

35], Maximum Entropy Markov Model (MEMM) [36], and Hidden Conditional Random Field

(HCRF) [37,38] which extends the Conditional Random Field (CRF) [39] to a sequential prob-

lem. However, these SVM-, MEMM-, and HCRF-based speech recognizers are applied only to

simple recognition tasks such as the phone classification task and the phone recognition task.

Application of these models to isolated word recognition and continuous speech recognition tasks

remains an unsolved issue.

2.1.1 Basic Structure of ASR System

The basic structure of the general speech recognition system is illustrated in Figure 2.1. A

typical ASR system consists of four components for an isolated word recognition task: front-

end processing, acoustic models, dictionary, and decoding. In the front-end processing, an

input speech waveform is converted into feature vectors of typically 20-40 dimensions. The

vector represents the short-time (approximately 10-20 ms) spectral envelope of the speech signal,

which describes the characteristics of the speech. The acoustic models are used to evaluate the

likelihood p(O|wi) in Equation (2.4). The dictionary defines recognizable vocabulary by a speech

recognizer. In decoding, the maximization in Equation (2.4) is carried out using the acoustic

models while system vocabulary is restricted by using the dictionary. After searching the system

outputs the hypothesis with the highest score. The performance of speech recognition systems

is evaluated by comparing the recognized word to a reference transcription.
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Figure 2.1: Basic structure of ASR system.

2.2 Front-end Processing

In front-end processing, acoustic information for speech recognition is extracted from the speech

waveform. Generally, sampled speech waveforms are converted to 20-40 dimensional vectors

which represent the short-time spectral envelope of the waveforms because the spectrum envelope

conveys most of the significant information for speech recognition [40].

2.2.1 Pre-processing

There are some pre-processing operations that can be applied prior to performing the actual

signal processing. In order to flatten the spectrum slope, it is common practice to pre-emphasize

the signal by applying the first-order difference equation:

x′(n) = x(n)− αx(n− 1), (2.5)

where x(n) denotes short segment of input speech waveform at time n, and α denotes a pre-

emphasis coefficient which lies between zero and one. Typically, the value of α is taken in the

range 0.9 ≤ α ≤ 1.0. This study used α = 0.97. This process can reduce a quantization error

caused by a limitation of significant digits. Then, a window function is usually applied to the
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emphasized speech signal to attenuate boundary effects in the following analysis. As a time

domain window function, hamming or Blackman-Harris windows are often applied to speech

frames. This study used a hamming window function:

w(n) = 0.54− 0.46 cos

(
2πn

Ns − 1

)
, (2.6)

where Ns denotes the number of samples to be processed.

2.2.2 Cepstral Analysis

After some pre-processing, the Fourier spectrum of the speech waveform is computed for each

time frame with a typical frame shift of 10 ms and a typical window length of 25 ms. After-

wards, several procedures for further processing are adopted. These include Linear Predictive

Coding (LPC), Mel Frequency Cepstral Coefficient (MFCC) [41] and Perceptual Linear Pre-

diction (PLP) [42]. The most commonly used parameterization is MFCCs. This study used

MFCCs as acoustic features.

In order to adjust the spectral resolution to that of the human ear, the frequency axis is

warped nonlinearly according to the Mel frequency scale:

Mel(f) = 2595 log10

(
1 +

f

700

)
. (2.7)

Then, a triangular filter bank is applied to the warped spectrum. Normally, the triangular filters

are spread over the whole frequency range from zero up to the Nyquist frequency in the Mel scale

space. Band-limiting such as a high pass cut-off is often useful to reject unwanted frequencies.

because a low-cut filter of typically 200 Hz is effective with an in-car environment.

Then, the logarithm is taken and a discrete cosine transformation (DCT) is applied to the

log filter bank coefficients {mj} to remove the correlation between the different outputs:

ci =

√
2

Nf

Nf∑
j=1

mj cos

(
πi

Nf
(j − 0.5)

)
, (2.8)

where Nf is the number of filterbank channels. Afterwards, liftering is applied to the cepstral

coefficients to reduce dimensionality by omitting the highest cepstral coefficients. The resulting

feature vector at time t is denoted by ot in this thesis.

The flowchart of the front-end processing is depicted in Figure 2.2. Figure 2.3 shows an

example of speech waveform, spectrogram, and cepstrum feature vectors.

2.3 Hidden Markov Models for Acoustic Modeling

Nowadays, almost every speech recognizer employs hidden Markov models (HMMs) [1, 2] to

model speech signals. The HMMs are used to provide the estimates of p(O|w). In this section,
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Figure 2.2: Front-end processing.

we describe how speech is represented by an HMM. First, acoustic modeling by HMMs is pre-

sented. Then, the maximum likelihood (ML) parameter estimation is briefly reviewed. Several

discriminative training techniques are introduced. It is well known that discriminative training

can yield better performance than ML. We investigate the effectiveness of combinational use of

an acoustic feature transformation and discriminative training in Section 3.5.

2.3.1 Acoustic Model

An HMM is a stochastic finite state automaton consisting of a number of states and transitions

among states. The acoustic model is a set of HMMs for the basic sub-word units. The most

commonly used sub-word units are phones, which are the basic sound of speech. An HMM for

each word in vocabulary is made by concatenating the individual sub-word HMMs. Figure 2.4

shows an example of an HMM for a certain sub-word unit. The model in the figure has three

emitting states with the probabilistic density function (pdf). The states are labeled by integers.

The model is a first-order left-to-right HMM so there are only forward links and self loops, and

each transition depends only on its source and destination states. This left-to-right HMM is

widely used to represent a phone in speech recognition. Each arrow between states aij denotes
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(a) Waveform.

(b) Spectrogram.

(c) Cepstrum.

Figure 2.3: Example of speech waveform, spectrogram, and cepstrum.
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Figure 2.4: Example of an HMM.

a state transition probability from the state i to the state j:

aij = P (qt = j|qt−1 = i), (2.9)

for arbitrary t. The transition probabilities must satisfy 0 ≤ aij ≤ 1 and
∑

j aij = 1, and are

assumed to be stationary in time. Therefore, the transition does not depend on the time t at

which it occurs.

The state conditional output probability bj(ot) with which an observation ot is generated by

the state qt = j is modeled as a probability density function:

bj(ot) = p(ot|qt = j). (2.10)

The most common representation of the pdf is a finite mixture of multivariate Gaussian dis-

tribution. Let N (·;µ,C) be a multivariate Gaussian with a mean vector µ and a covariance

matrix C:

N (o;µ,C) =
1

|2πC|1/2
exp

(
−1

2
(o− µ)⊤C−1 (o− µ)

)
. (2.11)

Then, the pdf given the state j is typically defined as:

bj(o) =

M∑
m=1

wjmN (o;µjm,Cjm), (2.12)
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where µjm and Cjm denote a mean vector and a full covariance matrix of m-th mixture of state

j, respectively, and the mixing proportions wjm satisfy 0 < wjm < 1 for m = 1, . . . ,M and∑M
m=1wjm = 1 since they obey standard stochastic constraints. Full covariance modeling often

increases computational costs and causes a data sparseness problem for parameter estimation.

In order to simplify the probability computation of Gaussians and to reduce the number of

parameters, each dimension of the speech feature vector is often assumed to be independent.

This assumption leads to diagonal covariance matrices for robustness of parameter estimation

and speed-up in the computation.

N (o;µ,Λ) =
1

|2πΛ|1/2
exp

(
−1

2
(o− µ)⊤Λ−1 (o− µ)

)
(2.13)

=
D∏

d=1

1√
2πσ2

d

exp

(
−(od − µd)

2

2σ2
d

)
, (2.14)

where Λ denotes a D ×D diagonal covariance matrix with the i-th diagonal element being σ2
i ,

and oi, µi and σ2
i are the i-th elements of observation, mean and variance, respectively.

2.3.2 Parameter Estimation for HMMs

HMMs are composed of model parameters such as the state transition probabilities, mixture

weights, mean vectors, and covariance matrices. To find optimal model parameters, the following

objective function is maximized with respect to the model parameters:

FML(λ) =
R∑

r=1

log pλ(Or|sr), (2.15)

where λ is the set of HMM parameters, Or is the r-th training utterance (a word or a sentence),

sr is the r-th correct transcription, R denotes the number of training utterances, and pλ(Or|s)
is the likelihood given transcription s. This optimization is called the maximum likelihood (ML)

parameter estimation. Since the discrete state sequence generating the observation sequence is

unknown, the Baum-Welch algorithm [43,44] is usually carried out to find the model parameters,

which is an instance of the expectation maximization (EM) algorithm [45]. The algorithm

iteratively finds discrete state posterior probabilities given the observation sequence and the

current model parameters, and finds the expected values for the state conditional densities. In

practice, an efficient algorithm known as the forward-backward algorithm [43] is often used to

find the discrete state posteriors, which involves the calculating probabilities of partial state

sequences forwards and backwards through the observation sequence.
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2.3.3 Discriminative Training of HMMs

If the modeling assumptions of acoustic features were completely correct and infinite data were

given, the maximum likelihood criterion would be optimal. However, these assumptions are

not necessarily accepted in nature. Recently, the field of discriminative training has witnessed

considerable activity. The HMM parameters via discriminative training adjust to improve the

classification performance of the HMMs on the training data. Discriminative training includes

maximum mutual information (MMI) [46], minimum classification error rate (MCE) [47], frame

discrimination [48, 49], minimum Bayes risk [50], and minimum phone error (MPE) [51–53].

Many experimental results have shown that discriminative training techniques yields better

performance than traditional maximum likelihood (ML) training. In Section 3.5, we investigate

the effectiveness of combinations of two discriminative training techniques described in detail

below and acoustic feature transformations.

Maximum Mutual Information (MMI)

In MMI training, the mutual information [54,55] between an acoustic observation and correctly

transcribed string is maximized. The MMI criterion is defined as follows [46,56]:

FMMI(λ) =
R∑

r=1

log
pλ(Or|sr)κP (sr)∑
s pλ(Or|s)κP (s)

, (2.16)

where κ is an acoustic de-weighting factor which can be adjusted to improve the test set per-

formance, and P (s) is the language model probability for sentence s. The MMI criterion equals

the multiplication of the posterior probabilities of the correct sentences sr.

As an extension to MMI, a discriminative training method which emphasizes posteriori

probability, called Boosted MMI, is proposed by Povey [57].

Minimum Phone Error (MPE)

MPE training aims to minimize the phone classification error (or maximize the phone accu-

racy) [53]. The objective function to be maximized by the MPE training is expressed as

FMPE(λ) =

R∑
r=1

∑
s pλ(Or|s)κP (s)A(s, sr)∑

s pλ(Or|s)κP (s)
, (2.17)

where A(s, sr) represents the raw phone transcription accuracy of the sentence s given the correct

sentence sr, which equals the number of correct phones minus the number of errors.

A Unified View of Discriminative Training Techniques

Recently, a generalization framework on several discriminative training criteria has been pro-

posed [58,59]. In [58], Ψ-probability is introduced, which is the sum of modified joint probability
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of Or and sr weighted by the negative exponential of the difference measure between correct

and recognized strings:

Ψσ(Or, sr) =
∑
s

pλ(Or|s)κP (s) exp(−σ∆(s, sr)). (2.18)

where σ and ∆(s, sr) denote an exponential decay factor and the difference measure between

s and sr such as Levenshtein distance [60]. Using Ψ-probability, MMI and MPE objective

functions are given by:

FMMI(λ) =
Ψ∞
Ψ0

, (2.19)

FMPE(λ) = −Ψ
′
0

Ψ0
, (2.20)

where Ψ
′
σ denotes the partial derivative of Ψ-probability with respect to σ defined by

Ψ
′
σ =

∂Ψν

∂ν

∣∣∣∣
ν=σ

= −
∑
s

pλ(Or|s)κP (s)∆(s, sr) exp(−σ∆(s, sr)). (2.21)

Similarly, minimum classification error (MCE) [47] and boosted MMI [57] can be also derived

by using the Ψ-probability.

2.4 Decoding Using HMMs

The decoding step in Figure 2.1 must be able to search through all the hypotheses to find the

one yielding the maximum likelihood from the acoustic models. Therefore, a decoding algorithm

is required to solve Equation (2.4). The likelihood given a word is expanded as follows:

p(O|w) =
∑
q

p(O,q|w)

=
∑
q

T∏
t=1

p(ot|qt;w)P (qt|qt−1;w) (2.22)

where q. Since direct implementation of Equation (2.22) is not practical, the sum in the Equation

is approximated by the maximum;

p(O|w) ≈ max
q

T∏
t=1

p(ot|qt;w)P (qt|qt−1;w) (2.23)

This approximation is known as the Viterbi algorithm [61]. In Viterbi algorithm, the prob-

ability of the local best path plays the principal role, which represents the maximum likelihood
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of observing vectors o1:t ≡ (o1, . . . ,ot) and being in state s at time t. The probability is given

by:

δt(j) = max
q1,q2,...,qt−1

P (q1, q2, . . . , qt−1, qt = i,o1:t|λ). (2.24)

where λ denotes the model parameter set.

In practice, δt(j) can be recursively implemented by:

δt+1(j) =

[
max

i
δt(i)aij

]
bj(ot+1), (2.25)

where the initial conditions are given by

δ1(1) = 1,

δ1(j) = a1jbj(ot)

for 1 < j < N . The Viterbi algorithm results in the joint likelihood of the observation sequence

O and the most likely state sequence q̂ = q̂1, . . . , q̂T given the model parameters:

δT (N) = p(O, q̂|λ) = max
i

δT (i) (2.26)

In practice, the Viterbi algorithm can be implemented by taking logarithms of the model

parameters because of rapid calculation and underflow prevention.

2.5 Acoustic Feature Transformation

To obtain additional improvement of speech recognition performance, an acoustic feature trans-

formation is often applied to the extracted feature vectors after a front-end processing step. An

ASR system added an acoustic feature transformation step is illustrated in Figure 2.5. This

study deals with an acoustic feature transformation to improve speech recognition performance.

While there are several kinds of acoustic feature transformations, this study concentrates on the

feature transformations for addition of dynamic information, which aims at capturing speech

dynamics in speech signals. This approach is generally known to improve the basic performance

of a speech recognizer.

2.5.1 Feature Transformation for Addition of Dynamic Information

Cepstrum-based feature vectors which are calculated over 20 to 30 milliseconds (ms) accurately

extract short-term static information from speech signals. In addition to static feature vectors,

dynamic information that describes temporal change among several successive features (typically

50-100 ms) is usually appended to the feature vectors [62]. Using acoustic dynamic information
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Figure 2.5: Block diagram of ASR system added an acoustic feature transformation step.

that expresses temporal change in speech signals can serve to improve speech recognition per-

formance. Several methods for integrating dynamic information have been proposed. Delta and

acceleration coefficients [63] are the most widely used approach in speech recognition. These

are first-order and second-order regression coefficients, respectively. Other approach includes a

concatenation of several successive frames with dimensionality reduction. Both two approaches

can be interpreted as a linear transformation of speech features. On the other hand, nonlinear

transformations of speech features such as kernel-based techniques have also been applied in

speech recognition. In [64], kernel principal component analysis (KPCA) [65,66] was applied to

transform speech features nonlinearly. Kernel discriminant analysis (KDA) [67, 68] was applied

to a phoneme classification task [69]. Extensions of KPCA and KDA such as sparse KPCA [70]

and subspace KDA [71] are also applied in speech recognition.

One problem for kernel-based nonlinear dimensionality reduction for speech recognition is

that the original derivation requires computation of features in an N -dimensional space where

N is the number of training data. Since acoustic models in a speech recognition system are

generally trained using a large amount of training data, the value of N tends to become large,

e.g., 107 to 109. Moreover, it will be difficult to generate classifiers such as HMMs in the high-

dimensional space. Thus, it becomes impractical to apply kernel-based dimensionality reduction

for speech recognition. Hence, we focus on linear transformation approaches. The following
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describes two linear transformations in detail: delta and acceleration coefficients, and linear

transformation with dimensionality reduction.

Delta and Acceleration Coefficients

In order to capture dynamic information along with successive frames, one popular approach

is to compute first-order (delta) and second-order (acceleration) regression coefficients of static

frames. The coefficients are appended to static features as inputs. Delta and acceleration

coefficients can enhance speech recognition performance, although they are heuristic information

from a priori knowledge.

The delta coefficient at time t, ∆t, is given by the following regression formula:

∆t =

∑Ldelta
k=1 k (ot+k − ot−k)

2
∑Ldelta

k=1 k2
, (2.27)

where the first-order regression window size is 2Ldelta + 1. ∆t is computed in terms of the

corresponding static coefficients ot−Ldelta
to ot+Ldelta

. Thus, a delta coefficient is the linear

combination of successive static frames. The same formula is applied to the delta coefficients to

obtain acceleration coefficients except that feature vectors are replaced with delta coefficients

and the window size is 2Lacc + 1:

∆∆t =

∑Lacc
k=1 k (∆t+k −∆t−k)

2
∑Lacc

k=1 k2
, (2.28)

An acceleration coefficient is a combination of successive delta coefficients, and thus is also a

linear combination of static ones.

Linear Transformation with Dimensionality Reduction

The simplest, most effective approach to represent long-term dynamic information of speech

signal is to concatenate several successive frames as an input vector [13]. The concatenated

vector may give higher speech recognition performance because it contains useful information

for discrimination. On the other hand, it is generally known that needless high-dimensional

vectors may cause the degradation of speech recognition performance because an increase in

feature dimension increases the number of model parameters to be estimated. This phenomenon

is generally known as the curse of dimensionality [14,15]. Such high-dimensional vectors require

huge computational cost and a large amount of memory. These drawbacks of high-dimensional

concatenated vectors would become an especially serious problem in the case of an application

to an embedded device such as a car navigation system.

Ordinarily, an acoustic feature transformation with reducing dimensionality is applied to

the concatenated features. In order to reduce dimensionality, linear feature transformations are
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often used. Let x and z denote a concatenated vector and a transformed vector, respectively. A

linear feature transformation by a transformation matrix B is given by:

z = B⊤x. (2.29)

This linear transformation can describe delta and acceleration coefficients as a special case.

That is, linear transformations include delta and acceleration coefficients.

As mentioned in Chapter 1, acoustic feature transformations with dimensionality reduction

can be divided into two groups as follows:

1. Maximization of the ratio of between-class scatter to within-class scatter

2. Minimization criteria of classification error

Both LDA and HDA, which are typically used in the speech recognition field, belong to the

former approach, which is studied in Chapters 3 and 4. The latter approach is studied in

Chapter 5.

2.5.2 Other Transformations

There are several acoustic feature transformations besides integrating dynamic information. One

of these aims at transforming the feature space so that the resulting covariance matrices are as

diagonal dominant as possible (that is, decorrelation) without reducing dimensionality. In the

acoustic feature space after the transformation, diagonal-constraint acoustic modeling would

achieve comparable performance to full covariance modeling, while the constraint modeling uses

fewer parameters than the full covariance one. This transformation was independently proposed

by Gales [72,73] and Gopinath [74], and was called semi-tied covariances in [72,73] and maximum

likelihood linear transformation (MLLT) in [74], respectively. Moreover, the transformation has

been extended by increasing the degrees of freedom of the transformations such as extended

MLLT (EMLLT) [75], mixture of inverse covariances (MIC) [76] and subspace precision and

mean (SPAM) [77]. In EMLLT, MIC and SPAM, the inverse covariances are modeled as a

weighted sum of rank-one matrices, symmetric matrices, and globally shared full-rank matrices,

respectively.

As a speaker normalization technique, frequency or quefrency warping of speech signals has

been proposed to deal with a difference in vocal tract length [78–82]. This acoustic feature

transformation is called vocal tract length normalization (VTLN). VTLN can be implemented

by warping the frequency axis in the filterbank analysis or the quefrency axis in the cepstrum

analysis.

There are several ways to apply linear transformations for speaker adaptation. In [83, 84],

the test data from the target speaker are transformed by meas of spectral mapping. Legget-

ter et al. [85] proposed a maximum likelihood linear regression (MLLR) in which an affine
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transformation was applied to the mean vectors of the probability density function of acoustic

models. In [86–88], extended transformations of MLLR were proposed. The speaker-dependent

transformations did not only affect the mean vectors of the pdf but also its covariance matrix.

Since these transformations may improve condition-specific performance rather than basic

performance, we do not discuss them here.

2.6 Summary

This chapter introduces a theoretical framework for automatic speech recognition. First, the

front-end processing was presented. Then, hidden Markov models for acoustic modeling and

the conventional decoding algorithm were presented. Finally, acoustic feature transformation,

which is mainly discussed in the thesis, was described in detail.





Chapter 3

Generalization of LDA, HDA and
HLDA

This and the following chapter investigate linear feature transformation methods that maximize

the ratio of the between-class covariance to the within-class one. This chapter starts with an

introduction and a review of conventional linear feature transformations in speech recognition.

This chapter shows that the conventional methods have a close relationship. Then, a unified

view of the conventional methods is described. This chapter proposes a common framework of

the conventional methods, which can describe various criteria by varying its control parameter.

This chapter also provides an efficient selection method of a sub-optimal control parameter

without training of HMMs or testing recognition performance. Finally, this chapter investigates

combinations of discriminant analysis-based feature transformation and discriminative training

of acoustic models.

3.1 Introduction

To enhance basic performance of a speech recognizer, acoustic feature transformations according

to a criterion which maximizes between-class scatter and minimizes within-class scatter are

successfully applied to a speech recognizer. The basic idea of the criterion is that data in the

same class are close to each other while data in different classes are separate from each other.

The criterion is usually defined as the ratio of the between-class scatter to the within-class

scatter. The most popular method using the criterion is linear discriminant analysis (LDA) [16,

17]. LDA is widely used to reduce dimensionality in speech recognition and a powerful tool

to preserve discriminative information. Campbell [18] pointed out that LDA can be derived

from the maximum likelihood parameter estimation method for class distributions assumed

Gaussians with different means and common covariance. Therefore, LDA assumes each class

share the same class covariance. However, this assumption does not necessarily hold for a

25
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real data set. In order to overcome this limitation, several extensions have been proposed.

Heteroscedastic linear discriminant analysis (HLDA) can deal with unequal covariances because

the maximum likelihood estimation is used to estimate parameters for different Gaussians with

unequal covariances [19]. Heteroscedastic discriminant analysis (HDA) was proposed as another

objective function which employed individual weighted contributions of the classes [20]. The

effectiveness of these methods for some data sets has been experimentally demonstrated.

This chapter shows that these three conventional methods have a close relationship. Then,

a unified view of the three methods is described. All these three methods can be formally de-

scribed in a common framework. The novel framework, called power linear discriminant analysis

(PLDA) [89, 90], can describe various criteria by varying a control parameter of PLDA. PLDA

includes LDA, HLDA, and HDA as special cases. Since PLDA can describe various criteria for

dimensionality reduction, it can flexibly adapt to various environments such as a noisy envi-

ronment. Thus, PLDA can provide robustness to a speech recognizer in realistic environments.

Unfortunately, we cannot know which control parameter is the most effective before training

HMMs and testing the performance of each control parameter. In general, this training and

testing process incurs more than several dozen hours. Moreover, the computational time is pro-

portional to the number of variations of the control parameters under test. Therefore, PLDA

incurs considerable time to find an optimal control parameter because its control parameter can

be set to a real number. This chapter provides an efficient selection method of a sub-optimal

control parameter without training of HMMs or testing recognition performance [91].

Besides acoustic feature transformations, discriminative training techniques for acoustic mod-

els have also led to significant improvements in speech recognition performance on many tasks.

Various criteria for discriminative training of acoustic models have been studied. Maximum

mutual information (MMI) and minimum phone error (MPE) criteria have been successfully ap-

plied to many speech recognition systems [46,53,56]. MPE training has been shown to produce

a more accurate model than MMI training, and therefore has been adopted widely. Both acous-

tic feature transformation techniques and discriminative training techniques aim to improve

speech recognition performance at different levels. The combination of these two techniques can

further improve speech recognition performance [90,92–96]. This chapter investigates combina-

tions of discriminant analysis-based feature transformation and discriminative training through

experiments using in-car speech [96]. For feature transformation techniques, we evaluate not

only traditional techniques, such as LDA and HDA, but also state-of-the-art techniques such

as PLDA [89], oriented discriminant analysis [27] and heteroscedastic extension of LDA using

Chernoff criterion [28]. The robustness against mismatched noise conditions between training

and evaluation environments is also investigated.
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3.2 Maximization Criteria of Ratio of Between-class Scatter to
Within-class Scatter

This section defines the problem of dimensionality reduction, briefly reviews LDA, HLDA and

HDA, and then investigates the effectiveness of these methods for some artificial data sets.

3.2.1 Definition of Problem of Dimensionality Reduction

Dimensionality reducing transformations project an n-dimensional feature space into a lower

dimensional one with dimension p < n. The goal of dimensionality reduction is to find a

representation of a manifold, i.e., a coordinate system, that will allow to project the data

vectors on it and obtain a low-dimensional compact representation of the data, which preserves

discriminative information. Suppose we have N vectors xj ∈ Rn(j = 1, 2, . . . , N), where xj

consists of several successive features xj =
[
o⊤j−(d−1), · · · ,o

⊤
j

]⊤
, and associated class labels

yj ∈ {1, 2, . . . ,K} such as phones. The following notation are used in this thesis: capital bold

letters refer to matrices, e.g., A, bold letters refer to vectors, e.g., b, and scalars are not bold,

e.g., c. A⊤ is the transpose of the matrix.

The dimensionality reduction mapping function is given by:

F : Rn → Rp

x 7→ z = F(x),
(3.1)

where z is a reduced vector lying in Rp. The function F maps an n-dimensional feature vector

into a p-dimensional one.

In the case of linear transformations discussed in this thesis, a mapping function is given by:

F(x) = B⊤
n×px, (3.2)

whereBn×p denotes a transformation matrix in Rn×p, whose column vectors span a p-dimensional

subspace. The purpose of linear dimensionality reduction is to find an optimal transformation

matrix Bn×p preserving discriminative information.

3.2.2 Linear Discriminant Analysis

The most popular method to reduce dimensionality is linear discriminant analysis (LDA) [16,17].

In LDA, within-class, between-class and mixture covariance matrices are used to formulate its
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objective function. These covariance matrices are defined as follows [16,17]:

C(W ) =
1

N

K∑
k=1

∑
j:yj=k

(xj − µk)(xj − µk)
⊤

=

K∑
k=1

PkCk,

C(B) =

K∑
k=1

Pk(µk − µ)(µk − µ)⊤,

C(M) =
1

N

N∑
j=1

(xj − µ)(xj − µ)⊤

= C(W ) +C(B), (3.3)

where µk is the mean of features in class k, µ is the mean of all features regardless of their class

assignments, Ck is the class covariance of class k, and Pk is the weight for class k. In general,

Pk is empirically given by Pk = Nk/N , where Nk is the number of features in class k. Each class

covariance Ck is defined as:

Ck =
1

Nk

∑
j:yj=k

(xj − µk)(xj − µk)
⊤.

There are several definitions of LDA objective functions. Typical objective functions are the

following [16,17]:

JLDA (Bn×p) =

∣∣∣B⊤
n×pC

(B)Bn×p

∣∣∣∣∣∣B⊤
n×pC

(W )Bn×p

∣∣∣ , (3.4)

JLDA (Bn×p) =

∣∣∣B⊤
n×pC

(M)Bn×p

∣∣∣∣∣∣B⊤
n×pC

(W )Bn×p

∣∣∣ , (3.5)

where |X| is the determinant of the matrix X. A projection matrix is obtained by maximizing

the objective function with respect to Bn×p. The optimizations of Equations (3.4) and (3.5)

result in the same projection [16].

3.2.3 Heteroscedastic Extensions

LDA is not the optimal projection when the class distributions are heteroscedastic. Camp-

bell [18] has shown that LDA is related to the maximum likelihood estimation of parameters for
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a Gaussian model with an identical class covariance. However, this assumption is not necessarily

satisfied for a real data set.

In order to overcome this limitation, several extensions have been proposed [19, 20, 27, 28].

This section focuses on two heteroscedastic extensions called heteroscedastic linear discriminant

analysis (HLDA) and heteroscedastic discriminant analysis (HDA) [19,20].

Heteroscedastic Linear Discriminant Analysis

In HLDA, the full-rank linear projection matrix Bn×n ∈ Rn×n is constrained as follows: the first

p columns of Bn×n span the p-dimensional subspace in which the class means and variances are

different and the remaining n − p columns of Bn×n span the (n − p)-dimensional subspace in

which the class means and variances are identical. Let the parameters that describe the class

means and covariances of B⊤
n×nx be µ̂k and Ĉk, respectively:

µ̂k =

[
B⊤

n×pµk

B⊤
n×(n−p)µ

]
, (3.6)

Ĉk =

[
B⊤

n×pCkBn×p 0

0 B⊤
n×(n−p)C

(M)Bn×(n−p)

]
, (3.7)

where full rank matrix Bn×n =
[
Bn×p|Bn×(n−p)

]
and Bn×(n−p) ∈ Rn×(n−p), and 0 denotes a

zero matrix whose entries are zero.

Kumar et al. [19] incorporated the maximum likelihood estimation of parameters for differ-

ently distributed Gaussians. The probability density of xi under the preceding model is given

as:

P (xi) =
|Bn×n|∣∣∣2πĈyi

∣∣∣ exp
(
−(zi − µ̂yi)

⊤Ĉyi(zi − µ̂yi)

2

)
,

where zi = Bn×nxi and xi belongs to the group yi. The log-likelihood of the data L =∑N
i=1 logP (xi) under the linear transformation Bn×n and under the constrained Gaussian model

assumption for each class is:

logL = −1

2

N∑
i=1

{
(zi − µ̂yi)

⊤Ĉyi(zi − µ̂yi) + log
∣∣∣2πĈyi

∣∣∣}+ log |Bn×n|.
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We can rearrange this by first calculating the values of the mean and covariance parameters:

logL =− N

2
log |B⊤

n×(n−p)C
(M)Bn×(n−p)| −

K∑
k=1

Nk

2
log |B⊤

n×pCkBn×p| −
Nn

2
log 2π

− 1

2

K∑
k=1

∑
yi=k

(xi − µk)
⊤Bn×(n−p)(B

⊤
n×(n−p)C

(M)Bn×(n−p))
−1B⊤

n×(n−p)(xi − µk)

− 1

2

K∑
k=1

∑
yi=k

(xi − µk)
⊤Bn×p(B

⊤
n×pCkBn×p)

−1B⊤
n×p(xi − µk) +N log |Bn×n|

Then, an HLDA objective function is derived as follows [19]:

JHLDA (Bn×n) =
|Bn×n|2N∣∣∣B⊤

n×(n−p)C
(M)Bn×(n−p)

∣∣∣N
1

K∏
k=1

∣∣∣B⊤
n×pCkBn×p

∣∣∣Nk

, (3.8)

The solution to maximize Equation (3.8) is not analytically obtained. Therefore, its maximiza-

tion is performed using a numerical optimization technique. Alternatively, a computationally

efficient scheme is given in [73].

Heteroscedastic Discriminant Analysis

HDA uses the following objective function which incorporates individual weighted contributions

of the class variances [20]:

JHDA (Bn×p) =

K∏
k=1

(∣∣B⊤
n×pC

(B)Bn×p

∣∣∣∣B⊤
n×pCkBn×p

∣∣
)Nk

=

∣∣B⊤
n×pC

(B)Bn×p

∣∣N
K∏
k=1

∣∣∣B⊤
n×pCkBn×p

∣∣∣Nk

. (3.9)

In contrast to HLDA, this function is not considered (n − p) dimensions. Only a projection

matrix Bn×p is estimated. There is no closed-form solution to obtain projection matrix Bn×p

similar to HLDA.

3.2.4 Dependency on Data Set

In Figure 3.1, two-dimensional, two- or three-class data features are projected onto one-dimensional

subspaces by LDA and HDA. Here, HLDA projections were omitted because they were close to
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HDA projections. Figure 3.1(a) shows that HDA has higher separability than LDA for the data

set used in [20]. On the other hand, as shown in Figure 3.1(b), LDA has higher separability than

HDA for another data set. Figure 3.1(c) shows the case with another data set where both LDA

and HDA have low separabilities. Thus, LDA and HDA do not always classify the given data

set appropriately. All results show that the separabilities of LDA and HDA depend significantly

on data sets.

3.3 Generalization of Discriminant Analyses

As shown above, it is difficult to separate appropriately every data set with one particular

criterion such as LDA, HLDA or HDA. Here, we concentrate on providing a framework which

integrates various criteria.

3.3.1 Relationship between HLDA and HDA

By using Equations (3.3), (3.6) and (3.7), let us rearrange B⊤
n×nC

(M)Bn×n as follows:

B⊤
n×nC

(M)Bn×n = B⊤
n×nC

(B)Bn×n +B⊤
n×nC

(W )Bn×n

=
∑
k

Pk(µ̂k − µ̂)(µ̂k − µ̂)⊤ +
∑
k

PkĈk

=

[
B⊤

n×pC
(M)Bn×p 0

0 B⊤
n×(n−p)C

(M)Bn×(n−p)

]
, (3.10)

where µ̂ ≡ B⊤
n×nµ.

The determinant of this is∣∣∣B⊤
n×nC

(M)Bn×n

∣∣∣ = ∣∣∣B⊤
n×pC

(M)Bn×p

∣∣∣ ∣∣∣B⊤
n×(n−p)C

(M)Bn×(n−p)

∣∣∣ . (3.11)

Hence, we have ∣∣C(M)
∣∣N |Bn×n|2N∣∣∣B⊤

n×(n−p)C
(M)Bn×(n−p)

∣∣∣N =
∣∣∣B⊤

n×pC
(M)Bn×p

∣∣∣N . (3.12)

Inserting this in Equation (3.8) and removing a constant term yields

JHLDA (Bn×p) ∝
∣∣B⊤

n×pC
(M)Bn×p

∣∣N
K∏
k=1

∣∣∣B⊤
n×pCkBn×p

∣∣∣Nk

. (3.13)
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LDA projection

HDA projection

(PLDA m=0)

Class 1

Class 2

(a)

Class 1
Class 2

Class 3

LDA projection

(PLDA m=1)

HDA projection

(b)

LDA projection

HDA projection

PLDA projection (m=10)

Class 1
Class 2

Class 3

(c)

Figure 3.1: Examples of dimensionality reduction by LDA, HDA and PLDA.



3.3. GENERALIZATION OF DISCRIMINANT ANALYSES 33

From Equations (3.9) and (3.13), the difference between HLDA and HDA lies in their nu-

merators, i.e., the mixture covariance matrix versus the between-class covariance matrix. This

difference is the same as the difference between the two LDAs shown in (3.4) and (3.5). Thus,

Equations (3.9) and (3.13) can be viewed as the same formulation except their numerators.

Later, we write B to mean Bn×p. This will simplify the notation.

3.3.2 Relationship between LDA and HDA

The LDA and HDA objective functions can be rewritten as

JLDA (B) =

∣∣B⊤C(B)B
∣∣∣∣B⊤C(W )B
∣∣ =

∣∣∣C̃(B)
∣∣∣∣∣∣∣∣

K∑
k=1

PkC̃k

∣∣∣∣∣
, (3.14)

JHDA (B) =

∣∣B⊤C(B)B
∣∣N

K∏
k=1

∣∣∣B⊤CkB
∣∣∣Nk

=


∣∣∣C̃(B)

∣∣∣∏K
k=1

∣∣∣C̃k

∣∣∣Pk


N

, (3.15)

where C̃(B) ≡ B⊤C(B)B and C̃k ≡ B⊤CkB are between-class and class k covariance matrices

in the projected p-dimensional space, respectively. Here, we rewrite JHDA (B) as follows:

JHDA (B) =

∣∣∣C̃(B)
∣∣∣∏K

k=1

∣∣∣C̃k

∣∣∣Pk
. (3.16)

Maximizations of Equations (3.15) and (3.16) result in the same transformation.

Both numerators denote determinants of the between-class covariance matrix. In Equa-

tion (3.5), the denominator can be viewed as a determinant of the weighted arithmetic mean

of the class covariance matrices. Similarly, in Equation (3.15), the denominator can be viewed

as a determinant of the weighted geometric mean of the class covariance matrices. Thus, the

difference between LDA and HDA is the definitions of the mean of the class covariance matrices.

Moreover, to replace their numerators with the determinants of the mixture covariance matrices,

the difference between LDA and HLDA is the same as the difference between LDA and HDA.

3.3.3 Power Linear Discriminant Analysis

As described above, Equations (3.5) and (3.15) give us a new integrated interpretation of LDA

and HDA. As an extension of this interpretation, their denominators can be replaced by a

determinant of the weighted harmonic mean, or a determinant of the root mean square.
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In the econometric literature, a more general definition of a mean is often used, called the

weighted mean of order m [97]. We extend this notion to a determinant of a matrix mean and

propose a new objective function as follows 1 :

JPLDA (B,m) =

∣∣∣C̃n

∣∣∣∣∣∣∣∣∣
(

K∑
k=1

PkC̃
m
k

)1/m
∣∣∣∣∣∣
, (3.17)

where C̃n ∈ {C̃(B), C̃(M)}, C̃(M) ≡ B⊤C(M)B, and m is a control parameter. By varying

the control parameter m, the proposed objective function can represent various criteria. Some

typical objective functions are enumerated below.

• m = 2 (root mean square)

JPLDA (B, 2) =

∣∣∣C̃n

∣∣∣∣∣∣∣∣∣
(

K∑
k=1

PkC̃
2
k

)1/2
∣∣∣∣∣∣
. (3.18)

• m = 1 (arithmetic mean)

JPLDA (B, 1) =

∣∣∣C̃n

∣∣∣∣∣∣∣∣
K∑
k=1

PkC̃k

∣∣∣∣∣
= JLDA (B) . (3.19)

• m → 0 (geometric mean)

JPLDA (B, 0) =

∣∣∣C̃n

∣∣∣
K∏
k=1

∣∣∣C̃k

∣∣∣Pk

= JHDA (B) . (3.20)

1We let the function f of a symmetric positive definite matrix A equal Udiag(f(λ1), . . . , f(λn))U
T =

U(f(Λ))UT , where A = UΛUT , U denotes the matrix of n eigenvectors, and Λ denotes the diagonal matrix of
eigenvalues, λi’s. We may define the function f as some power or the logarithm of A.
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• m = −1 (harmonic mean)

JPLDA (B,−1) =

∣∣∣C̃n

∣∣∣∣∣∣∣∣∣
(

K∑
k=1

PkC̃
−1
k

)−1
∣∣∣∣∣∣
. (3.21)

The derivation of Equation (3.20) is given in Appendix A.1. The following equations are also

obtained under a particular condition (see Appendix A.2).

• m → ∞

JPLDA (B,∞) =

∣∣∣C̃n

∣∣∣
max
k

∣∣∣C̃k

∣∣∣ . (3.22)

• m → −∞

JPLDA (B,−∞) =

∣∣∣C̃n

∣∣∣
min
k

∣∣∣C̃k

∣∣∣ . (3.23)

Intuitively, as m becomes larger, the classes with larger variances become dominant in the

denominator of Equation (3.17). Conversely, as m becomes smaller, the classes with smaller

variances become dominant.

We call this new discriminant analysis formulation Power Linear Discriminant Analysis

(PLDA). Figure 3.1(c) shows that PLDA can have a higher separability for a data set with which

LDA and HDA have lower separability. To maximize the PLDA objective function with respect

to B, we can use numerical optimization techniques such as the Nelder-Mead method [98] or

the SANN method [99]. These methods need no derivatives of the objective function. However,

it is known that these methods converge slowly. In some special cases below, using a matrix

differential calculus [100], the derivatives of the objective function are obtained. Hence, we can

use some fast convergence methods, such as the quasi-Newton method and conjugate gradient

method [101].

Order m Constrained to Be An Integer

Assuming that a control parameter m is constrained to be an integer, the derivatives of the

PLDA objective function are formulated as follows:

∂

∂B
log JPLDA (B,m) = 2CnBC̃−1

n − 2Dm, (3.24)
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where

Dm =



1

m

K∑
k=1

PkCkB

m∑
j=1

Xm,j,k, if m > 0

K∑
k=1

PkCkBC̃−1
k , if m = 0

− 1

m

K∑
k=1

PkCkB

|m|∑
j=1

Ym,j,k, otherwise

Xm,j,k = C̃m−j
k

(
K∑
l=1

PlC̃
m
l

)−1

C̃j−1
k ,

and

Ym,j,k = C̃m+j−1
k

(
K∑
l=1

PlC̃
m
l

)−1

C̃−j
k .

This equation is used for acoustic models with full covariance.

C̃k Constrained to Be Diagonal

Because of computational simplicity, the covariance matrix in class k is often assumed to be

diagonal [19, 20]. Since a diagonal matrix multiplication is commutative, the derivatives of the

PLDA objective function are simplified as follows:

JPLDA (B,m) =

∣∣∣C̃n

∣∣∣∣∣∣∣∣∣
(

K∑
k=1

Pkdiag(C̃k)
m

)1/m
∣∣∣∣∣∣
, (3.25)

∂

∂B
log JPLDA (B,m) = 2CnBC̃−1

n − 2FmGm, (3.26)

where

Fm =
K∑
k=1

PkCkBdiag
(
C̃k

)m−1
, (3.27)

Gm =

(
K∑
k=1

Pkdiag
(
C̃k

)m)−1

, (3.28)
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and diag(A) is an operator which sets zero for off-diagonal elements of A. In Equation (3.25),

the control parameter m can be any real number, unlike in Equation (3.24).

When m is equal to zero, the PLDA objective function corresponds to the diagonal HDA

(DHDA) objective function introduced in [20].

3.3.4 Experiments

Speech recognition experiments on the CENSREC-3 database [102] are presented below. The

database was designed as an evaluation framework of Japanese isolated word recognition in real

driving car environments. Speech data was collected using 2 microphones, a close-talking (CT)

microphone and a hands-free (HF) microphone. For training, driver’s speech of phonetically-

balanced sentences was recorded under two conditions: while idling and driving on a city street

with normal in-car environment. A total of 14,050 utterances spoken by 293 drivers (202 males

and 91 females) were recorded with each microphone. For evaluation, driver’s speech of isolated

words was recorded under 16 environmental conditions using combinations of three kinds of

vehicle speeds (idling, low-speed driving on a city street, and high-speed driving on an express-

way) and six kinds of in-car environments (normal, with hazard flasher on, with air-conditioner

on (fan low/high), with audio CD player on, and with windows open). The speech signals for

training and evaluation were both sampled at 16 kHz.

Baseline System

The acoustic models consisted of triphone HMMs. In order to train HMMs, all utterances

recorded with CT and HF microphones were used. Each HMM had five states and three of them

had output distributions. Each distribution was represented with 32 mixture diagonal Gaussians.

The total number of states with the distributions were 2,000. The feature vector consisted

of 12 MFCCs and log-energy with their corresponding delta and acceleration coefficients (39

dimensions). Frame length was 20 ms and frame shift was 10 ms. In the Mel-filter bank analysis,

a cut-off was applied to frequency components lower than 250 Hz. The decoding process was

performed without any language model. The vocabulary of the CENSREC-3 was 50 words [102],

which is listed in Table 3.1. Fifty similar-sounding out-of-vocabulary words listed in Table 3.2

were appended to the vocabulary to make recognition tasks difficult. For evaluation, we used

driver’s speech recorded under three kinds of vehicle speeds in normal in-car environment. A

total of 2,646 utterances spoken by 18 speakers (8 males and 10 females) were evaluated for each

microphone.

Dimensionality Reduction Procedure

The dimensionality reduction was performed using PCA, LDA, (D)HDA, and PLDA for the

spliced features. Eleven successive frames (143 dimensions) were reduced to 39 dimensions.
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Table 3.1: A list of 50 words for evaluation.

digital locker ninsho kaishi

2001/1/1 yamada tarou

kensaku shuryo ansho bango

0123 4567

8901 2345

6789 contents

eiga hitsuji tachino chinmoku

sound of music game

pack man ongaku

jpop konsyu no top10

genre betsu kensaku pops

rock beatles

senkyoku yesterday

let it be haishin kaishi

ferry annai jikoku hyo

dai2bin wo yoyaku net news

topics onsei yomiage

tenki yohou koutsu jouhou

kanagawa ken yokohama shi

naka ku toukyou to

setagaya ku syuto kousoku

touhoku jidoushadou seven eleven

uniqlo star bucks

hotel ichiran pacific hotel

yoyaku hyo service syuryo
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Table 3.2: A list of appended 50 words for evaluation.

analog locker ninshiki kaishi

2001/2/1 yamuda tarou

kensaku kaishi ansho ango

01223 45677

890 2335

6289 latent

keikaku shitsuji tachino chinmoku

bound of music aim

rock man hongaku

atop honsyu no top10

genre betsu kenbetsuku tops

look fii toruzu

wankyoku iesta wei

pet it be henshin kaishi

ferry kannai yokoku hyo

kai2ben wo yoyaku let news

po pics onsei momiage

tenki gohou koutsu youhou

kanagawa en yokohama ri

waka ku toukyou ko

setagawa ku syuto kyousoku

touhoku jidouhadou tebun eleven

kunikuro sujar bucks

potel ichiren pacific potel

kakaku hyo service kyuryo
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Table 3.3: Word error rates (%) by PLDA and conventional methods.

Method m CT HF Overall

MFCC + ∆ +∆∆ − 7.45 15.04 11.24

PCA − 10.58 19.39 14.98

LDA − 8.78 15.80 12.28

HDA − 7.94 17.16 12.55

PLDA −3.0 6.73 15.04 10.88

PLDA −2.0 7.29 12.32 9.81

PLDA −1.5 6.27 10.70 8.48

PLDA −1.0 6.92 11.49 9.20

PLDA −0.5 6.12 12.51 9.32

DHDA (0.0) 7.41 14.17 10.79

PLDA 0.5 7.29 13.53 10.41

PLDA 1.0 9.33 16.97 13.15

PLDA 1.5 8.96 17.31 13.13

PLDA 2.0 8.58 15.91 12.24

PLDA 3.0 9.41 16.36 12.89

In HDA and PLDA, to optimize their objective functions, we used the limited-memory BFGS

algorithm as a numerical optimization technique [101]. Assuming that projected covariance ma-

trices were diagonal, Equation (3.26) was used to compute a gradient. The LDA transformation

matrix was used for the initial gradient. To assign one of the classes to every feature after

dimensionality reduction, HMM state labels were generated for the training data by state-level

forced alignment algorithm using a well-trained HMM system. The number of classes was 43

corresponding to the number of the monophones.

Experimental Results

Experimental results are summarized in Table 3.3. For the evaluation data recorded with a CT

microphone, PLDA withm=−0.5 yielded the lowest word error rate (WER). On the other hand,

for the evaluation data recorded with a HF microphone, the lowest WER was obtained by PLDA

with a different control parameter (m=−1.5). Thus, these two data sets recorded with different

microphones have different optimal control parameters. Experimental results demonstrated that

PLDA with the optimal control parameters consistently outperform the other methods.
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3.4 Selection of Sub-Optimal Control Parameter

As shown in the previous section, PLDA can describe various criteria by varying its control

parameter m, and the effectiveness of PLDA with the optimal control parameter has been

experimentally demonstrated. One way of obtaining an optimal control parameter m is to train

HMMs and test recognition performance changingm, and then to choose them with the smallest

error. Unfortunately, this raises a considerable problem in a speech recognition task. In general,

to train HMMs and to test recognition performance requires more than several dozen hours.

Since it is able to choose a control parameter within a real number and the computational time

is proportional to the number of candidate control parameters, PLDA incurs considerable time

to select the optimal one.

This section provides a sub-optimal control parameter selection method without training of

HMMs and test. To evaluate the relative performance among a number of control parameters,

we focus on a class separability error of projected features and measure it on training data. We

show that the proposed method can rapidly and accurately compare with the relative recognition

performance.

3.4.1 Estimating Sub-Optimal Control Parameter without Testing

In this section we focus on a class separability error of the features in the projected space instead

of using a recognition error. Better recognition performance can be obtained under the lower

class separability error of projected features. Consequently, we measure the class separability

error and use it as a criterion for the recognition performance comparison. We will define a class

separability error of projected features.

Two-class Problem

This subsection focuses on the two-class case. We first consider the Bayes error of the projected

features on an evaluation data as a class separability error:

ε =

∫
min[P1p1(x), P2p2(x)]dx, (3.29)

where Pi denotes a prior probability of the class i and pi(x) is a conditional density function of

the class i. The Bayes error ε can represent a classification error, assuming that the training data

and the evaluation data come from the same distributions. However, it is difficult to directly

measure the Bayes error. Instead, we use the Chernoff bound between class 1 and class 2 as a

class separability error [16]:

ε1,2u = P s
1P

1−s
2

∫
ps1(x)p

1−s
2 (x)dx for 0 ≤ s ≤ 1 (3.30)
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Figure 3.2: Examples of dimensionality reduction.

where ε1,2u indicates an upper bound of ε. In addition, when the pi(x)’s are normal with mean

vectors µi and covariance matrices Ci, the Chernoff bound between class 1 and class 2 becomes

ε1,2u = P s
1P

1−s
2 exp(−η1,2(s)), (3.31)

where

η1,2(s) =
s(1− s)

2
(µ2 − µ1)

T (sC1 + (1− s)C2)
−1 (µ2 − µ1)

+
1

2
ln

|sC1 + (1− s)C2|
|C1|s |C2|1−s . (3.32)

In this case, εu can be obtained analytically and calculated rapidly.

In Figure 3.2, two-dimensional two-class data are projected onto a one-dimensional subspace

by two methods. To compare with their Chernoff bounds, the lower class separability error is

obtained from the projected features by Method 1 as compared with those by Method 2. In this

case, Method 1 preserving the lower class separability error should be selected.

Extension to Multi-class Problem

In the previous subsection, we defined a class separability error for two-class data. Here, we

extend a two-class case to a multi-class case. Unlike the two-class case, it is possible to define
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several error functions for multi-class data. We define an error function as follows:

ε̃u =
K∑
i=1

K∑
j=1

I(i, j)εi,ju (3.33)

where I(·) denotes an indicator function. We consider the following three formulations as an

indicator function.

Sum of Pairwise Approximated Errors The sum of all the pairwise Chernoff bounds is

defined using the following indicator function:

I(i, j) =

{
1, if j > i,

0, otherwise.
(3.34)

Maximum Pairwise Approximated Error The maximum pairwise Chernoff bound is de-

fined using the following indicator function:

I(i, j) =

{
1, if j > i and (i, j) = (̂i, ĵ),

0, otherwise,
(3.35)

where (̂i, ĵ) ≡ argmax
i,j

εi,ju .

Sum of Maximum Approximated Errors in Each Class The sum of the maximum

pairwise Chernoff bounds in each class is defined using the following indicator function:

I(i, j) =

{
1, if j = ĵi,

0, otherwise,
(3.36)

where ĵi ≡ argmax
j

εi,ju .

3.4.2 Parameter Selection Results

This section investigates the effectiveness of parameter selection methods under the same ex-

perimental condition presented in Section 3.3.4. In comparing dimensionality reduction criteria

without training HMMs nor testing recognition performance, we used s = 1/2 for the Chernoff

bound computation because there was no a priori information about weights of two class dis-

tributions. In the case of s = 1/2, Equation (3.30) is called the Bhattacharyya bound. Two

covariance matrices in Equation (3.32) were treated as diagonal because diagonal Gaussians

were used to model HMMs. The parameter selection was performed as follows: To select the
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optimal control parameter for the data set recorded with a CT microphone, all the training

data with a CT microphone were labeled with monophones using a forced alignment recognizer.

Then, each monophone was modeled as a unimodal normal distribution, and the mean vector

and covariance matrix of each class were calculated. Chernoff bounds were obtained using these

mean vectors and covariance matrices. The optimal control parameter for the data set with an

HF microphone was obtained using all of the training data with an HF microphone through

the same process as a CT microphone. Both Tables 3.4 and 3.5 show that the results of the

proposed method and relative recognition performance agree well. There was little difference

in the parameter selection performances among Equations (3.34)-(3.36) in parameter selection

accuracy. The proposed selection method yielded sub-optimal performance without training

HMMs nor testing recognition performance on a development set, although it neglected time

information of speech feature sequences to measure a class separability error and modeled a class

distribution as a unimodal normal distribution. In addition, the optimal control parameter value

can vary with different speech features, a different language, or a different noise environment.

The proposed selection method can adapt to such variations.

3.4.3 Computational costs

The computational costs for the evaluation of recognition performance versus the proposed se-

lection method are shown in Table 3.6. Here, the computational cost involves the optimization

procedure of the control parameter. In this experiment, we evaluate the computational costs

on the evaluation data set with a Pentium IV 2.8 GHz computer. For every dimensionality

reduction criterion, the evaluation of recognition performance required 15 hours for training of

HMMs and 5 hours for test. In total, 220 hours were required for comparing 11 dimensionality

reduction criteria (PLDAs using 11 different control parameters). On the other hand, the pro-

posed selection method only required approximately 30 minutes for calculating statistical values

such as mean vectors and covariance matrices of each class in the original space. After this,

2 minutes were required to calculate Equations (3.34)-(3.36) for each dimensionality reduction

criterion. In total, only 0.87 hour was required for predicting the optimal criterion among the

11 dimensionality reduction criteria described above. Thus, the proposed method could per-

form the prediction process much faster than a conventional procedure that included training

of HMMs and test of recognition performance.

3.5 Combinational Use of Acoustic Feature Transformation and
Discriminative Training

To improve speech recognition performance, the conventional and the proposed feature trans-

formations such as LDA, HDA and PLDA were introduced in Sections 3.2 and 3.3. Recently, in
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Table 3.4: Word error rates (%) and class separability errors according to Equations (3.34)-(3.36)
for the evaluation set with CT microphone. The best results are highlighted in bold.

Method WER Eq. (3.34) Eq. (3.35) Eq. (3.36)

MFCC + ∆ +∆∆ 7.45 2.31 0.0322 0.575

PCA 10.58 3.36 0.0354 0.669

LDA 8.78 3.10 0.0354 0.641

HDA 7.94 2.99 0.0361 0.635

PLDA (m = −3) 6.73 2.02 0.0319 0.531

PLDA (m = −2) 7.29 2.07 0.0316 0.532

PLDA (m = −1.5) 6.27 1.97 0.0307 0.523

PLDA (m = −1) 6.92 1.99 0.0301 0.521

PLDA (m = −0.5) 6.12 2.01 0.0292 0.525

DHDA (PLDA m=0) 7.41 2.15 0.0296 0.541

PLDA (m = 0.5) 7.29 2.41 0.0306 0.560

PLDA (m = 1) 9.33 3.09 0.0354 0.641

PLDA (m = 1.5) 8.96 4.61 0.0394 0.742

PLDA (m = 2) 8.58 4.65 0.0404 0.745

PLDA (m = 3) 9.41 4.73 0.0413 0.756

Table 3.5: Word error rates (%) and class separability errors according to Equations (3.34)-(3.36)
for the evaluation set with HF microphone. The best results are highlighted in bold.

Method WER Eq. (3.34) Eq. (3.35) Eq. (3.36)

MFCC + ∆ +∆∆ 15.04 2.56 0.0356 0.648

PCA 19.39 3.65 0.0377 0.738

LDA 15.80 3.38 0.0370 0.711

HDA 17.16 3.21 0.0371 0.697

PLDA (m = −3) 15.04 2.19 0.0338 0.600

PLDA (m = −2) 12.32 2.26 0.0339 0.602

PLDA (m = −1.5) 10.70 2.18 0.0332 0.5921

PLDA (m = −1) 11.49 2.23 0.0327 0.5922

PLDA (m = −0.5) 12.51 2.31 0.0329 0.598

DHDA (PLDA m=0) 14.17 2.50 0.0331 0.619

PLDA (m = 0.5) 13.53 2.81 0.0341 0.644

PLDA (m = 1) 16.97 3.38 0.0370 0.711

PLDA (m = 1.5) 17.31 5.13 0.0403 0.828

PLDA (m = 2) 15.91 5.22 0.0412 0.835

PLDA (m = 3) 16.36 5.36 0.0424 0.850
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Table 3.6: Computational costs with the conventional and proposed method.

conventional 220 h
= (15 h (training) + 5 h (test))

× 11 conditions

proposed 0.87 h
= 30min (mean and variance calculations)
+ 2min (Chernoff bound calculation)
× 11 conditions

machine learning/vision communities, other discriminant analyses have been proposed. Several

researchers proposed other objective functions, such as oriented discriminant analysis (ODA) [27]

and a heteroscedastic extension of LDA using Chernoff criterion [28]. All of these discriminant

analyses transform features discriminatively in a feature space. On the other hand, various

criteria for discriminative training of acoustic models have been studied. Maximum mutual in-

formation (MMI) and minimum phone error (MPE) criteria have been successfully applied to

many speech recognition systems [46,53,56].

The feature transformation technique and the discriminative training technique aim to im-

prove speech recognition performance at different levels. The combination of these two tech-

niques can further improve speech recognition performance [92–95]. This section investigates

combinations of discriminant analysis-based feature transformation and discriminative train-

ing through experiments using in-car speech [96]. We also investigate the robustness against

mismatched noise conditions between training and evaluation environments.

3.5.1 Feature Transformation Based on Discriminant Analysis

This section briefly reviews five feature transformation techniques: LDA, HDA, PLDA, ODA

and heteroscedastic extension of LDA using Chernoff distance. Let us recall that LDA, HDA,

and PLDA objective functions are respectively defined as:

JLDA (B) =

∣∣B⊤C(B)B
∣∣∣∣B⊤C(W )B
∣∣ ,

JHDA (B) =

K∏
k=1

(∣∣B⊤C(B)B
∣∣

|B⊤CkB|

)Nk

,

JPLDA (B,m) =

∣∣B⊤C(B)B
∣∣∣∣∣∣∣∣

(
K∑
k=1

Pk(B
⊤CkB)m

)1/m
∣∣∣∣∣∣
,
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where C(B), C(W ) and MCk denoted the between-class, the within-class, and the k-th class

covariance matrices, respectively. The within-class covariance satisfied C(W ) =
∑K

k=1 PkCk,

where Pk was the class weight, and K was the number of classes.

Oriented Discriminant Analysis (ODA)

ODA has adopted symmetric divergence as a measure of dissimilarity between two distribu-

tions [27]. Symmetric divergence between two Gaussian distributions pi(x) = N (x;µiCi) and

pj(x) = N (x;µjCj) is given by:

KLij =

∫
(pi(x)− pj(x)) log

pi(x)

pj(x)
dx

= tr
(
C−1

i Cj +C−1
j Ci − 2I

)
+ (µi − µj)

⊤(C−1
i +C−1

j )(µi − µj).

The ODA objective function is defined as follows:

JODA(B) =

K∑
i=1

K∑
j=1

KLij

∝
K∑
i=1

tr
(
(B⊤CiB)−1B⊤AiB

)
,

where Ai =
∑K

j=1,j ̸=i(Mij + Cj) and Mij = (µi − µj)(µi − µj)
⊤. While the original ODA

objective function in [27] appended a negative sign, we omitted it for convenience. To optimize

the objective function, Torre et al. introduced an efficient computation scheme called bound

optimization.

Heteroscedastic Linear Discriminant Analysis Using Chernoff Distance

A limitation of LDA is that it merely tries to separate class means as good as possible. The

Chernoff distance considers mean differences as well as covariance differences. Loog et al. [28]

proposed a heteroscedastic extension of LDA using the Chernoff criterion (HLDAC):

JHLDAC(B) =

K−1∑
i=1

K∑
j=i+1

PiPjtr

((
B⊤B

)−1 (
B⊤CCijB

))
,

where CCij is the directed distance matrices capturing the Chernoff distance between class i

and j, which is defined as:

CCij ≡ C
−1/2
ij (µi − µj) (µi − µj)

⊤C
−1/2
ij +

1

πiπj
(logCij − πi logCi − πj logCj) .

Here, πi ≡ Pi/(Pi + Pj) and πj ≡ Pj/(Pi + Pj) are relative priors, i.e., only taking the two

classes into account that define the particular pairwise term. Futhermore, Cij is the average

pairwise within-class scatter matrix, defined as πiCi + πjCj .
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3.5.2 Discriminative Training

As described in Section 2.3.2, acoustic model parameters are typically estimated via maximum

likelihood. Recall from Equation (2.15) that the objective function of the maximum likelihood

estimation is given by:

FML(λ) =

R∑
r=1

log pλ(Or|sr),

where λ is the set of HMM parameters, Or is the r-th training utterance (a word or a sentence),

sr is the r-th correct transcription, R denotes the number of training utterances, and pλ(Or|s) is
the likelihood given transcription s. Many experimental results have shown that discriminative

training techniques yield better performance than traditional maximum likelihood (ML) training.

This section briefly reviews two discriminative training techniques introduced in Section 2.3.3:

MMI [46,56] and MPE [53].

Maximum Mutual Information (MMI)

Recall from Equation (2.16) that the MMI criterion is defined as follows [46,56]:

FMMI(λ) =

R∑
r=1

log
pλ(Or|sr)κP (sr)∑
s pλ(Or|s)κP (s)

,

where κ is an acoustic de-weighting factor which can be adjusted to improve the test set per-

formance, and P (s) is the language model probability for sentence s. The MMI criterion equals

the multiplication of the posterior probabilities of the correct sentences sr.

Minimum Phone Error (MPE)

MPE training aims to minimize the phone classification error (or maximize the phone accu-

racy) [53]. Recall from Equation (2.17) that the objective function to be maximized by the

MPE training is expressed as

FMPE(λ) =

R∑
r=1

∑
s pλ(Or|s)κP (s)A(s, sr)∑

s pλ(Or|s)κP (s)
,

where A(s, sr) represents the raw phone transcription accuracy of the sentence s given the correct

sentence sr, which equals the number of correct phones minus the number of errors.

3.5.3 Combination of Feature Transformation and Discriminative Training

Feature transformation aims to transform high dimensional features to low dimensional fea-

tures in a feature space while separating different classes. Discriminative training estimates the
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generative training: ML

discriminative training: MMI, MPE

Model space

non-discriminant: Delta Coefficient

discriminant: LDA, HDA, PLDA
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Figure 3.3: Feature transformation and discriminative training.

acoustic models discriminatively in a model space. These relations are illustrated in Figure 3.3.

Because these two techniques are adopted at different levels, a combination of them is expected

to have a complementary effect on speech recognition.

3.5.4 Experiments

We conducted experiments on the CENSREC-3 database [102]. Detailed descriptions of the

database were given in Section 3.3.4. We used all utterances recorded with CT and HF mi-

crophones for training. For evaluation, we used drivers speech of isolated words recorded with

CT and HF microphones under three different conditions: an in-car environment without A/C

noise (normal), with low fan-speed noise (fan-low), and with high fan-speed noise (fan-high).

Tables 3.7 and 3.8 show the amount of data for evaluation in each condition (total six condi-

tions) and the average SNR (Signal to Noise Ratio) in each recording condition for evaluation

data [102], respectively.

Experimental Setup

As for an evaluation procedure, we followed the CENSREC-3 baseline scripts except that fifty

similar-sounding words presented in Table 3.2 were added to the vocabulary. The total vo-

cabulary size became 100. The acoustic models in the speech recognizer consisted of triphone
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Table 3.7: Amount of evaluation data.

Microphone In-car condition # Utterances

CT A/C off (normal) 2646

CT A/C on, low (fan-low) 2637

CT A/C on, high (fan-high) 2695

HF A/C off (normal) 2646

HF A/C on, low (fan-low) 2637

HF A/C on, high (fan-high) 2695

Table 3.8: Average SNR of evaluation data in each environment (dB) [102].

Condition Normal Fan (low) Fan (high)

Microphone CT HF CT HF CT HF

Idling 41.19 16.75 32.86 11.01 25.76 5.47

Low speed 38.39 10.96 32.11 8.67 22.64 2.75

High speed 30.11 5.89 28.58 3.59 21.65 1.46

HMMs. Each HMM had five states and three of them had output distributions. Each distribu-

tion was represented with 32 mixture diagonal Gaussians. The total number of states with the

distributions was 2,000. The feature vector consisted of 12 MFCCs and log-energy with ∆ and

∆∆ (baseline). The frame length and the frame shift were 20 ms and 10 ms, respectively.

Feature Transformation Procedure

Feature transformation for concatenated features was performed by LDA, HDA, ODA, HLDAC,

and PLDA . Eleven successive static frames (143 dimensions) were reduced to 39 dimensions,

which are the same number of baseline feature dimensions. Although adding delta (and accel-

eration) coefficients to feature vectors to be processed may be regarded as finding a desirable

projection, delta coefficients essentially have no additional information because they are a linear

combination of static feature vectors around current time. Therefore, we did not add delta and

acceleration to feature vectors. The number of classes was 43, corresponding to the number of

monophones. MLLT [74] was applied after LDA, HDA, ODA and HLDAC. The optimal control

parameter (m=−1.5) of PLDA was selected experimentally.
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Discriminative Training Procedure

Discriminative training requires two lattices: one for the correct transcription of each training

file and another derived from the recognition result of each training file. Having created these

lattices using an initial set of models, the HMMs are re-estimated by 5 iterations of a parameter

estimation procedure using the same set of lattices. Once these lattices were generated for each

feature transformation technique, the same lattice was used to train HMMs with MMI and MPE

criteria.

Experimental Results

The experimental results are presented in Tables 3.9 to 3.11. The noise condition for the evalua-

tion data used in Table 3.9 matches that for training data. The evaluation data used in Table 3.10

contain low air-conditioner noise. The data used in Table 3.11 contain high air-conditioner noise.

These noises are not contained in training data. The best overall performance is shown in bold.

These results showed that both of feature transformations and two discriminative training

techniques worked well under a matched noise condition between training and evaluation. In par-

ticular, combinations of feature transformations and MPE evidenced outstanding performance.

On the other hand, under a mismatched noise condition, the results under a fan-low noise condi-

tion and a fan-high noise condition had a different tendency. Under a fan-low condition, both of

feature transformations and two discriminative training techniques also worked well. This result

comes from the fact that the difference between a normal condition and a fan-low condition is

slight because A/C noise with low fan-speed is small. Under a fan-high noise condition, neither

feature transformations nor MPE worked well for the data recorded with an HF microphone,

as shown in Table 3.11. When noise in training differs considerably from that in evaluation,

the degree of confusability of acoustic features among different classes would change. Therefore,

no feature transformations estimated under a normal noise environment in training worked well

under a fan-high noise environment in evaluation. In terms of phone classification error among

different classes, the data under a normal condition and the data under a fan-high condition

would have different optimal boundaries to minimize phone classification errors. Therefore,

MPE had worse recognition performance than the other training criteria.

3.6 Summary

In this chapter we propose a generalization framework for integrating various criteria to reduce

dimensionality. The novel framework termed power linear discriminant analysis (PLDA) includes

LDA, HLDA and HDA criteria as special cases. The experimental results on the CENSREC-3

database demonstrated that the PLDA with the optimal control parameters reduced word error

rate from 11.24% to 8.48%.
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Table 3.9: Word error rates (%) on the evaluation set recorded under a normal condition.

CT HF Overall
ML MMI MPE ML MMI MPE ML MMI MPE

baseline 7.4 7.1 6.9 15.0 14.4 15.9 11.2 10.8 11.5

LDA 7.1 6.9 3.9 14.2 14.1 13.7 10.7 10.5 8.9

HDA 7.9 7.9 6.9 14.5 14.2 13.6 11.2 11.1 10.3

ODA 8.5 7.8 7.0 13.8 13.4 13.3 11.2 10.6 10.2

HLDAC 9.1 8.3 7.4 12.8 12.2 11.3 11.0 10.3 9.4

PLDA 6.2 6.0 5.0 10.7 10.3 10.2 8.5 8.2 7.7

Table 3.10: Word error rates (%) on the evaluation set recorded under a fan-low condition.

CT HF Overall
ML MMI MPE ML MMI MPE ML MMI MPE

baseline 9.1 8.8 8.0 25.4 25.0 28.9 17.3 16.9 18.5

LDA 7.3 7.3 4.4 26.3 26.1 26.5 16.9 16.7 15.5

HDA 8.4 8.5 7.8 26.6 26.3 28.2 17.5 17.4 18.0

ODA 8.9 8.2 7.7 24.9 23.4 24.9 16.9 15.9 16.3

HLDAC 8.6 8.3 7.0 24.3 23.7 24.8 16.5 16.0 15.9

PLDA 6.4 6.1 4.9 19.7 19.7 19.6 13.1 12.9 12.3

Table 3.11: Word error rates (%) on the evaluation set recorded under a fan-high condition.

CT HF Overall
ML MMI MPE ML MMI MPE ML MMI MPE

baseline 10.9 10.7 11.2 56.4 55.9 59.8 33.7 33.3 35.5

LDA 14.1 13.3 11.8 63.7 63.3 65.8 38.9 38.3 38.8

HDA 11.1 10.8 11.0 62.6 62.1 66.3 36.9 36.5 38.7

ODA 12.9 11.8 11.2 65.3 64.3 64.9 39.2 38.1 38.1

HLDAC 12.5 11.5 12.0 65.2 64.6 66.7 38.9 38.1 39.4

PLDA 11.3 11.0 10.2 61.4 63.2 62.4 36.4 37.1 36.3
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Then, a sub-optimal control parameter selection method was proposed. The proposed

method used the Chernoff bound as a measure of a class separability error which was an upper

bound of the Bayes error. Experimental results showed that the proposed method could evaluate

the relative recognition performance without training of HMMs and test on an evaluation set,

and reduced a computational cost from 220 hours to less than one hour.

Finally, this chapter investigated the effectiveness of discriminant analysis-based feature

transformation techniques and discriminative training techniques. Under a matched background

noise condition between training and evaluation, both techniques achieved better results than the

traditional one (MFCC+∆+∆∆). In addition, a combination of these techniques obtained the

best result. However, under a mismatched background noise condition, feature transformations,

MPE and their combinations were not necessarily effective.





Chapter 4

Locality Preserving Extensions

This chapter extends HDA and PLDA introduced in the previous chapter to deal with data

drawn from a multimodal distribution. This chapter is organized as follows. Conventional fea-

ture transformation methods are reviewed again in Section 4.2. Existing locality-preserving

dimensionality reduction methods are reviewed in Section 4.3. Proposed methods are intro-

duced in Section 4.4. An approximate calculation to obtain a sub-optimal projection is given

in Section 4.5. Experimental results are presented in Section 4.6. Finally, summary is given in

Section 4.7.

4.1 Introduction

In the previous chapter, we have reviewed LDA, also know as Fisher discriminant analysis (FDA),

HLDA and HDA as acoustic feature transformation methods. This work has pointed out that

the objective functions of HLDA and HDA can be viewed as the same formulation except their

numerators, and the difference between LDA and HDA is the definitions of the mean of the class

covariance matrices. Then, we have proposed a generalization framework including LDA and

HDA, called power LDA (PLDA). Unfortunately, these methods may result in an unexpected

dimensionality reduction if the data in a certain class consist of several clusters, i.e., multimodal,

because they implicitly assume that data are generated from a single Gaussian distribution. In

speech recognition, speech signals for acoustic model training tend to be multimodal distributed

data because they are generally collected under various conditions, such as gender, age and

noise environment. Therefore, each class such as a phone is generally represented as a Gaussian

mixture model (GMM) or HMM whose states are represented by GMMs in a speech recognizer.

Since dimensionality reduction methods without handling multimodality may give unsatisfactory

performance, a dimensionality reduction method for multimodal data is desired to improve

speech recognition performance.

Recently, several methods have been proposed to reduce the dimensionality of multimodal

55
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data in the machine learning community [21–24]. It is important to preserve the local structure

of data in reducing the dimensionality of multimodal data appropriately. Locality preserving

projection (LPP) [22] finds a projection such that the data pairs close to each other in the

original space remain close in the projected space. Thus, LPP reduces dimensionality without

losing information on local structure. Local Fisher discriminant analysis (LFDA) [23] is also

proposed as a supervised method for multimodal data, while LPP is an unsupervised method.

To deal with multimodal data, LFDA combines the ideas of FDA and LPP, maximizes between-

class separability and preserves within-class local structure. Thus, LFDA is an extension of LDA

to reduce the dimensionality of multimodal data.

Since LFDA is based on LDA which assumes homoscedasticity, the effectiveness of LFDA

may be limited. To reduce the dimensionality of multimodal data appropriately, we extend

HDA which assumes heteroscedasticity. In order to deal with multimodal data using HDA, we

combine the ideas of LPP and HDA, and propose locality-preserving HDA. In addition, we also

propose locality-preserving PLDA. These extensions can be expected to yield better performance

because they reduce the dimensionality of multimodal data appropriately.

Locality-preserving methods such as LFDA and the proposed methods incur considerable

computational time to obtain optimal projections when there are many features. In order to

slash time, we propose an approximate calculation scheme.

4.2 Linear Dimensionality Reduction Methods

Again, we formulate the problem of linear dimensionality reduction. Given n-dimensional fea-

tures xj ∈ Rn where j = 1, 2, . . . , N , e.g., concatenated speech frames, and associated class

labels yj ∈ {1, 2, . . . ,K}, e.g., phonemes, let us find a projection matrix B ∈ Rn×p that trans-

forms these features to p-dimensional features zj ∈ Rp, where p < n, zj = B⊤xj , K denotes

the number of classes, and N denotes the number of features. X⊤ denotes the transpose of the

matrix X. Here, we briefly review existing dimensionality reduction methods. The aim of the

techniques are to find a projection matrix B.

4.2.1 Linear Discriminant Analysis

Recall that the LDA objective functions are given by the following:

JLDA (B) =

∣∣∣B⊤C(B)B
∣∣∣∣∣∣B⊤C(W )B
∣∣∣ , (4.1)

JLDA (B) =

∣∣∣B⊤C(M)B
∣∣∣∣∣∣B⊤C(W )B
∣∣∣ . (4.2)
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where the three covariance matrices C(W ), C(B) and C(M) denoted the within-class, between-

class and mixture covariance ones.

Added to these, the following function is also defined as an objective function of LDA [16]:

JLDA3 (B) = tr
(
(B⊤C(W )B)−1B⊤C(B)B

)
, (4.3)

where tr(X) is the trace of the matrix X.

In Equations (4.1) to (4.3), within-class scatter, S(W ), between-class scatter, S(B), and mix-

ture scatter, S(M), may be employed in place of C(W ), C(B) and C(M), respectively. These

scatters are given by S(W ) = NC(W ), S(B) = NC(B), and S(M) = NC(M). The same solution is

obtained even if C(W ), C(B) and C(M) in Equations (4.1) to (4.3) are replaced with S(W ), S(B)

and S(M), respectively.

4.2.2 Heteroscedastic Extensions

As described in Section 3.2.3, HDA and HLDA use the following objective function:

JHDA (B) =

∣∣∣B⊤C(B)B
∣∣∣

K∏
k=1

∣∣∣B⊤CkB
∣∣∣Pk

, (4.4)

JHLDA (B) =

∣∣∣B⊤C(M)B
∣∣∣

K∏
k=1

∣∣∣B⊤CkB
∣∣∣Pk

, (4.5)

where Ck is a class covariance matrix in class k. Ck and C(W ) satisfy C(W ) =
∑K

k=1 PkCk.

4.2.3 Power Linear Discriminant Analysis

In the previous chapter, we have proposed the following objective function, which integrates

LDA and HDA [89,90], called power LDA (PLDA) 1 :

JPLDA1 (B,m) =

∣∣∣B⊤C(B)B
∣∣∣∣∣∣∣∣∣

(
K∑
k=1

Pk(B
⊤CkB)m

)1/m
∣∣∣∣∣∣
, (4.6)

1Recall that we let a function f of a symmetric positive definite matrix A equal Udiag(f(λ1), . . . , f(λn))U
T =

U(f(Λ))UT , where A = UΛUT , U denotes the matrix of n eigenvectors, and Λ denotes the diagonal matrix of
eigenvalues, λi’s. We may define the function f as some power A.
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where m denotes a control parameter. Intuitively, as m becomes larger, the classes with larger

variances become dominant in the denominator of Equation (4.6). Conversely, as m becomes

smaller, the classes with smaller variances become dominant. Thus, by varying the control

parameter m, the objective function can represent various objective functions. If m is set to

one/zero, the objective function corresponds to the LDA/HDA objective function [90].

The following objective function is given as another definition of PLDA:

JPLDA2 (B,m) =

∣∣∣B⊤C(M)B
∣∣∣∣∣∣∣∣∣

(
K∑
k=1

Pk(B
⊤CkB)m

)1/m
∣∣∣∣∣∣
, (4.7)

If m is set to zero, the objective function corresponds to HLDA described in Section 3.2.3.

4.3 Existing Dimensionality Reduction Preserving Locality of
Data Structure

Recently, several linear dimensionality reduction methods for multimodal data have been pro-

posed in the machine learning community [21–24]. Here, we review two methods: locality

preserving projection (LPP) [22] and local Fisher discriminant analysis (LFDA) [23].

4.3.1 Locality Preserving Projection

Let A be a symmetric N × N matrix, which represents an affinity between features [22]. The

(i, j)-element Aij of A is the affinity between xi and xj . An affinity element Aij becomes a

large value if xi and xj are located close to each other. Contrarily, Aij becomes a small value if

xi and xj are located far from each other. There are several different definitions of A, e.g., the

nearest neighbor [103], the heat kernel [104] or the local scaling [105]. The objective function of

LPP is defined as follows [22]:

JLPP (B) =
1

2

N∑
i,j=1

Aij ||B⊤xi −B⊤xj ||2,

s.t. B⊤XDX⊤B = I, (4.8)

where X = [x1x2 · · ·xN ], I is the identity matrix, and D is a diagonal matrix whose (i, i)-

element is given by Di,i =
∑N

j=1Aij . Minimizing Equation (4.8) with respect to B, LPP seeks

for a projection matrix B such that nearby data pairs in the original space remain close in the

projected space. To ignore a trivial solution, i.e., B = 0, LPP imposes the constraint (4.8).

Thus, LPP is an unsupervised dimensionality reduction method preserving locality of features

in the original space.
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4.3.2 Local Fisher Discriminant Analysis

A supervised dimensionality reduction method preserving locality of features has been proposed

by Sugiyama [23, 106] and has been referred to as local Fisher discriminant analysis (LFDA).

LFDA combines the ideas of LDA (FDA) and LPP.

Within-class scatter and between-class scatter explained in Section 4.2.1 can be rewritten in

a pairwise manner:

S(W ) =
1

2

N∑
i,j=1

W
(W )
ij (xi − xj)(xi − xj)

⊤, (4.9)

S(B) =
1

2

N∑
i,j=1

W
(B)
ij (xi − xj)(xi − xj)

⊤, (4.10)

where

W
(W )
ij =


1/N1 if yi = yj = 1,
...

...

1/NK if yi = yj = K,

0 if yi ̸= yj ,

(4.11)

W
(B)
ij =


1/N − 1/N1 if yi = yj = 1,
...

...

1/N − 1/NK if yi = yj = K,

1/N if yi ̸= yj .

(4.12)

LDA searches for a projection matrix B such that data pairs in the same class are close to

each other and data pairs in different classes are separate from each other. A more formal

interpretation of this is given in [23]. Based on an affinity matrix A and the pairwise expressions

of the between/within-class scatter, a local within-class scatter and a local between-class scatter

are defined as follows [23]:

S(LW ) =
1

2

N∑
i,j=1

W
(LW )
ij (xi − xj)(xi − xj)

⊤, (4.13)

S(LB) =
1

2

N∑
i,j=1

W
(LB)
ij (xi − xj)(xi − xj)

⊤, (4.14)



60 CHAPTER 4. LOCALITY PRESERVING EXTENSIONS

where

W
(LW )
ij =


Aij/N1 if yi = yj = 1,
...

...

Aij/NK if yi = yj = K,

0 if yi ̸= yj ,

(4.15)

W
(LB)
ij =


Aij(1/N − 1/N1) if yi = yj = 1,
...

...

Aij(1/N − 1/NK) if yi = yj = K,

1/N if yi ̸= yj .

(4.16)

Both S(LW ) and S(LB) put a weight on data pairs in the same class, which is proportional to

their affinity. The objective function of LFDA corresponding to Equation (4.3) is defined as

follows [23,106]:

JLFDA3 (B) = tr

((
B⊤S(LW )B

)−1
B⊤S(LB)B

)
. (4.17)

LFDA searches for a projection matrix B such that nearby data pairs in the same class remain

close and the data pairs in different classes are separate from each other; far-apart data pairs in

the same class are not forced to be close. Thus, LFDA is a supervised dimensionality reduction

method preserving locality. If Aij is taken to be one for all in-class pairs, LFDA corresponds

exactly to LDA because S(LW ) and S(LB) agree with S(W ) and S(B), respectively. Thus, LFDA

is an extension of LDA to deal with multimodal data.

In the same fashion as the definition of LDA objective functions, the following function could

be defined as other objective functions of LFDA:

JLFDA1 (B) =

∣∣∣B⊤S(LB)B
∣∣∣∣∣∣B⊤S(LW )B
∣∣∣ , (4.18)

JLFDA2 (B) =

∣∣∣B⊤S(LM)B
∣∣∣∣∣∣B⊤S(LW )B
∣∣∣ , (4.19)

where a local mixture scatter S(LM) is given by

S(LM) =
1

2

N∑
i,j=1

W
(LM)
ij (xi − xj)(xi − xj)

⊤ (4.20)
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and W
(LM)
ij is given by

W
(LM)
ij = W

(LW )
ij +W

(LB)
ij =

{
Aij/N if yi = yj ,

1/N if yi ̸= yj .
(4.21)

The optimizations of Equations (4.17) to (4.19) result in the same projection.

Local within-class covariance, C(LW ), local between-class covariance, C(LB), and local mix-

ture covariance, C(LM), can be defined as C(LW ) = 1
NS(LW ), C(LB) = 1

NS(LB) and C(LM) =
1
NS(LM), respectively. The same solution is obtained when S(LW ), S(LB) and S(LM) in Equa-

tions (4.17) to (4.19) are replaced with C(LW ), C(LB) and C(LM), respectively.

4.4 Extensions of HDA and PLDA to Deal with Multimodality

We first describe limitations facing the existing methods: LDA, HDA, PLDA and LFDA. Next,

in order to ease the limitations, we propose two methods that extend HDA and PLDA.

4.4.1 Limitations of Existing Methods

While LDA is widely used to reduce dimensionality because of its simplicity and effectiveness, it

assumes that each class shares common class covariance (i.e., homoscedasticity) [18]. Therefore,

if this assumption is far from the real data, LDA sometimes does not work well. In order to

overcome the limitation, HDA has been proposed, which can deal with unequal class covariances

(i.e., heteroscedasticity). These two methods, however, sometimes does not work well because

the fixed weight of each class covariance in the two methods cannot be necessarily suitable

for any kind of data [90]. So we previously proposed PLDA to generalize LDA and HDA to

control the class weights. Unfortunately, all these methods implicitly assume that data are

generated from a single Gaussian distribution. Therefore, they cannot deal with multimodal

data appropriately. To deal with multimodal data, LFDA has been proposed as explained

in Section 4.3.2. It extends the between-class covariance and the within-class covariance to

preserve locality of data structure. Nevertheless, since LFDA is based on LDA that assumes

homoscedasticity, the effectiveness of LFDA may be limited.

In the following sections, we extend HDA that assumes heteroscedasticity using locality-

preserving class covariances that can deal with multimodal data. We also propose locality-

preserving PLDA. These extensions can be expected to yield better performance because they

do not assume homoscedasticity and can reduce dimensionality of multimodal data appropriately.

4.4.2 Local Heteroscedastic Discriminant Analysis

To deal with multimodality using LDA, LFDA extends the within-class and between-class co-

variances in the LDA objective function to the local within-class and between-class covariances,
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respectively. The HDA objective function uses class covariances instead of a within-class co-

variance. Therefore, we will extend class covariances, similar to the local within-class and local

between-class covariances. We first rearrange a class covariance matrix in a pairwise manner:

Ck =
1

2Nk

N∑
i,j=1

Wk,ij(xi − xj)(xi − xj)
⊤,

where

Wk,ij =

{
1/Nk if yi = yj = k,

0 otherwise.
(4.22)

W
(W )
ij andWk,ij satisfyW

(W )
ij =

∑K
k=1Wk,ij . Similar to LDA, HDA also searches for a projection

matrix B so that data pairs in the same class are close to each other and data pairs in different

classes are separate from each other. A more formal interpretation is given in Appendix A.3.

A class covariance matrix can extend to preserve locality of the data structure, similar to

the extensions of S(W ) and S(B). Let us define a local class covariance matrix C
(L)
k as follows:

C
(L)
k =

1

2Nk

N∑
i,j=1

W
(L)
k,ij(xi − xj)(xi − xj)

⊤, (4.23)

where

W
(L)
k,ij =

{
Aij/Nk if yi = yj = k,

0 otherwise.
(4.24)

From Equations (4.15) and (4.24), W
(LW )
ij =

∑K
k=1W

(L)
k,ij . In addition, C

(L)
k and C(LW ) satisfy

C(LW ) =
∑K

k=1 PkC
(L)
k . Replacing class and the between-class covariance matrices with local

class and the local between-class ones, the objective function of HDA preserving locality is

defined as follows:

JLHDA (B) =

∣∣∣B⊤C(LB)B
∣∣∣

K∏
k=1

∣∣∣B⊤C
(L)
k B

∣∣∣Pk

. (4.25)

We call it local HDA. If Aij is taken to be one for all in-class pairs, LHDA is proportionate to

HDA because C
(L)
k corresponds to Ck. Since the only difference between Equations (4.4) and

(4.25) is the definitions of their covariance matrices, the solution to maximize Equation (4.25)

with respect to B is obtained through the same numerical optimization procedure of HDA.



4.5. APPROXIMATE COMPUTATIONS OF LOCAL COVARIANCES 63

4.4.3 Local Power Linear Discriminant Analysis

As in the case of LHDA, using local class covariances C
(L)
k , we extend a PLDA objective function

as follows:

JLPLDA1 (B,m) =

∣∣B⊤C(LB)B
∣∣∣∣∣∣∣∣

(
K∑
k=1

Pk(B
⊤C

(L)
k B)m

)1/m
∣∣∣∣∣∣
. (4.26)

We call it local PLDA (LPLDA). From Equations (4.18) and (4.25), LPLDA corresponds exactly

to LFDA when m=1 and LPLDA corresponds exactly to LHDA when m → 0. Since the only

difference between Equations (4.6) and (4.26) is the definitions of their covariance matrices, the

solution to maximize Equation (4.26) with respect to B is obtained through the same numerical

optimization procedure of PLDA [89, 90]. We can also extend the other definition of PLDA as

follows:

JLPLDA2 (B,m) =

∣∣B⊤C(LM)B
∣∣∣∣∣∣∣∣

(
K∑
k=1

Pk(B
⊤C

(L)
k B)m

)1/m
∣∣∣∣∣∣
.

LPLDA corresponds exactly to PLDA when Aij is taken to be one for all in-class pairs.

4.5 Approximate Computations of Local Covariances

To obtain the optimal projections by LFDA, LHDA and LPLDA,C
(L)
k , C(LW ), C(LM) andC(LB)

must be calculated in advance. Throughout the thesis, these covariance matrices are called local

covariance matrices. Each local covariance matrix requires N2 times calculations from their

definitions. Therefore, their computational complexities are proportional to N2. Since acoustic

models in a speech recognition system are generally trained using a large amount of speech data,

the value of N tends to become large, e.g., 106 to 109. Hence, the computational costs of local

covariance matrices tend to be high.

4.5.1 Approximation of Local Class Covariances

For rapid calculation of local covariances, we first consider an approximate computation of local

class covariances. In general, each class is represented as GMMs or HMMs in a speech recognizer.

Therefore, we assume that the distribution of each class is constructed from several separate

clusters. In addition, we approximate a local class covariance by the average of covariances of

the clusters. The relation between a local class covariance and covariances of clusters is similar
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to that between the within-class covariance and class covariances. Then, we have

C
(L)
k ≈

Mk∑
m=1

Pk,mCk,m ≡ C̃
(L)
k , (4.27)

where Mk is the number of clusters in class k, Pk,m is the weight of the m-th cluster in class

k, and Ck,m is an m-th cluster covariance in class k. C̃
(L)
k denotes an approximated local

class covariance matrix. C̃
(L)
k agrees with C

(L)
k when the affinity matrix is defined as follows:

Aij = 1/Pk,m, if xi and xj are assigned to the same cluster m in a class k, otherwise Aij = 0.

If the number of clusters equals one, C̃
(L)
k corresponds to Ck. To obtain Pk,m and Ck,m, we

employ the Expectation-Maximization (EM) algorithm. Since the computational complexities

of the E-step and the M-step in the EM algorithm are proportional to the number of data, we

can rapidly calculate C
(L)
k by using Equation (4.27).

4.5.2 Approximation of Other Local Covariances

C(LW ), C(LM) and C(LB) can be rewritten using C
(L)
k as follows:

C(LW ) =

K∑
k=1

PkC
(L)
k , (4.28)

C(LM) = C(M) −
K∑
k=1

P 2
k (Ck −C

(L)
k ), (4.29)

C(LB) = C(LM) −C(LW ). (4.30)

The derivation of Equation (4.29) is given in Appendix A.4. Since the computational cost of

C
(L)
k is proportional to N2, these covariances involve considerable computational costs.

To calculate these covariances rapidly, we replace all C
(L)
k in Equations (4.28)-(4.30) by C̃

(L)
k :

C(LW ) ≈
K∑
k=1

PkC̃
(L)
k ≡ C̃(LW ), (4.31)

C(LM) ≈ C(M) −
K∑
k=1

P 2
k (Ck − C̃

(L)
k ) ≡ C̃(LM), (4.32)

C(LB) ≈ C̃(LM) − C̃(LW ) ≡ C̃(LB). (4.33)

C̃(LW ), C̃(LM) and C̃(LB) denote approximated C(LW ), C(LM) and C(LB), respectively. Since

the computational costs of C(M) and Ck are proportional to the number of data, there are no

N2 times calculations in Equations (4.31)-(4.33). Once we calculate C(M) and Ck, and estimate

Pk,m and Ck,m for C̃
(L)
k using the EM algorithm, we can calculate C̃(LW ), C̃(LB) and C̃(LM)

immediately. Thus, the computational costs are significantly reduced.
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4.6 Experiments

We conducted experiments on the CENSREC-3 database [102]. Detailed descriptions of the

database were given in Section 3.3.4. We only used the speech data collected using a CT

microphone for training of HMMs. For evaluation, we used driver’s speech of isolated words

recorded with a CT microphone under three different conditions: an in-car environment without

A/C noise (normal), with low fan-speed noise (fan-low), and with high fan-speed noise (fan-

high). Originally, the aim of feature transformation is to reduce redundant information and not

to treat mismatched conditions explicitly. However, the transformations should not compromise

the system’s robustness and so we also investigate robustness under different noise conditions.

Although one can use various noise conditions, to make the problem simple, we selected fan noise

for the investigation. There are 2,646, 2,637 and 2,695 speech utterances for normal, fan-low

and fan-high conditions, respectively.

4.6.1 Experimental setup

For an evaluation procedure, we followed the CENSREC-3 baseline scripts except that fifty

similar-sounding words listed in Table 3.2 were appended to the vocabulary to make the recog-

nition task difficult. The acoustic models consisted of triphone HMMs. Each HMM had five

states, and three of them had output distributions. Each distribution was represented with

32 mixture diagonal Gaussians. The total number of states with the distributions was 2,000.

The baseline performance was calculated with 39 dimensional feature vectors that consist of

12 MFCCs and log-energy with their corresponding delta and acceleration coefficients. Eleven

successive frames, whose center was the current frame, were used to obtain dynamic coefficients

because delta and acceleration window sizes were three and two, respectively. At the beginning

and end of the speech, the first or last vector was replicated five-fold. Frame length was 20 ms

and frame shift was 10 ms. In the Mel-filter bank analysis, a cut-off was applied to frequency

components lower than 250 Hz. Throughout the experiments, cepstral mean normalization was

not applied to the features because there was no difference in the recording conditions between

the training data and the evaluation data from the standpoint of convolutional noises such as

reverberation.

4.6.2 Feature Transformation Procedure

Feature transformation was performed using LDA, HDA [20], PLDA [89], LFDA [23], LHDA

and LPLDA for spliced features. Eleven successive frames (143 dimensions), whose center was

the current frame, were reduced to 20, 30 and 39 to investigate the effectiveness of the feature

transformation methods. At the beginning and end of the speech, the first or last vector is

replicated five-fold. In PLDA and LPLDA, we used the limited-memory BFGS algorithm as a
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numerical optimization technique, and their control parameters (m=−0.1) were experimentally

selected. The LDA transformation matrix was used as the initial gradient. In LFDA, LHDA and

LPLDA, the number of mixtures was four for each class, while the number of mixtures was one

for the classes that have training data of less than one percent of the total. In addition, to obtain

projection matrices by LFDA, LHDA and LPLDA, we employed an approximate computation

scheme for calculating covariances. To assign one of the classes to every feature vector, HMM

state labels were generated for the training data by a state-level forced alignment algorithm

using a well-trained HMM system. Although a total of 43 monophone labels were used in the

CENSREC-3, the number of classes was grouped into 40 to reduce phonetic confusion.

4.6.3 Results

Experimental results are presented in Tables 4.1 to 4.3. The noise condition for the evaluation

data used in Table 4.1 matches that for training data. The evaluation data used in Table 4.2

and the data used in Table 4.3 contain low air-conditioner noise and high air-conditioner noise,

respectively. These noises are not contained in training data.

We first discuss the results of the feature transformation methods when the size of a reduced

space is 39 (i.e., p = 39). The size is equal to that of baseline. Table 4.1 showed that the locality-

preserving dimensionality reduction methods consistently yielded better performance than the

traditional methods. This result suggests that projected features using the locality-preserving

methods have higher separability among acoustic classes than those using the traditional meth-

ods because the locality-preserving methods can consider multimodality of data. Especially,

LPLDA yielded the lowest word error rate (WER) among all dimensionality reduction meth-

ods. Table 4.2 showed a similar tendency to Table 4.1. The locality-preserving dimensionality

reduction methods also yielded better performance. These results were obtained from the fact

that the difference between a normal condition and a fan-low condition is slight because A/C

noise with a low fan-speed is small. In addition, the combinations of heteroscedasticity and

locality-preservation worked well. On the other hand, Table 4.3 showed a different tendency

from the others. The feature transformation methods excluding LPLDA gave worse perfor-

mance than at baseline (MFCC+∆+∆∆). In general, the degree of confusability of acoustic

features among different classes would change when the noise in training differs considerably

from that in evaluation. Therefore, a feature transformation estimated under a normal noise

environment in training did not necessarily work well under a fan-high noise environment in

evaluation. Nevertheless, LPLDA kept comparable performance with the baseline whether or

not the noise condition in evaluation matches when training because it would transform fea-

tures that have sufficiently high separability among different classes even in a mismatch noise

condition.
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Table 4.1: Word error rates (%) under a normal condition.

Size of reduced space (p)
Method 39 30 20

baseline 6.50 - -

LDA 6.50 6.00 6.87

HDA 7.33 5.85 5.14

PLDA 5.40 6.08 6.84

LFDA 6.00 5.93 5.44

LHDA 6.46 5.32 5.29

LPLDA 4.83 5.89 5.17

Table 4.2: Word error rates (%) under a fan-low condition.

Size of reduced space (p)
Method 39 30 20

baseline 8.00 - -

LDA 8.22 7.24 8.49

HDA 7.73 6.40 6.52

PLDA 6.29 6.75 7.58

LFDA 6.97 7.05 5.95

LHDA 6.94 6.29 6.90

LPLDA 5.46 6.14 6.90

Table 4.3: Word error rates (%) under a fan-high condition.

Size of reduced space (p)
Method 39 30 20

baseline 10.72 - -

LDA 12.05 12.39 16.99

HDA 13.21 14.62 15.91

PLDA 11.42 14.21 16.10

LFDA 11.50 12.02 12.80

LHDA 10.98 13.02 14.91

LPLDA 10.64 11.42 15.17
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Next, we discuss the results of the feature transformation methods when p = 20 and p = 302.

As shown in Tables 4.1 and 4.2, under matched and almost matched noise conditions between

training and evaluation, the optimal dimensions of most feature transformation methods are

lower than 39. On the other hand, Table 4.3 showed that all methods degraded recognition

performance under a mismatched noise condition when the dimensions were relatively small.

These results imply that feature transformation methods might obtain lower dimensions in

matched conditions, whereas in mismatched conditions, redundant information can contribute

to the improvement of recognition performance. Tables 4.1 to 4.3 also showed that while the

proposed methods did not necessarily yield comparable performance of the other methods when

p = 20, they consistently yielded the lowest word error rate when p ≥ 30.

4.7 Summary

In this chapter, two dimensionality reduction methods were proposed; HDA preserving the local

structure of the data (LHDA) and PLDA preserving the local structure (LPLDA), to reduce

dimensionality of multimodal data appropriately. The best performance, 4.83%, was obtained

by LPLDA, while the word error rate of the baseline system was 6.50%. Hence, LPLDA pro-

vided a relative word error rate reduction of 25% compared to the baseline system. Moreover,

the locality-preserving dimensionality reduction methods yielded better performance than tra-

ditional ones, especially under matched noise conditions. In particular, LPLDA outperformed

the others whether or not the noise condition in evaluation matched that in training. Finally,

to obtain the optimal projections by the locality-preserving methods rapidly, we proposed an

approximate calculation scheme.

2In some preliminary experiments, the degradation of recognition performance was found when p > 39 and
p < 20 with a few exceptions. While the best performances of PLDA and LPLDA were found at p = 50 under a
fan-high condition, the differences of the performances between p = 50 and p = 39 were not so large. Although
the best results using different methods under the different environments are obtained with a few variety of p as
explained here, these facts does not affect the overall conclusion of this section.



Chapter 5

Minimization of Classification Error

This chapter focuses attention on acoustic feature transformations which minimize a kind of

classification error between different classes. This chapter starts with an introduction and a

review of conventional feature transformations. Then, a problem of the conventional feature

transformations is pointed out in Section 5.3. Minimization criteria of the maximum classifica-

tion error among different phonetic classes are given in Section 5.4. Experimental results are

presented in Section 5.5. Finally, summary is given in Section 5.6.

5.1 Introduction

This chapter focuses attention on acoustic feature transformation methods that minimize mis-

classification in the sense of the Bayes classification error [25,26,107] between different phonetic

classes. As the performance of speech recognition systems generally correlates strongly with the

classification accuracy of phonetic features, the features should have the power to discriminate

between different classes. We show that the purpose of the existing methods can be regarded

as minimization of the average classification error (AveCE) between different classes. While

minimizing the AveCE suppresses total classification error, it cannot prevent the occurrence of

considerable overlaps between distributions of some different classes. Therefore, there may be

class pairs that have little or no discriminative information on each other. Hence, the AveCE

does not necessarily find a suitable transformation for speech recognition. To avoid this, an

alternative dimensionality reduction method is proposed, which minimizes the maximum clas-

sification error (MaxCE) among all class pairs. The proposed method can avoid considerable

error between different classes. Moreover, interpolated methods between AveCE and MaxCE

are proposed.

69
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5.2 Minimization of Approximated Bayes Error

In this section the Bayes error [26, 107] is briefly reviewed. Then, other criteria for estimating

the classification error are presented.

.

5.2.1 Bayes Error

Let us consider the discrimination problem of classifying an observation as coming from one of

K possible classes k ∈ {1, 2, · · · ,K}. Let x be an n-dimensional feature vector such as a con-

catenated speech frame. The error probability Pe of the optimal Bayes rule for the classification

into K classes becomes [16,108]

Pe = 1−
∫

max
k

[λkpk(x)] dx,

where λk and pk denote a prior probability and a probability density function (pdf) for class k,

respectively. We assume that the λk and pk for k = 1, · · · ,K are entirely known.

The number of the dimension of a feature vector x can be reduced to p < n by a transforma-

tion z = B⊤x with a transformation matrix B ∈ Rn×p of rank p as described in Section 2.5.1.

Then, the error probability in the range space of B⊤, PB
e , becomes:

PB
e = 1−

∫
max
k

[
λkp

B
k (z)

]
dz,

where pBk denotes the pdf for class k in the projected space spanned by the column vectors of

B. Since the transformation z = B⊤x produces a linear combination of the components of the

feature vector x, discriminative information is generally lost and PB
e ≥ Pe [25].

The feature transformation problem could be stated as a selection of an n by p matrix B̂

from all n by p matrices of rank p such that

B̂ = argmin
B∈Rn×p,rank(B)=p

PB
e . (5.1)

Unfortunately, it is generally difficult to calculate PB
e directly.

5.2.2 Other Criteria for Estimating Error Probability

Instead of minimizing the Bayes error Pe directly, the following affinity between two pdfs are

often used:

ρi,j =

∫ √
pi(x)pj(x)dx. (5.2)
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The term ρi,j is called the Bhattacharyya coefficient and is an upper bound on the Bayes

error [107]. This coefficient can be regarded as a classification error between two pdfs. Clearly,

ρi,j lies between zero and one.

The Bhattacharyya coefficient in the range space of B⊤ becomes:

ρBi,j ≡
∫ √

pBi (z)p
B
j (z)dz. (5.3)

If we assume that the pk is a Gaussian distribution with a mean vector µk and a covariance

matrix Ck, Equation (5.3) has the closed form expression:

ρBi,j = exp(−ηBi,j). (5.4)

where we let

ηBi,j ≡
1

8
tr

((
B⊤CijB

)−1
B⊤MijB

)
+

1

2
log

∣∣B⊤CijB
∣∣√

|B⊤CiB| |B⊤CjB|
, (5.5)

Cij ≡ Ci+Cj

2 , and Mij ≡ (µi − µj)(µi − µj)
⊤. The term ηBij is called the Bhattacharyya dis-

tance [16]. The goal of acoustic feature transformation by meas of the Bhattacharyya coefficient

is to find the optimal transformation matrix B̂ so that

B̂ = argmin
B∈Rn×p,rank(B)=p

ρBi,j . (5.6)

To obtain the optimal matrix B̂, there is no closed-form solution. Instead, we can obtain it

numerically. Taking the derivative of logarithm of Equation (5.4) with respect to B yields,

d

dB
log ρBij =

1

4
CijBC̃−1

ij M̃ijC̃
−1
ij − 1

4
MijBC̃−1

ij

−CijBC̃−1
ij +

1

2
CiBC̃−1

i +
1

2
CjBC̃−1

j . (5.7)

Hence, we can employ some fast convergence numerical optimization methods such as the quasi-

Newton and conjugate gradient [101].

Several extensions of Eq. (5.2) to handle multi-class problems have been proposed. Two

techniques are briefly reviewed below.

Upper Bound on Bayes Error

The Bayes error for multi-class data is redefined as follows:

Pe =

∫
min

1≤i≤K

∑
j ̸=i

λjpj(x)dx, (5.8)
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where K denotes the number of classes. To represent the Bayes error using the Bhattacharyya

distance, Saon et al. introduced a permutation function [26], σx : {1, . . . ,K} → {1, . . . ,K},
such that the terms λ1p1(x), . . . , λKpK(x) are sorted in ascending order, i.e., λσx(1)pσx(1)(x) ≤
. . . ≤ λσx(K)pσx(K)(x).

For 1 ≤ k ≤ K − 1, the following inequality holds:

λσk(K)pσx(k)(x) ≤
√

λσx(k)pσx(k)(x)λσx(k+1)pσx(k+1)(x)

from which it follows that

min
1≤i≤K

∑
j ̸=i

λjpj(x) =

K−1∑
k=1

λσx(k)pσx(k)(x)

≤
K−1∑
k=1

√
λσx(k)pσx(k)(x)λσx(k+1)pσx(k+1)(x)

≤
∑

1≤i<j≤K

√
λipi(x)λjpj(x). (5.9)

Inserting this in (5.8), an upper bound of the Bayes error for multi-class data is expressed as

follows:

Pe ≤
∑

1≤i<j≤K

√
λiλj

∫ √
pi(x)pj(x)dx. (5.10)

That is, the Bayes error is bounded from above by the following expression [26,109]:∑
i,j>i

√
λiλjρi,j . (5.11)

Saon et al. [26] proposed the following objective function based on Eq. (5.11):

Jbound(B) =
∑
i,j>i

√
λiλjρ

B
i,j . (5.12)

Average Bhattacharyya Coefficient

Another natural extension to treat multi-class problems is the average Bhattacharyya coefficient

as follows [107]: ∑
i,j

λiλjρi,j (5.13)

Based on the average Bhattacharyya coefficient, we can define the following objective function

to reduce dimensionality:

Jave(B) =
∑
i,j

λiλjρ
B
i,j . (5.14)
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5.3 Issue about Existing Methods

From ρBi,i = 1, ρBi,j = ρBj,i, and
∑

i λi = 1, we have

∑
i,j>i

√
λiλjρ

B
i,j =

1

2

∑
i,j

√
λiλjρ

B
i,j − 1

 . (5.15)

Using this, Eq. (5.12) can be rewritten as follows:

Jbound(B) ∝
∑
i,j

√
λiλjρ

B
i,j

∝
∑
i,j

√
λi

Z

√
λj

Z
ρBi,j

=
∑
i,j

λ
′
iλ

′
jρ

B
i,j , (5.16)

where Z ≡
∑

k

√
λk is a normalizing constant, and λ

′
k ≡

√
λk/Z. Eqs. (5.14) and (5.16) are

essentially the same objective function, and the only difference between them is their priors.

Hence, both functions can be regarded as the average of Bhattacharyya coefficient ρBi,j . That is,

both objective functions search for a projection matrix B so that the average classification error

(AveCE) is minimized. Although minimizing the AveCE suppresses total classification error

between different classes, it cannot prevent the occurrence of considerable overlaps between

distributions of some classes, which is critical for speech recognition because there may be class

pairs that have little or no discriminative information on each other.

Figure 5.1 shows that two-dimensional three-class samples are projected onto a one-dimensional

subspace. Each class sample is synthetic data drawn from different Gaussians. The priors of

classes 1 to 3 were 0.75, 0.125 and 0.125, respectively. The projection by Jave gave high sepa-

rabilities between classes 1 and 2, and between classes 1 and 3. On the other hand, there was a

considerable overlap between classes 2 and 3. Here, let us regard the situation in Figure 5.1 as a

phone classification task. Suppose that classes 1 to 3 represent some phones (ex. /sil/, /a/, /o/,

etc.). When we transform features by Jave, classification becomes difficult between two phones

associated with classes 2 and 3.

5.4 Minimization of Maximum Bhattacharyya Coefficient

To overcome the drawback of the AveCE described in the previous section, we propose an

alternative objective function that minimizes the maximum classification error (MaxCE) among

all class pairs. The proposed objective function can avoid considerable error between different

classes. Moreover, we propose interpolated objective functions between two criteria.
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class 1

class 2 class 3

Jave projection

Jmax projection

Figure 5.1: Example of a synthetic data set comprising three classes. Two lines are the one-
dimensional subspaces. The vertical line and the horizontal line are obtained using Eqs. (5.14)
and (5.17), respectively.

5.4.1 Approximated Maximum Classification Error

To prevent less discrimination power of some class pairs, we define the alternative objective

function that minimizes the maximum overlap among classes regardless of their priors, instead

of AveCE, as follows:

Jmax(B) ≡ max
i,j

ρBi,j . (5.17)

Unfortunately, minimization of Eq. (5.17) with respect to B is not feasible. Instead, we approx-

imate Eq. (5.17). Let y be an n × 1 vector with positive components {yi}ni=1, and let α be an

n× 1 vector of positive weights {αi}ni=1, so that 0 < αi < 1 and
∑n

i=1 αi = 1. To approximate

Eq. (5.17), we focus on the generalized mean, also known as the weighted mean of order m. The

generalized mean is given by [97]:

M(y,α,m) =

(
n∑

i=1

αiy
m
i

)1/m

, (5.18)
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for any real m. Eq. (5.18) can describe several means by changing m. For example, Eq. (5.18)

with m = 1 corresponds to the arithmetic mean of {yi}ni=1, and Eq. (5.18) with m → 0 converges

to the geometric mean of {yi}ni=1. We especially focus on the following special case of the

generalized mean:

lim
m→∞

M(y,α,m) = max
i

yi. (5.19)

We approximate Eq. (5.17) using the generalized mean and sufficiently large value m̂ as

follows:

Jmax(B) = lim
m→∞

∑
i,j

λiλj

(
ρBi,j
)m1/m

(5.20)

≈

∑
i,j

λiλj

(
ρBi,j
)m̂1/m̂

. (5.21)

Taking the derivative of logarithm of Equation (5.21) with respect to B yields,

∂

∂B
Jmax(B) =

∑
i,j

λiλj

(
ρBij

)m̂
∑

k,l λkλl

(
ρBkl
)m̂ ∂

∂B
log ρBij . (5.22)

Eq. (5.21) with m̂ = 100 was applied in Fig. 5.1. The figure showed that the projection by

Jmax gave higher separability between class 2 and class 3 than that by Jave. That is, Jmax can

offer greatly improved classification power between class 2 and class 3.

5.4.2 Interpolation between Two Criteria

In Fig. 5.1, the projection by Jmax gave a more desirable result than by Jave. However, similar

to Jave, Jmax also does not necessarily find a suitable projection. If a number of class pairs

have an overlap comparable to the maximum one, the total error increases significantly. In such

a situation, speech recognition performance will deteriorate because most class pairs have only

small discrimination power. Therefore, an interpolated criterion that minimizes MaxCE while

minimizing AveCE would be effective. Here, we propose two interpolated functions between

MaxCE and AveCE.

Jinterp1(B, α) = (1− α)Jave(B) + αJmax(B),

Jinterp2(B,m) =

∑
i,j

λiλj

(
ρBi,j
)m1/m

,
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where α and m denote control parameters so that α ∈ [0, 1] and m ≥ 1, respectively. Jinterp1
corresponds to Jave when α = 0 and to Jmax when α = 1. From Eq. (5.14), Jinterp2 corresponds

to Jave when m = 1. Similarly, from Eq. (5.20), Jinterp2 converges to Jmax when m → ∞. As

α becomes larger, only one class pair with the maximum overlap between class distributions

becomes dominant in Jinterp1. On the other hand, as m becomes larger, several class pairs with

large overlaps become dominant in Jinterp2.

5.5 Experiments

We conducted experiments on the CENSREC-3 database [102]. Detailed descriptions of the

database were given in Section 3.3.4. For training of HMMs, we used drivers speech of phonetically-

balanced sentences recorded under two conditions: while idling and driving on city streets under

a normal in-car environment. There were 14,050 utterances by 293 drivers (202 males and 91

females), which were collected using a CT microphone. For evaluation, we used driver’s speech

of isolated words recorded with a CT microphone under three different conditions: an in-car

environment without A/C noise (normal), with low fan-speed noise (fan-low), and with high fan-

speed noise (fan-high). There are 2,646, 2,637 and 2,695 speech utterances for normal, fan-low

and fan-high conditions, respectively.

We followed the CENSREC-3 baseline scripts as the evaluation procedure except that fifty

similar-sounding words listed in Table 3.2 were appended to the vocabulary. Hence, the total

vocabulary size became 100. The acoustic models consisted of triphone HMMs. Each HMM

had five states three of which had output distributions. Each distribution was represented with

a 32 mixture of diagonal Gaussians. The total number of states with the distributions was

2,000. The baseline performance was evaluated with 39 dimensional feature vectors that consist

of 12 MFCCs and log-energy, and their delta and delta-delta coefficients. A delta coefficient was

calculated from seven successive frames of MFCC, and a delta-delta from five successive frames

of delta. Consequently, a feature vector was calculated using eleven successive MFCC vectors.

The frame length and the frame shift were 20 ms and 10 ms, respectively.

5.5.1 Feature Transformation Procedure

Eleven successive frames were concatenated into one feature vector (143 dimensions), which

is the same number of frames used for calculating delta and delta-delta coefficients. Feature

transformation was performed by LDA, Jave, Jmax, Jinterp1 and Jinterp2 for the concatenated

features. The concatenated vectors were reduced to 39, which are the same number of dimensions

of the baseline feature vectors, and then MLLT was applied. The number of classes was 40.
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5.5.2 Experimental Results

The experimental results for normal, fan-low and fan-high conditions are respectively summa-

rized in Tables 5.1, 5.4 and 5.7, where optimal control parameters of Jinterp1 and Jinterp2 were

experimentally selected. The results showed that Jmax consistently yielded better performance

than Jave. The performances of both interpolated methods Jinterp1 and Jinterp2 were superior

or comparable to those of Jmax. These results suggests that Jinterp1 and Jinterp2 could play a

complementary role between Jave and Jmax.

Tables 5.2, 5.5 and 5.8 showed WERs under normal, fan-low and fan-high conditions for

different control parameters of Jinterp1, respectively. In a similar way, Tables 5.3, 5.6 and 5.9

showed WERs for different control parameters of Jinterp2, respectively. The control parameters,

α for Jinterp1 and m for Jinterp2, varied between 0 and 1, and 1 and 100, respectively. The

results showed that Jinterp2 gave better performance than that of Jinterp1. This is because that

Jinterp2 can reduce classification error of several class pairs with large overlaps, as m is a large

value, while Jinterp1 reduces that of only one class pair with the maximum overlap between class

distributions.

5.6 Summary

To improve speech recognition performance, this chapter focuses attention on acoustic feature

transformations of speech features, which minimize a classification error between different pho-

netic classes. The recognition performance of speech recognition systems generally correlates

strongly with the classification accuracy of different phonetic features. Therefore, speech recog-

nition performance would improve when classification error becomes small.

We first showed that the purpose of the conventional methods for this approach could be

regarded as minimization of the average classification error between different classes. Although

minimizing the average classification error can suppress total classification error among classes,

it cannot prevent the occurrence of considerable overlaps between distributions of some classes.

Then, instead of the average classification error, minimization methods of maximum classifi-

cation error are proposed herewith so as to avoid considerable error between different classes.

The proposed method achieved word error rate of 5.36%. The relative improvement was 17.5%

compared to the baseline system. In addition, interpolation methods that minimize the max-

imization error while minimizing the average classification error are also proposed. The best

result of the proposed methods was 3.32%, which was a relative word error rate reduction of

48.9% compared to the baseline system.
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Table 5.1: Word error rates (%) under a normal condition

WER

MFCC+∆+∆∆ 6.50

LDA 6.12

Jave 5.85

Jmax 5.36

Jinterp1 (α = 0.6) 4.72

Jinterp2 (m = 16) 3.32

Table 5.2: Word error rates (%) for Jinterp1 under a normal condition versus value of control
parameter α

α 0 0.2 0.4 0.6 0.8 1.0

Jinterp1 5.85 5.78 5.74 4.72 5.10 5.36

Table 5.3: Word error rates (%) for Jinterp2 under a normal condition versus value of control
parameter m

m 1 2.5 6 16 30 100

Jinterp2 5.85 4.57 4.00 3.32 4.19 5.36
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Table 5.4: Word error rates (%) under a fan-low condition

WER

MFCC+∆+∆∆ 8.00

LDA 7.01

Jave 6.82

Jmax 4.43

Jinterp1 (α = 1.0) 4.43

Jinterp2 (m = 16) 3.90

Table 5.5: Word error rates (%) for Jinterp1 under a fan-low condition versus value of control
parameter α

α 0 0.2 0.4 0.6 0.8 1.0

Jinterp1 6.82 6.40 6.75 5.34 6.56 4.43

Table 5.6: Word error rates (%) for Jinterp2 under a fan-low condition versus value of control
parameter m

m 1 2.5 6 16 30 100

Jinterp2 6.83 6.67 4.77 3.90 5.49 4.43
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Table 5.7: Word error rates (%) under a fan-high condition

WER

MFCC+∆+∆∆ 10.72

LDA 10.64

Jave 9.64

Jmax 7.53

Jinterp1 (α = 1.0) 7.53

Jinterp2 (m = 16) 6.53

Table 5.8: Word error rates (%) for Jinterp1 under a fan-high condition versus value of control
parameter α

α 0 0.2 0.4 0.6 0.8 1.0

Jinterp1 9.64 9.20 9.05 8.60 9.94 7.53

Table 5.9: Word error rates (%) for Jinterp2 under a fan-high condition versus value of control
parameter m

m 1 2.5 6 16 30 100

Jinterp2 9.64 11.39 7.49 6.53 8.23 7.53



Chapter 6

Conclusions

In this chapter a comprehensive summary of the thesis is given. Then, the chapter concludes by

reviewing some directions for the future.

6.1 Review of Work

In this thesis acoustic feature transformations with dimensionality reduction were studied to

improve basic recognition performance of a speech recognizer. The aim of acoustic feature trans-

formations is to reduce dimensionality of long-term speech features without losing discriminative

information between different classes. Acoustic feature transformations with dimensionality re-

duction could be divided into two groups: One maximizes the ratio of between-class scatter to

within-class scatter and the other minimizes a kind of classification error. The former and latter

approaches were studied in Chapters 3 and 4, and in Chapter 5, respectively.

Chapter 3 studied the interrelationship between several linear transformations which have

been commonly used in state-of-the-art speech recognition systems. In the chapter close rela-

tionships were proven to exist between linear discriminant analysis (LDA), heteroscedastic linear

discriminant analysis (HLDA), and heteroscedastic discriminant analysis (HDA). This work has

pointed out that the objective functions of HLDA and HDA can be viewed as the same formula-

tion except their numerators, and the difference between LDA and HDA is the definitions of the

mean of the class covariance matrices. Then, a common framework was proposed for integrating

various criteria, which includes LDA, HLDA and HDA. The framework termed power linear

discriminant analysis (PLDA) could describe various criteria by varying its control parameter.

The experimental results on the CENSREC-3 database showed that the PLDA with the optimal

control parameters reduced word error rate from 11.24% to 8.48%. Then, a sub-optimal control

parameter selection method was given. The proposed selection method used the Chernoff bound

as a measure of a class separability error, which was an upper bound of the Bayes error. It could

evaluate the relative recognition performance without training HMMs and testing an evalua-
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tion set, and reduced a computational cost from 220 hours to less than one hour. In addition,

it yielded accurate performance comparison with a drastic reduction of computational costs.

The effectiveness of the method was experimentally demonstrated. Finally, the effectiveness of

discriminant analysis-based feature transformation techniques and discriminative training tech-

niques was investigated. Under a matched background noise condition between training and

evaluation, both techniques achieved better results than the traditional one. In addition, a com-

bination of these techniques obtained the best result. However, in a mismatched background

noise condition, the combinations of acoustic feature transformations and discriminative training

techniques were not necessarily effective.

In Chapter 4, two dimensionality reduction methods described in Chapter 3, HDA and

PLDA, were extended to deal with multimodal data. The dimensionality reduction methods

reviewed and proposed in Chapter 3, however, may result in an unexpected dimensionality re-

duction if the data in a certain class consist of several clusters, i.e., multimodal, because they

implicitly assume that data are generated from a single Gaussian distribution. In order to

deal with multimodal data using HDA, we combine the ideas of LPP and HDA, and propose

locality-preserving HDA. In addition, we propose locality-preserving PLDA. These extensions

can be expected to yield better performance because they reduce the dimensionality of multi-

modal data appropriately. In general, considerable computational time is required to obtain the

optimal projections by locality-preserving methods. To overcome this problem, we proposed an

approximate calculation scheme. Experimental results showed that the best performance, 4.83%,

was obtained by locality-preserving PLDA, while the word error rate of the baseline system was

6.50%. Hence, locality-preserving PLDA provided a relative word error rate reduction of 25%

compared to the baseline system. Moreover, the locality-preserving dimensionality reduction

methods yielded better performance than the traditional ones, especially under matched noise

conditions. In particular, LPLDA outperformed the others whether or not the noise condition

in evaluation matched that in training.

Chapter 5 investigated linear feature transformation methods that minimizes a classification

error between different classes. As the performance of speech recognition systems generally has a

close correlation with the classification accuracy of features, the features should have the power

to discriminate between different classes. The existing methods for this approach served to

minimize the average classification error between different classes. Although minimizing the av-

erage classification error suppresses total classification error, it cannot prevent the occurrence of

considerable overlaps between distributions of some different classes, which is critical for speech

recognition because there may be class pairs that have little or no discriminative information on

each other. Instead of the average classification error, minimization methods of the maximum

classification error was proposed in the thesis, which could avoid considerable error between

different classes. The proposed method achieved word error rate of 5.36%, which was a relative

word error rate reduction of 17.5% compared to the baseline system. In addition, interpolation
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methods that minimized the maximization error while minimizing the average classification error

were proposed. Instead of the average classification error, minimization methods of the maxi-

mum classification error are proposed so as to avoid considerable error between different classes.

In addition, interpolation methods that minimize the maximization error while minimizing the

average classification error are also proposed. The best result of the proposed methods was

3.32%. The relative improvement was 48.9% compared to the baseline system.

In summary, acoustic feature transformations for speech recognition were studied. First,

acoustic feature transformations using criteria with which to maximize the ratio of between-class

scatter to within-class scatter were developed. Second, acoustic feature transformations which

minimize a kind of classification error between different phonetic classes were developed. Both

approaches evidenced significant enhancement of the basic performance of a speech recognizer.

6.2 Future Work

Several acoustic feature transformations were studied to improve basic performance of a speech

recognizer. There are many possible directions in which future work could proceed. The follow-

ing may serve as starting point for further research:

• The control parameter selection method introduced in Chapter 3 and the estimation of

the classification error proposed in Chapter 5 are needed to calculate the Bhattacharyya

coefficient. A single Gaussian assumption for each class distribution was imposed for

calculating it. Since a single Gaussian was too simple to represent a class distribution, their

effectiveness might be limited. Recently, reasonable approximations to the Bhattacharyya

coefficient under a Gaussian mixture model (GMM) assumption were derived [33]. It is

worthwhile to try to extend the control parameter selection methods and the estimation of

the classification error, which use the Bhattacharyya coefficient under a GMM assumption.

• The combinational use of acoustic feature transformations and discriminative training

techniques was investigated in Chapter 3. Several techniques based on margin maximiza-

tion and Bayesian learning have recently been proposed as other techniques [110–113].

The combinations of acoustic feature transformations and the other discriminative train-

ing techniques might further improve speech recognition performance.

• This work only attempted to carry out an isolated word recognition to measure the ef-

fectiveness of the proposed methods. Acoustic feature transformations proposed in this

thesis will be effective not only in an isolated word recognition task but also in a contin-

uous speech recognition one. It should assess the effectiveness of application of proposed

acoustic feature transformations to continuous speech recognition.
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While human speech is a natural interface that links a person and a computer, speech recog-

nizers are required to achieve human-like recognition performance. Recognition errors, however,

are difficult to eradicate even with the state-of-the-art speech recognition technology. Hence, as

well as improving speech recognition performance, it is important to develop a recognition error

robust interface of an ASR system. We believe that further improvements of speech recognition

performance and interface lead to a widespread use of ASR systems.



Appendix A

Mathematical Appendices

A.1 Derivation of Equation (3.20)

Let C̃k(1 ≤ k ≤ K) be symmetric positive definite matrices. Then,

lim
m→0

JPLDA(B,m) =

∣∣∣C̃n

∣∣∣
K∏
k=1

∣∣∣C̃k

∣∣∣Pk

. (A.1)

Proof. Here, we focus on the denominator of a PLDA objective function. We let

f(m) = log

∣∣∣∣∣
K∑
i=1

PiC̃
m
i

∣∣∣∣∣ (A.2)

and g(m) = m, so that

log

∣∣∣∣∣∣
(

K∑
i=1

PiC̃
m
i

)1/m
∣∣∣∣∣∣ = 1

m
log

∣∣∣∣∣
K∑
i=1

PiC̃
m
i

∣∣∣∣∣ = f(m)

g(m)
. (A.3)

Then f(0) = g(0) = 0, and

∂f(m)

∂m
= tr

(
Zm

∑
i

Pi
∂

∂m
C̃m

i

)
(A.4)

= tr

(
Zm

∑
i

PiUi

(
∂

∂m
Λm

i

)
U⊤

i

)
(A.5)

= tr

(
Zm

∑
i

PiUiΛ
m
i (logΛi)U

⊤
i

)
, (A.6)

∂g(m)

∂m
= 1, (A.7)
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where Zm =
(∑

j PjC̃
m
j

)−1
, Ui denotes the matrix of eigenvectors of C̃m

i , and Λi denotes the

diagonal matrix of eigenvalues of C̃m
i .

By l’Hôpital’s rule,

lim
m→0

f(m)

g(m)
= lim

m→0

f ′(m)

g′(m)
=

f ′(0)

g′(0)
(A.8)

=
∑
i

Pitr(logΛi) (A.9)

= log
∏
i

∣∣∣C̃i

∣∣∣Pi

, (A.10)

and (A.1) follows.

A.2 Derivations of Equations (3.22) and (3.23)

Let |C̃k| = max |C̃i| (k is not necessarily unique). If C̃k satisfies C̃m
k ≽

∑
i

PiC̃
m
i , then

JPLDA

(
B[p],∞

)
=

∣∣∣C̃n

∣∣∣
max

i

∣∣∣C̃i

∣∣∣ , (A.11)

JPLDA

(
B[p],−∞

)
=

∣∣∣C̃n

∣∣∣
min
i

∣∣∣C̃i

∣∣∣ , (A.12)

where X ≽ Y denotes that (X − Y) is a positive semidefinite matrix. Equations (3.22) and

(3.23) are Equations (A.11) and (A.12), respectively.

Proof. To prove (A.11), let

ϕ(m) =

∣∣∣∣∣∣
(∑

i

PiC̃
m
i

)1/m
∣∣∣∣∣∣ . (A.13)

We have the following inequality1: ∣∣∣∣∣∑
i

PiC̃
m
i

∣∣∣∣∣ ≥ ∣∣∣PkC̃
m
k

∣∣∣ . (A.14)

1The inequality follows from observing that |X+Y| ≥ |X| for symmetric positive definite matrices X and Y.
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Using this, for m > 0, we obtain

ϕ(m) ≥
∣∣∣PkC̃

m
k

∣∣∣1/m (A.15)

=
∣∣∣P 1/m

k C̃k

∣∣∣ (A.16)

=
∣∣∣C̃k

∣∣∣ (m → ∞). (A.17)

Added to this, since we assume that C̃k satisfies C̃m
k ≽

∑
i

PiC̃
m
i , we also obtain

∣∣∣C̃m
k
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i

PiC̃
m
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k −
∑
i

PiC̃
m
i

∣∣∣∣∣ (A.18)

≥
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PiC̃
m
i
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Hence,

∣∣∣C̃k

∣∣∣ ≥ ∣∣∣∣∣∑
i

PiC̃
m
i

∣∣∣∣∣
1/m

= ϕ(m). (A.20)

(A.17) and (A.20) imply

lim
m→∞

ϕ(m) =
∣∣∣C̃k

∣∣∣ = max
i

∣∣∣C̃i

∣∣∣ . (A.21)

(A.11) then follows.

To prove (A.12), let n = −m and Či = C̃−1
i . Then

ϕ(m) =

∣∣∣∣∣∑
i

PiČ
n
i

∣∣∣∣∣
1/n
−1

(A.22)

and hence

lim
m→−∞

ϕ(m) = lim
n→∞
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i

PiČ
n
i

∣∣∣∣∣
1/n
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(A.23)

=

(
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i

∣∣Či

∣∣)−1

(A.24)

= min
i

|C̃i|, (A.25)

and (A.12) follows.
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A.3 Interpretation of HDA

Similar to LDA, HDA searches for a projection matrix B such that data pairs in the same class

are close to each other and data pairs in different classes are separated from each other. We

give a formal interpretation of this. In [23], for vij ≡ B⊤(xi −xj), the change in LDA objective

function when only vab becomes αvab with α > 0 was investigated, where a, b ∈ {1 · · ·N} and

a ̸= b. The result has showed the following: the value of the LDA objective function becomes

large when a data pair in the same class is close to each other, i.e., ya = yb and 0 < α < 1,

or when a data pair in different classes is separated from each other, i.e., ya ̸= yb and α > 1.

Through a similar approach in [23], we will investigate the change in HDA objective function

when only vab becomes αvab with α > 0.

To simplify the notations of projected covariance matrices, we rewriteB⊤C(B)B andB⊤CkB

as C̄(B) and C̄k, respectively. From here on, we denote covariance matrices in the projected

space by symbols with a bar. Let us rewrite an HDA objective function as follows:

JHDA (B) =

∣∣∣C̄(B)
∣∣∣

K∏
k=1

∣∣C̄k

∣∣Pk

. (A.26)

C̄(αB) and C̄
(α)
k denote the between-class and class covariance matrices for αvab defined by

C̄(αB) ≡ C̄(B) − (β/N)W
(B)
ab vabv

⊤
ab,

C̄
(α)
k ≡ C̄k − (β/Nk)Wk,abvabv

⊤
ab,

β ≡ 1− α2

2
,

assuming that C̄(B), C̄(αB), C̄k and C̄
(α)
k are positive definite matrices. The objective function

of HDA for αvab is given by

J
(α)
HDA (B) ≡

∣∣∣C̄(αB)
∣∣∣

K∏
k=1

∣∣∣C̄(α)
k

∣∣∣Pk

. (A.27)
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From the definition of C̄(αB), the determinant of C̄(B) becomes

∣∣∣C̄(B)
∣∣∣ = ∣∣∣C̄(αB) + (β/N)W

(B)
ab vabv

⊤
ab

∣∣∣
=
∣∣∣C̄(αB)

(
I+ (β/N)W

(B)
ab P(αB)vabv

⊤
ab

)∣∣∣
=
∣∣∣C̄(αB)

∣∣∣ ∣∣∣I+ (β/N)W
(B)
ab P(αB)vabv

⊤
ab

∣∣∣
=
(
1 + (β/N)W

(B)
ab v⊤

abP
(αB)vab

) ∣∣∣C̄(αB)
∣∣∣ ,

where we let P(αB) = (C̄(αB))−1. We have made use of the following formula [15]: |I+ ab⊤| =
1 + a⊤b, where a and b are arbitrary vectors and I is an identity matrix.

We first consider the case when both xi and xj are in the same class, i.e., yi = yj . In

addition, without loss of generality, suppose that both yi and yj are equal to l ∈ {1, · · · ,K}.
From Equation (4.12), we have W

(B)
ij < 0. We also have Wl,ij > 0 if yi = yj = l and Wk,ij = 0 if

yi = yj = k( ̸= l). Similar to the case of the determinant of C̄(B), the determinant of C̄l becomes

∣∣C̄l

∣∣ = (1 + (β/Nl)Wl,abv
⊤
ab

(
C̄

(α)
l

)−1
vab

) ∣∣∣C̄(α)
l

∣∣∣
and the determinant of C̄k becomes |C̄k| = |C̄(α)

k | for k ̸= l. Equation (A.26) can be rewritten

as

JHDA(B) =
ζ
∣∣∣C̄(αB)

∣∣∣
ηPl

K∏
k=1

∣∣∣C̄(α)
k

∣∣∣Pk

=
ζ

ηPl
J
(α)
HDA(B), (A.28)

where ζ ≡ 1 + (β/N)W
(B)
ab v⊤

ab

(
C̄(αB)

)−1
vab and η ≡ 1 + (β/Nl)Wl,abv

⊤
ab

(
C̄

(α)
l

)−1
vab.

If 0 < α < 1, then β > 0. Since we assume that C̄(αB) and C̄
(α)
k are positive definite,

v⊤
ab

(
C̄

(αB)
k

)−1
vab and v⊤

ab

(
C̄

(α)
k

)−1
vab satisfy v⊤

ab

(
C̄

(αB)
k

)−1
vab > 0 and v⊤

ab

(
C̄

(α)
k

)−1
vab >

0, respectively. Hence, Equation (A.28) yields JHDA(B) < J
(α)
HDA(B) because ζ/ηPl < 1. In other

words, the value of the objective function for αvab is always greater than that of Equation (A.26)

if yi = yj and 0 < α < 1, i.e., a data pair in the same class is made close.

Similarly, if yi ̸= yj , then we have Wk,ij = 0 and W
(B)
ij > 0. From η = 1, Equation (A.26)
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becomes

JHDA(B) =
ζ
∣∣∣C̄(αB)

∣∣∣
K∏
k=1

∣∣∣C̄(α)
k

∣∣∣Pk

= ζ J
(α)
HDA(B). (A.29)

If α > 1, then β < 0. Hence, Equation (A.29) yields JHDA(B) < J
(α)
HDA(B) because ζ < 1. In

other words, the value of the objective function for αvab is greater than that of Equation (A.26)

if yi ̸= yj and α > 1, i.e., a data pair in different classes is separated from each other.

A.4 Derivation of Equation (4.29)

W
(LM)
ij in Equation (4.21) can be decomposed as

W
(LM)
ij =

1

N
−W

(LM1)
ij +W

(LM2)
ij ,

where

W
(LM1)
ij ≡

{
1/N if yi = yj ,

0 if yi ̸= yj ,

W
(LM2)
ij ≡

{
Aij/N if yi = yj ,

0 if yi ̸= yj .

From the definitions of W
(LM1)
ij and W

(LM2)
ij , we have

W
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K∑
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W
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PkW
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Hence,

W
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1

N
−

K∑
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PkWk,ij +

K∑
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PkW
(L)
k,ij .
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Then, we have
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where we let Xij ≡ (xi − xj)(xi − xj)
⊤.
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