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Abstract

In this paper, we introduce a new method of producing functional relations among multiple
zeta-functions. This method can be regarded as a kind of multiple analogue of Hardy’s
one of proving the functional equation for the Riemann zeta-function. Using this method,
we give new functional relations for multiple zeta-functions. In particular, substituting
positive integers into variables of them, we obtain known relation formulas for the multiple
zeta values.

1. Introduction

Let N be the set of natural numbers, Z the ring of rational integers, Q the field of rational numbers,
R the field of real numbers and C the field of complex numbers.

The Euler-Zagier multiple zeta-function of depth r defined by

ζEZ,r(s1, s2, . . . , sr) =
∞∑

m1,...,mr=1

1
ms1

1 (m1 + m2)s2 · · · (m1 + · · ·+ mr)sr
(1.1)

can be meromorphically continued to the whole complex space Cr (see, for example, [1, 10, 24]). The
origin of this function goes back to Euler. Indeed, Euler studied the values of double zeta-function,
and gave some fascinating relation formulas for them. For example, he proved ζEZ,2(1, 2) = ζ(3),
and furthermore the sum formulas for double zeta values

k−1∑

j=2

ζEZ,2(k − j, j) = ζ(k) (k ≥ 3), (1.2)

where ζ(s) is the Riemann zeta-function (see [5]).
In early 1990’s, Zagier and Hoffman studied the values of (1.1) at positive integers independently,

and gave some relation formulas for them (see [7, 23]). Following their works, a lot of mathematicians
have given various relation formulas for these values. For details, see [3, 4].

On the other hand, from analytic point of view, we would like to consider the following problem
which has already been presented by the first author (see [12]).

Problem. Are the known relation formulas for multiple zeta values valid only at positive integer
points, or valid also at other values?

It seems to be difficult to give the answer to this problem, except for the trivial relation

ζ(s1)ζ(s2) = ζEZ,2(s1, s2) + ζEZ,2(s2, s1) + ζ(s1 + s2)
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which is valid for not only positive integers but also complex numbers.
In order to think about this problem, we consider the r-ple Mordell-Tornheim zeta-function

defined by

ζMT,r(s1, . . . , sr, sr+1) =
∞∑

m1,...,mr=1

1
ms1

1 · · ·msr
r (m1 + · · ·+ mr)sr+1

. (1.3)

The values of ζMT,2 at positive integers were originally studied by Tornheim and Mordell (see
[14, 16]). As its generalization, ζMT,r was defined and was meromorphically continued to Cr+1 by
the first author (see [8, 9]). Recently, in [19, 20, 21], the second author has given some functional
relations for ζMT,2(s1, s2, s3). For example,

ζEZ,2(1, s + 1)− ζMT,2(s, 1, 1) + ζ(s + 2) = 0 (1.4)

holds for s ∈ C except for singularities of three functions on the left-hand side of (1.4). Let s = 1
in (1.4). Since we can easily check that ζMT,2(1, 1, 1) = 2ζEZ,2(1, 2) from the decomposition into
partial fractions, we see that (1.4) in the case s = 1 gives Euler’s formula ζEZ,2(1, 2) = ζ(3). In
other words, (1.4) can be regarded as a continuous generalization of Euler’s formula. Furthermore
we can see that (1.4) in the case s = k(∈ N) gives the sum formula for double zeta values (1.2)
(see Corollaries 2.5 and 2.6 below). Thus (1.4) is a kind of concrete example of the answer to the
above problem. By using this method, we gave certain functional relations for Witten zeta-functions
associated with sl(4), and gave new relation formulas for the values of these functions at positive
integers (see [13]). However this method is actually complicated. Hence it seems to be hard to apply
this method to general multiple zeta-functions.

In the present paper, we introduce a new method of finding functional relations among multiple
zeta-functions (see Theorem 3.1). This method can be regarded as a kind of multiple analogue of
Hardy’s one ([6], see also [15] Section 2.2) of proving the functional equation for the Riemann zeta-
function. Using this method, we give another proof of (1.4) (see Proposition 2.4). Furthermore, as
multiple analogues of (1.4), we give non-trivial functional relations for certain multiple zeta-functions
(see Proposition 5.3). For example, we give a new functional relation

2ζEZ,3(1, 1, s + 1)− ζMT,3(s, 1, 1, 1) + 2ζMT,2(1, 2, s)
+ 2ζMT,2(s, 2, 1)− 2ζ(2)ζ(s + 1) + 4ζ(s + 3) = 0 (1.5)

for s ∈ C except for singularities of six functions on the left-hand side of (1.5) (see Proposition 5.4).
In particular, (1.5) in the case s = 1 gives the well-known relation ζEZ,3(1, 1, 2) = ζ(4) obtained in
[7].

Using our method, we will give more functional relations for various multiple zeta-functions in
our next papers.

2. Functional relations for double zeta-functions

In this section, we give another proof of (1.4). The following proof is a simple example of our method.
Since the following proof includes the essence of the method, we present it before proceeding to the
treatment of the general case.

We make use of the notation and quote some results in [17, 18]. We fix a δ ∈ R with δ > 0. For
any u ∈ R with 1 ≤ u ≤ 1 + δ, we define

φ(s;u) =
∞∑

m=1

(−u)−m

ms
(s ∈ C). (2.1)
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If u > 1 then φ(s; u) is convergent for any s ∈ C. In the case when u = 1, we have φ(s; 1) =
(21−s − 1)ζ(s). Corresponding to φ(s; u), we define a set of numbers {Em(u)} by

F (x; u) =
(1 + u)ex

ex + u
=

∞∑

n=0

En(u)
xn

n!
(|x| < π). (2.2)

We see that
E2j(1) = 0 (j ∈ N) (2.3)

and that φ(s; u) can be meromorphically continued to C and

φ(−k; u) = − 1
1 + u

Ek(u) (k ∈ N ∪ {0}). (2.4)

Further we see that for any γ with 0 < γ < π there exists a constant Mγ independent of n and u
such that

|En(u)|
n!

≤ Mγ

γn
(n ∈ N ∪ {0}; u ∈ [1, 1 + δ]). (2.5)

For k ∈ N ∪ {0}, x ∈ R and u ∈ [1, 1 + δ], we let

J1(x; 2k + 1;u) =
∞∑

m=1

(−u)−m sin(mx)
m2k+1

−
k∑

j=0

φ(2k − 2j; u)
(−1)jx2j+1

(2j + 1)!
. (2.6)

This function is continuous in u on [1, 1 + δ]. Indeed, if k ∈ N then J1(x; 2k + 1;u) is uniformly
convergent with respect to u ∈ [1, 1 + δ]. If k = 0 then the continuity is implied by the following
lemma and Abel’s theorem.

Lemma 2.1
∞∑

n=1

(−1)neinx

n
is convergent for x ∈ (−π, π), uniformly on any compact subset of

(−π, π).

Proof. Let M, N ∈ N with M < N . For x ∈ (−π, π), we have
∑

M<n≤N

(−1)neinx =
∑

M<n≤N

einπ · einx =
∑

M<n≤N

ein(π+x)

= ei(M+1)(π+x) · 1− ei(N−M)(π+x)

1− ei(π+x)
.

Hence we have ∣∣∣∣∣∣
∑

M<n≤N

(−1)neinx

∣∣∣∣∣∣
≤

∣∣∣∣∣
1− ei(N−M)(π+x)

1− ei(π+x)

∣∣∣∣∣ ≤
2

|1− ei(π+x)| =
2

|1 + eix| .

Note that 1 + eix 6= 0 because −π < x < π. Hence we put C(x) = 2/|1 + eix|. Then C(x) is
independent of M and N . Using the partial summation formula, we have∣∣∣∣∣∣

∑

M<n≤N

(−1)neinx

n

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

M<n≤N

(−1)neinx · 1
N

+
∫ N

M


 ∑

M<n≤ξ

(−1)neinx


 · dξ

ξ2

∣∣∣∣∣∣

≤ C(x) · 1
N

+
∫ N

M
C(x) · dξ

ξ2

= C(x) ·
(

1
N

+
[
−1

ξ

]N

M

)
=

C(x)
M

→ 0 (M, N →∞).

By Cauchy’s criterion, we obtain the assertion.
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Suppose u ∈ (1, 1 + δ]. For k ∈ N ∪ {0} and x ∈ (−π, π) ⊂ R, using (2.4), we have
∞∑

m=1

(−u)−m sin(mx)
m2k+1

=
∞∑

m=1

(−u)−m

m2k+1

∞∑

j=0

(−1)j(mx)2j+1

(2j + 1)!

=
∞∑

j=0

φ(2k − 2j;u)
(−1)jx2j+1

(2j + 1)!

=
k∑

j=0

φ(2k − 2j;u)
(−1)jx2j+1

(2j + 1)!
− 1

1 + u

∞∑

j=k+1

E2j−2k(u)
(−1)jx2j+1

(2j + 1)!
. (2.7)

Hence, for u > 1, we have

J1(x; 2k + 1;u) = − 1
1 + u

∞∑

j=k+1

E2j−2k(u)
(−1)jx2j+1

(2j + 1)!
. (2.8)

Suppose x ∈ (−π, π). Then it follows from (2.5) that the right-hand side of (2.8) is uniformly
convergent with respect to u ∈ [1, 1 + δ], so is continuous on [1, 1 + δ]. On the other hand, we have
already seen that the right-hand side of (2.6) is also continuous on [1, 1+δ]. Hence we can let u → 1
on both sides of (2.8) for k ∈ N ∪ {0}. Then it follows from (2.3) that

J1(x; 2k + 1; 1) = 0 (k ∈ N ∪ {0}; x ∈ (−π, π)). (2.9)

In particular when k = 0, by φ(0; 1) = −1/2, we obtain
∞∑

m=1

(−1)m sin(mx)
m

= −1
2
x (x ∈ (−π, π)). (2.10)

Using these facts, we prove the following lemma.

Lemma 2.2 For x ∈ (−π, π),
∞∑

m=1

(−1)m cos(mx)
m2

+
1
2

∞∑

m,n=1

(−1)m+n cos((m + n)x)
mn

− 1
2

∞∑
m,n=1
m6=n

(−1)m+n cos((m− n)x)
mn

= 0. (2.11)

Proof. From (2.7), we have

∂

∂x
J1(x; 3; u) =

∞∑

m=1

(−u)−m cos(mx)
m2

− φ(2;u)− x2

2(1 + u)
, (2.12)

because φ(0;u) = − 1
1+u from (2.4). Suppose u > 1. Then from (2.8), we have

∂

∂x
J1(x; 3; u) = − 1

1 + u

∞∑

j=2

E2j−2(u)
(−1)jx2j

(2j)!
.

As well as (2.9), we obtain

lim
u→1

∂

∂x
J1(x; 3; u) = 0 (x ∈ (−π, π)). (2.13)

On the other hand, by (2.7), we have

J1(x; 1;u) =
∞∑

m=1

(−u)−m sin(mx)
m

+
1

1 + u
x,
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namely

x = −(1 + u)

{ ∞∑

m=1

(−u)−m sin(mx)
m

− J1(x; 1;u)

}
(x ∈ (−π, π)). (2.14)

Substitute (2.14) into (2.12) and let u → 1 which is also justified by Lemma 2.1 and Abel’s theorem.
Then from (2.9) and (2.13), we obtain

∞∑

m=1

(−1)m cos(mx)
m2

= φ(2; 1) +
∞∑

m,n=1

(−1)m+n sin(mx) sin(nx)
mn

. (2.15)

Using the relation cos(α− β)− cos(α + β) = 2 sinα sinβ, we have
∞∑

m,n=1

(−1)m+n sin(mx) sin(nx)
mn

=
1
2





∞∑
m,n=1
m6=n

(−1)m+n cos((m− n)x)
mn

+ ζ(2)−
∞∑

m,n=1

(−1)m+n cos((m + n)x)
mn





. (2.16)

Substituting (2.16) into (2.15) and using the fact φ(2; 1) = −1
2ζ(2), we obtain (2.11). This completes

the proof.

In (2.11), we put t = x + π for −π < x < π. Using the fact that cos((m± n)π) = (−1)m+n, we
have

∞∑

m=1

cos(mt)
m2

+
1
2

∞∑

m,n=1

cos((m + n)t)
mn

− 1
2

∞∑
m,n=1
m6=n

cos((m− n)t)
mn

= 0 (2.17)

for t ∈ R with 0 < t < 2π. Hence (2.17) holds for any t ∈ R \ 2πZ.

Now we consider the function

f(t) =
∞∑

m=1

sin(mt)
m3

+
1
2

∞∑

m,n=1

sin((m + n)t)
mn(m + n)

− 1
2

∞∑
m,n=1
m6=n

sin((m− n)t)
mn(m− n)

(2.18)

for t ∈ R. We see that f(t) is continuous for all t ∈ R with period 2π and belongs to C1(R \ 2πZ).
By (2.17) and Lemma 2.1, we have f ′(t) = 0 for t ∈ R \ 2πZ. Hence f(t) = Cn with a certain
constant Cn for each interval (2nπ, 2(n + 1)π) (n ∈ Z). But f is continuous on R and f(2nπ) = 0
for any n ∈ Z. Hence each Cn is to be equal to 0, that is, f(t) = 0 for all t ∈ R. Put l = m− n and
j = n−m according as m > n and m < n, respectively, in (2.18). Then we have

∞∑
m,n=1
m6=n

sin((m− n)t)
mn(m− n)

=
∞∑

l,n=1

sin(lt)
ln(l + n)

+
∞∑

j,m=1

sin(jt)
jm(j + m)

.

Hence we obtain the following.

Proposition 2.3 For t ∈ R,

f(t) =
∞∑

m=1

sin(mt)
m3

+
1
2

∞∑

m,n=1

sin((m + n)t)
mn(m + n)

−
∞∑

m,n=1

sin(mt)
mn(m + n)

= 0. (2.19)

Now we make use of Hardy’s method of proving the functional equation for ζ(s) ([6], see also
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[15] Section 2.2). For s ∈ R with 0 < s < 1, from (2.19), we have

0 =
∫ ∞

0
xs−1f(x)dx

=
∫ ∞

0
xs−1





∞∑

m=1

sin(mx)
m3

+
1
2

∞∑

m,n=1

sin((m + n)x)
mn(m + n)

−
∞∑

m,n=1

sin(mx)
mn(m + n)



 dx. (2.20)

We need to justify term-by-term integration on the right-hand side of (2.20). Since (2.19) is abso-
lutely convergent, in particular boundedly convergent, we have only to check the following three
conditions in order to justify term-by-term integration.

lim
λ→∞

∞∑

m=1

1
m3

∫ ∞

λ

sin(mx)
x1−s

dx = 0; (2.21)

lim
λ→∞

∞∑

m,n=1

1
mn(m + n)

∫ ∞

λ

sin((m + n)x)
x1−s

dx = 0; (2.22)

lim
λ→∞

∞∑

m,n=1

1
mn(m + n)

∫ ∞

λ

sin(mx)
x1−s

dx = 0. (2.23)

Note that (2.21) has been already proved in [15] Section 2.1 (p.15). By the same way as the argument
given there, we have

∫ ∞

λ

sin(Nx)
x1−s

dx =
[
−cos(Nx)

Nx1−s

]∞

λ

+
s− 1
N

∫ ∞

λ

cos(Nx)
x2−s

dx

= O

(
1

Nλ1−s

)
+ O

(
1
N

∫ ∞

λ

dx

x2−s

)
= O

(
1

Nλ1−s

)
(2.24)

for N ∈ N. Since ∣∣∣∣∣∣

∞∑

m,n=1

1
mn(m + n)2

∣∣∣∣∣∣
< ∞,

∣∣∣∣∣∣

∞∑

m,n=1

1
m2n(m + n)

∣∣∣∣∣∣
< ∞ (2.25)

(see [16]), we see that (2.22) and (2.23) hold. Thus we can justify term-by-term integration on the
right-hand side of (2.20).

Using these facts, we give another proof of (1.4) as follows. We recall that Γ(s)Γ(1−s) = π/ sinπs
and ∫ ∞

0

sin bx

x1−s
dx =

π

2
b−s cosec(π(1− s)/2)

Γ(1− s)
for b > 0 and 0 < s < 1 (see [22] Chapter 12, p.239 and p.260). Hence we have∫ ∞

0

sin bx

x1−s
dx = b−s sin

(πs

2

)
Γ(s). (2.26)

Carrying out term-by-term integration on the right-hand side of (2.20) and using (2.26), we obtain

0 = sin
(πs

2

)
Γ(s)

{
ζ(s + 3) +

1
2
ζMT,2(1, 1, s + 1)− ζMT,2(s + 1, 1, 1)

}
(2.27)

for 0 < s < 1. Since sin
(

πs
2

)
Γ(s) 6= 0 for 0 < s < 1, we can remove this term from (2.27). Using

1
mn

=
(

1
m

+
1
n

)
1

m + n
, (2.28)

we have ζMT,2(1, 1, s + 1) = 2ζEZ,2(1, s + 2). Hence we have

ζ(s + 3) + ζEZ,2(1, s + 2)− ζMT,2(s + 1, 1, 1) = 0 (2.29)

6
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for 0 < s < 1. Since each term on the left-hand side of (2.29) is meromorphically continued to C
(see [8, 10, 11], see also [1, 2, 24]), we see that (2.29) holds for all s ∈ C except for the singularities
of three functions in (2.29). Thus we obtain the following which is (1.4).

Proposition 2.4

ζEZ,2(1, s + 1)− ζMT,2(s, 1, 1) + ζ(s + 2) = 0 (2.30)

holds for all s ∈ C except for the singularities of three functions on the left-hand side.

Letting s = 1, and furthermore s = k − 2 for k ∈ N with k ≥ 3 in (2.30), we have the following
results given by Euler (see [5]).

Corollary 2.5 ζEZ,2(1, 2) = ζ(3).

Corollary 2.6 For k ∈ N with k ≥ 3,
k−1∑

j=2

ζEZ,2(k − j, j) = ζ(k).

Proof. Using (2.28) repeatedly, we have

ζMT,2(1, k − 2, 1) = ζMT,2(1, k − 3, 2) + ζEZ,2(k − 2, 2)
= ζMT,2(1, k − 4, 3) + ζEZ,2(k − 3, 3) + ζEZ,2(k − 2, 2)
...

= ζMT,2(1, 0, k − 1) +
k−1∑

j=2

ζEZ,2(k − j, j). (2.31)

Note that ζMT,2(1, 0, k − 1) = ζEZ,2(1, k − 1). On the other hand, letting s = k − 2 in (2.30), we
have

ζMT,2(1, k − 2, 1) = ζMT,2(k − 2, 1, 1) = ζEZ,2(1, k − 1) + ζ(k). (2.32)

Combining (2.31) and (2.32), we have the assertion.

Note that Corollary 2.6 is what is called the sum formula for double zeta values (see [3, 4]).
Hence (2.30) contains these well-known formulas as discrete relations among their special values.

3. The general principle

In this section, we prove our general theorem, which is a generalization of Proposition 2.4. We
consider a Dirichlet series

Z(s) =
∞∑

m=1

am

ms
, (3.1)

where {an} ⊂ C. Let <s = ρ (ρ ∈ R) be the convergent line of Z(s). This means that if <s > ρ then
Z(s) is convergent and if <s < ρ then Z(s) is not convergent. We further assume that 0 ≤ ρ < 1.

Theorem 3.1 Assume that
∞∑

m=1

am sin(mt) = 0 (3.2)
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or
∞∑

m=1

am cos(mt) = 0 (3.3)

is boundedly convergent for t > 0 and that, for ρ < s < 1,

lim
λ→∞

∞∑

m=1

am

∫ ∞

λ
ts−1 sin(mt)dt = 0 (3.4)

(if we assume (3.2)) or

lim
λ→∞

∞∑

m=1

am

∫ ∞

λ
ts−1 cos(mt)dt = 0 (3.5)

(if we assume (3.3)). Then Z(s) defined by (3.1) can be continued meromorphically to C, and
actually Z(s) = 0 for all s ∈ C.

Proof. By the same way as in the proof of Proposition 2.4, we consider

0 =
∫ ∞

0

∞∑

m=1

amts−1 sin(mt)dt (3.6)

for ρ < s < 1. From (3.4), we can justify term-by-term integration on the right-hand side of (3.6).
Hence, using (2.26), it follows from (3.6) that

sin
(πs

2

)
Γ(s)Z(s) = 0 (ρ < s < 1), (3.7)

which means that Z(s) can be continued meromorphically to C and Z(s) = 0 for all s ∈ C except
for s ∈ 2Z. The points s ∈ 2Z are removable singularities by Riemann’s theorem. Hence we may
define Z(s) = 0 at these points, which implies the assertion. Furthermore, if (3.3) and (3.5) hold,
then we can similarly obtain the assertion. This completes the proof.

Theorem 3.1 itself is just a general abstract principle. From this result, however, we can find a
lot of functional relations among multiple zeta-functions. In the rest of this paper, we aim to give
functional relations explicitly as multiple generalizations of Proposition 2.4. Furthermore we will
give more functional relations among various multiple zeta-functions in our next papers.

4. A key lemma

In this section, we prepare a key lemma to give functional relations explicitly. For k ∈ N, let

Vk = {σ = (σ1, . . . , σk) ∈ {±1}k |σ1 = 1}.
For σ = (σ1, . . . , σk) ∈ Vk, let

σ(X1, . . . , Xk) = σ1X1 + · · ·+ σkXk.

For any s ∈ R with s > 0, we consider the sum

Xk(s; σ) =
∑

m1,...,mk≥1

σ(m1,...,mk) 6=0

1
m1 · · ·mk · |σ(m1, . . . , mk)|s . (4.1)

Lemma 4.1 For any s > 0 and σ ∈ Vk, Xk(s; σ) is convergent.

Proof. First we consider the case σ = (1, . . . , 1). We can easily see that

m1 + m2 + · · ·+ mk ≥ (m1 ·m2 · · ·mk)1/k.

8
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Hence we have

Xk(s; σ) ≤
{

ζ
(
1 +

s

k

)}k
< ∞.

Next, we consider the case σ 6= (1, . . . , 1). It is sufficient to consider the case when σ1 = · · · =
σr = 1 and σr+1 = · · ·σk = −1 with 1 ≤ r < k, namely

Xk(s; σ) =
∑

m1+···+mr
6=mr+1+···+mk

1
m1 · · ·mk · |(m1 + · · ·+ mr)− (mr+1 + · · ·+ mk)|s ,

where m1, . . . ,mk ≥ 1. By putting p = m1 + · · ·+ mr and q = mr+1 + · · ·+ mk, and changing the
order of summation, we have

Xk(s; σ) =
∑
p,q≥1
p6=q

1
|p− q|s

∑
m1,...,mr≥1

m1+···+mr=p

1
m1 · · ·mr

∑
mr+1,...,mk≥1

mr+1+···+mk=q

1
mr+1 · · ·mk

, (4.2)

where the empty sum is nil. The change of the order of summation will be justified when we prove
the (absolute) convergence. In order to estimate (4.2), we consider

Yr(p) =
∑

m1,...,mr≥1
m1+···+mr=p

1
m1 · · ·mr

. (4.3)

We claim that

Yr(p) ≤ 2r−1

p
(1 + log p)r−1 (p ∈ N) (4.4)

for r ∈ N with r ≥ 2. We prove this by induction on r ≥ 2. Suppose r = 2. Then we have

Y2(p) =
p−1∑

m=1

1
m(p−m)

=
1
p

p−1∑

m=1

(
1
m

+
1

p−m

)
=

2
p

p−1∑

m=1

1
m

.

We further obtain
p−1∑

m=1

1
m
≤ 1 +

∫ p−1

1

1
x

dx = 1 + log(p− 1) ≤ 1 + log p.

Hence we have

Y2(p) ≤ 2
p
(1 + log p), (4.5)

which implies assertion (4.4) in the case r = 2.
Now we assume (4.4) in the case of r − 1 for r > 2 and consider the case of r. Using the

assumption of induction and (4.5), we have

Yr(p) =
∑

m1,...,mr≥1
m1+···+mr=p

1
m1 · · ·mr

=
∑

j,mr≥1
j+mr=p

1
mr

∑
m1,...,mr−1≥1

m1+···+mr−1=j

1
m1 · · ·mr−1

≤
∑

j,mr≥1
j+mr=p

1
mr

· 2r−2

j
(1 + log j)r−2

≤ 2r−2(1 + log p)r−2 · Y2(p) ≤ 2r−1

p
(1 + log p)r−1,

which implies assertion (4.4) in the case r. Thus we obtain (4.4) for all r ≥ 2 by induction.
Using (4.4), we can obtain the proof of Lemma 4.1 as follows. Combining (4.2) and (4.4), we
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have

|Xk(s;σ)| ≤
∑
p,q≥1
p6=q

1
|p− q|s Yr(p)Yk−r(q)

≤
∑

p6=q

1
|p− q|s

2r−1

p
(1 + log p)r−1 2k−r−1

q
(1 + log q)k−r−1

≤ 2k−2
∑

p6=q

1
|p− q|spq

(1 + log p)r−1(1 + log q)k−r−1. (4.6)

Put j = p − q and l = q − p according as p > q and p < q, respectively. Then (4.6) is less than or
equal to

M = 2k−2
∑

j,q≥1

1
jsq(j + q)

(1 + log(j + q))r−1(1 + log q)k−r−1

+ 2k−2
∑

p,l≥1

1
lsp(p + l)

(1 + log p)r−1(1 + log(p + l))k−r−1. (4.7)

Let ε ∈ R be a sufficiently small positive number. Since 1 + log x ¿ xε, we have

M ¿ 2k−2





∑

j,q≥1

(j + q)ε(r−1)qε(k−r−1)

jsq(j + q)
+

∑

p,l≥1

pε(r−1)(p + l)ε(k−r−1)

lsp(p + l)





< 2k−2





∑

j,q≥1

1
jsq1−η(j + q)1−η

+
∑

p,l≥1

1
lsp1−η(p + l)1−η



 , (4.8)

where η = max{ε(r − 1), ε(k − r − 1)}. Since k, r are fixed, we can take a sufficiently small η with
0 < η < s/4. Using the fact

(x + y)1−η = (x + y)1−3η(x + y)2η > x1−3ηy2η

for x, y > 0, we see that the right-hand side of (4.8) is less than

2k−1
∑

j,q≥1

1
js+1−3ηq1+η

= 2k−1ζ (1 + s− 3η) ζ (1 + η) < ∞,

because 0 < η < s/4. This completes the proof of Lemma 4.1.

5. Explicit functional relations

For p ∈ N ∪ {0} and

σ = (σ1, . . . , σ2p+1) ∈ V2p+1 = {σ = (σj) ∈ {±1}2p+1 |σ1 = 1},
let

∆σ = (−1)p
2p+1∏

j=1

σj ∈ {±1}. (5.1)

Lemma 5.1 For p ∈ N ∪ {0},
2p+1∏

j=1

sinXj =
1

22p

∑

σ∈V2p+1

∆σ · sin(σ(X1, . . . , X2p+1)), (5.2)

10
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where σ(X1, . . . , X2p+1) = σ1X1 + · · ·+ σ2p+1X2p+1.

Proof. We prove this lemma by induction on p ≥ 0. The case of p = 0 is trivial. Hence we assume
the case of p− 1 for p ≥ 1, and consider the case of p.

Using the assumption of induction and the additive properties of cosX and sinX, we have

2p+1∏

j=1

sinXj =




2p−1∏

j=1

sinXj


 · sinX2p · sinX2p+1

=
1

22p−2

∑

σ∈V2p−1

∆σ · sin(σ(X1, . . . , X2p−1))× 1
2
{cos(X2p −X2p+1)− cos(X2p + X2p+1)}

=
1

22p−1

∑

σ∈V2p−1

∆σ

{
sin(σ(X1, . . . , X2p−1)) cos(X2p −X2p+1)

− sin(σ(X1, . . . , X2p−1)) cos(X2p + X2p+1)
}

=
1

22p

∑

σ∈V2p−1

∆σ

{
sin(σ(X1, . . . , X2p−1) + X2p −X2p+1)

+ sin(σ(X1, . . . , X2p−1)−X2p + X2p+1)− sin(σ(X1, . . . , X2p−1) + X2p + X2p+1)

− sin(σ(X1, . . . , X2p−1)−X2p −X2p+1)
}

. (5.3)

Note that V2p+1 = V2p−1 × {±1}2. Hence, for any σ = (σ1, . . . , σ2p−1) ∈ V2p−1 and (σ2p, σ2p+1) ∈
{±1}2, we let

σ = (σ1, . . . , σ2p+1) ∈ V2p+1.

Then we have

∆σ = (−1)p
2p−1∏

j=1

σj = ∆σ · (−σ2p · σ2p+1).

Therefore we can write (5.3) as
1

22p

∑

σ∈V2p+1

∆σ · sin(σ(X1, . . . , X2p+1)),

which implies that (5.2) in the case of p holds. This completes the proof.

From (2.7) and (2.9), we have
∞∑

m=1

(−1)m sin(mx)
m2k+1

=
k∑

j=0

φ(2k − 2j; 1)
(−1)jx2j+1

(2j + 1)!
(−π < x < π) (5.4)

for k ∈ N ∪ {0}. For simplicity, we denote the left-hand side of (5.4) by S2k+1(x) and let φ(s) :=
φ(s; 1) =

(
21−s − 1

)
ζ(s). Then we have




S1(x)
S3(x)

...
S2p+1(x)


 =




φ(0) 0 · · · 0
φ(2) − 1

3!φ(0) · · · 0
...

. . .
...

φ(2p) − 1
3!φ(2p− 2) · · · (−1)p

(2p+1)!φ(0)







x
x3

...
x2p+1


 (5.5)

for p ∈ N ∪ {0}. We denote the matrix on the right-hand side of (5.5) by Dp. Note that Dp ∈
Mp+1(Q[π2]), the set of (p+1, p+1)-matrices with components inQ[π2], because φ(s) =

(
21−s − 1

)
ζ(s).

11
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Since φ(0) = −1
2 , we have

detDp = φ(0)p+1
p∏

j=0

(−1)j

(2j + 1)!
∈ Q×.

Hence Dp ∈ GLp+1(Q[π2]). We denote

D−1
p = (βij)0≤i,j≤p+1 ∈ Mp+1(Q[π2]). (5.6)

Then we have

x2p+1 =
p∑

j=0

βpjS2j+1(x) (−π < x < π). (5.7)

On the other hand, it follows from (2.10) that

x = −2S1(x) =
∞∑

m=1

(−1)m sin(mx)
m

(−π < x < π).

Then

x2p+1 = (−2)2p+1
∑

m1,...,m2p+1≥1

(−1)m1+···+m2p+1
∏2p+1

j=1 sin(mjx)
m1 · · ·m2p+1

.

The sum of S1(x) is not convergent absolutely, but this change of the order of summation is possible,
because in the proof of Lemma 2.1 we have shown∣∣∣∣∣

∑

n>M

(−1)neinx

n

∣∣∣∣∣ ≤
C(x)
M

.

By using Lemma 5.1, we have

x2p+1 = −2
∑

σ∈V2p+1

∆σ

∑

m1,...,m2p+1≥1

(−1)m1+···+m2p+1 sin(σ(m1, . . . , m2p+1)x)
m1 · · ·m2p+1

, (5.8)

when −π < x < π. Combining (5.7) and (5.8), we have

− 2
∑

σ∈V2p+1

∆σ

∑

m1,...,m2p+1≥1

(−1)m1+···+m2p+1 sin(σ(m1, . . . , m2p+1)x)
m1 · · ·m2p+1

=
p∑

j=0

βpj

∞∑

m=1

(−1)m sin(mx)
m2j+1

(−π < x < π). (5.9)

Putting t = x + π in (5.9) and using the relation

cos(σ(m1, . . . , m2p+1)π) = (−1)m1+···+m2p+1

for any σ ∈ V2p+1, we have the following.

Proposition 5.2 For t ∈ R with 0 < t < 2π,

2
∑

σ∈V2p+1

∆σ

∑

m1,...,m2p+1≥1

sin(σ(m1, . . . , m2p+1)t)
m1 · · ·m2p+1

+
p∑

j=0

βpj

∞∑

m=1

sin(mt)
m2j+1

= 0, (5.10)

where {βpj ∈ Q[π2] | 0 ≤ j ≤ p} are defined by (5.6). Furthermore (5.10) is boundedly convergent
for t > 0.

Proof. We have only to check the bounded convergency. The latter part of the left-hand side of
(5.10) is boundedly convergent for t > 0 (see [15], p. 17). We denote by I the former part of the

12
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left-hand side of (5.10). Then, by Lemma 5.1, we have

I = 22p+1
∑

m1,...,m2p+1≥1

∏2p+1
j=1 sin(mjt)

m1 · · ·m2p+1

= 22p+1
2p+1∏

j=1

∑

mj≥1

sin(mjt)
mj

.

Hence I is also boundedly convergent for t > 0. This completes the proof.

Now we aim to apply Theorem 3.1 to (5.10). From Proposition 5.2, the left-hand side of (5.10)
is boundedly convergent for t > 0, which means (3.2). Hence we will check that the left-hand side
of (5.10) satisfies (3.4). For σ ∈ V2p+1, we put

fσ(t) =
∞∑

N=1





∑
m1,...,m2p+1≥1

σ(m1,...,m2p+1)=N

sin(Nt)
m1 · · ·m2p+1

−
∑

m1,...,m2p+1≥1

σ(m1,...,m2p+1)=−N

sin(Nt)
m1 · · ·m2p+1





,

gj(t) =
∞∑

m=1

sin(mt)
m2j+1

(0 ≤ j ≤ p)

for t > 0. Then gj(t) satisfies (3.4) (see [15] Section 2.1, p.15). Next we consider fσ(t). Let 0 < s < 1
and λ > 0. Then

∞∑

N=1

{ ∑
m1,...,m2p+1≥1

σ(m1,...,m2p+1)=N

1
m1 · · ·m2p+1

∫ ∞

λ
ts−1 sin(Nt)dt

−
∑

m1,...,m2p+1≥1

σ(m1,...,m2p+1)=−N

1
m1 · · ·m2p+1

∫ ∞

λ
ts−1 sin(Nt)dt

}

=
∞∑

N=1

∑
m1,...,m2p+1≥1

σ(m1,...,m2p+1)=N

1
m1 · · ·m2p+1

×
{[
−cos(Nt)

Nt1−s

]∞

λ

+
s− 1
N

∫ ∞

λ

cos(Nt)
t2−s

dt

}

−
∞∑

N=1

∑
m1,...,m2p+1≥1

σ(m1,...,m2p+1)=−N

1
m1 · · ·m2p+1

×
{[
−cos(Nt)

Nt1−s

]∞

λ

+
s− 1
N

∫ ∞

λ

cos(Nt)
t2−s

dt

}
. (5.11)

It follows from Lemma 4.1 that Xk(1;σ) is convergent. Hence we see that the right-hand side of
(5.11) has the order O

(
λs−1

)
, which tends to 0 as λ →∞ because 0 < s < 1. This means (3.4) for

fσ(t).
Now we define

Z2p+1(s) = 2
∑

σ∈V2p+1

∆σ

{ ∑
m1,...,m2p+1≥1

σ(m1,...,m2p+1)>0

1
m1 · · ·m2p+1σ(m1, . . . , m2p+1)s

−
∑

m1,...,m2p+1≥1

σ(m1,...,m2p+1)<0

1
m1 · · ·m2p+1(−σ(m1, . . . , m2p+1))s

}
+

p∑

j=0

βpjζ(s + 2j + 1) (5.12)

for s ∈ C with <s > 0, where {βpj ∈ Q[π2] | 0 ≤ j ≤ p} are defined by (5.6). Applying Theorem 3.1
to Z2p+1(s) and 2

∑
σ∈V2p+1

∆σfσ(t) +
∑p

j=0 βpjgj(t), we immediately obtain the following.
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Proposition 5.3 For p ∈ N∪{0}, Z2p+1(s) can be continued meromorphically to C, and Z2p+1(s) =
0 for all s ∈ C.

This result gives certain functional relations for (2p+1)-ple zeta-functions. For example, we will
calculate the case when p = 1 explicitly as follows.

In (5.5), we let p = 1. Using φ(0) = −1
2 and φ(2) = −1

2ζ(2), we have
(

S1(x)
S3(x)

)
=

( −1
2 0

−1
2ζ(2) 1

12

)(
x
x3

)
,

namely (
x
x3

)
= −24

(
1
12 0

1
2ζ(2) −1

2

)(
S1(x)
S3(x)

)
.

Hence x3 = −12ζ(2)S1(x) + 12S3(x), namely β10 = −12ζ(2) and β11 = 12. Since

V3 = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)},
we obtain from (5.12) that

Z3(s) = 2
{
−

∑

m1,m2,m3≥1

1
m1m2m3(m1 + m2 + m3)s

+
∑

m1,m2,m3≥1
m1+m2>m3

1
m1m2m3(m1 + m2 −m3)s

−
∑

m1,m2,m3≥1
m1+m2<m3

1
m1m2m3(m3 −m1 −m2)s

+
∑

m1,m2,m3≥1
m1+m3>m2

1
m1m2m3(m1 −m2 + m3)s

−
∑

m1,m2,m3≥1
m1+m3<m2

1
m1m2m3(m2 −m1 −m3)s

−
∑

m1,m2,m3≥1
m1>m2+m3

1
m1m2m3(m1 −m2 −m3)s

+
∑

m1,m2,m3≥1
m1<m2+m3

1
m1m2m3(m2 + m3 −m1)s

}

− 12ζ(2)ζ(s + 1) + 12ζ(s + 3). (5.13)

The triple series of the second term, fourth term and seventh term in the curly parentheses on
the right-hand side of (5.13) are the same, hence we denote the triple series of the second term by
G1(s). Similarly, the triple series of the third term, fifth term and sixth term are the same, hence
we denote the third term by G2(s). From (1.3), the first term equals to ζMT,3(1, 1, 1, s). Suppose
<s > 1. Then it follows from Lemma 4.1 that G1(s) and G2(s) are convergent absolutely.

First we consider G2(s). Putting l = m3 −m1 −m2, we have

G2(s) =
∑

l,m1,m2≥1

1
lsm1m2(l + m1 + m2)

= ζMT,3(s, 1, 1, 1). (5.14)

Secondly, in order to consider G1(s), we prepare some elementary transformations as follows. Recall
(1.1) and (1.3). We have

∑

l,m,n≥1

1
lm(l + m + n)s

=
∑

l,m,n≥1

(
1
l

+
1
m

)
1

(l + m)(l + m + n)s
= 2ζEZ,3(1, 1, s). (5.15)

Using 1
m(l+n) =

(
1
m + 1

l+n

)
1

l+m+n , we have

∑

l,m,n≥1

1
lm(l + n)(l + m + n)s

=
∑

l,m,n≥1

{
1

lm(l + m + n)s+1
+

1
l(l + n)(l + m + n)s+1

}

= 3ζEZ,3(1, 1, s + 1), (5.16)
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by (5.15). Furthermore we have

∑

l,m,n≥1

1
lm(l + n)(m + n)s

= 3ζEZ,3(1, 1, s + 1) + ζMT.2(1, 2, s). (5.17)

In fact, the left-hand side equals to

∑

m,n≥1

1
m(m + n)s

∑

l≥1

1
l(l + n)

=
∑

m,n≥1

1
mn(m + n)s

∑

l≥1

(
1
l
− 1

l + n

)

=
∑

m,n≥1

1
mn(m + n)s

n∑

l=1

1
l

=
∑

l,m,n≥1
l≤n

1
lmn(m + n)s

=
∑

m,n≥1

1
mn2(m + n)s

+
∑

l,m,j≥1

1
lm(l + j)(l + m + j)s

.

By (5.16), we obtain (5.17).

Using these relations, we consider G1(s). In the definition of G1(s), we put l = m2 − m3 and
j = m3 −m2 according as m2 > m3 and m2 < m3, respectively. Then we have

G1(s) =
∑

m1,m3,l≥1

1
m1m3(m3 + l)(m1 + l)s

+
∑

m1,m2≥1

1
ms+1

1 m2
2

+
∑

m1,m2,j≥1
m1>j

1
m1m2(m2 + j)(m1 − j)s

. (5.18)

The first term on the right-hand side of (5.18) equals to 3ζEZ,3(1, 1, s+1)+ ζMT.2(1, 2, s) by (5.17).
The second term equals to ζ(s + 1)ζ(2). Furthermore the third term equals to

∑

m2,j,k≥1

1
(k + j)m2(m2 + j)ks

, (5.19)

by putting k = m1 − j. We aim to prove that this equals to

ζMT,2(s, 2, 1) +
1
2
ζMT,3(s, 1, 1, 1). (5.20)

In fact, as in the proof of (5.17), we see that (5.19) equals to

∑

j,k≥1

1
ks(k + j)

∑

m2≥1

1
m2(m2 + j)

=
∑

m2,j,k≥1
m2≤j

1
ksjm2(k + j)

= ζMT,2(s, 2, 1) +
∑

m2,l,k≥1

1
ksm2(m2 + l)(k + m2 + l)

, (5.21)

by putting l = j − m2. Denote the second term on the right-hand side of (5.21) by N. Since
1

m2(m2+l) = 1
l

(
1

m2
− 1

m2+l

)
, we have

N =
∑

m2,l,k≥1

{
1

ksm2l(k + m2 + l)
− 1

ksl(m2 + l)(k + m2 + l)

}

= ζMT,3(s, 1, 1, 1)−N.
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Hence we see that (5.19) equals to (5.20). Combining these results, we have

G1(s) = ζMT,2(1, 2, s) + 3ζEZ,3(1, 1, s + 1) + ζ(2)ζ(s + 1)

+ ζMT,2(s, 2, 1) +
1
2
ζMT,3(s, 1, 1, 1). (5.22)

Lastly, using (2.28) and
1

lmn
=

(
1

lm
+

1
mn

+
1
ln

)
1

l + m + n
,

we have
ζMT,3(1, 1, 1, s) = 6ζEZ,3(1, 1, s + 1). (5.23)

Substituting (5.14), (5.22) and (5.23) into (5.13), we have

Z3(s) =6ζEZ,3(1, 1, s + 1)− 3ζMT,3(s, 1, 1, 1) + 6ζMT,2(1, 2, s)
+ 6ζMT,2(s, 2, 1)− 6ζ(2)ζ(s + 1) + 12ζ(s + 3). (5.24)

Note that each function on the right-hand side of (5.24) is meromorphic on C. Hence, from Propo-
sition 5.3, we obtain the following.

Proposition 5.4

2ζEZ,3(1, 1, s + 1)− ζMT,3(s, 1, 1, 1) + 2ζMT,2(1, 2, s)
+ 2ζMT,2(s, 2, 1)− 2ζ(2)ζ(s + 1) + 4ζ(s + 3) = 0 (5.25)

holds for all s ∈ C except for the singularities of functions on the left-hand of (5.25).

Remark Let s = 1 in (5.25). By (5.23), we have ζMT,3(1, 1, 1, 1) = 6ζEZ,3(1, 1, 2). Furthermore it
is known that ζMT,2(1, 2, 1) = 1

2ζ(2)2 (see [16]). Thus we obtain

ζEZ,3(1, 1, 2) = ζ(4), (5.26)

which is a well-known relation (see [7]). In other words, (5.25) is a non-trivial continuous relation
interpolating (5.26). As well as Proposition 5.3, we can also obtain some functional relations for
2p-ple zeta functions. Furthermore we can find other non-trivial functional relations among various
multiple zeta-functions from Theorem 3.1. Hence our investigation gives a kind of partial positive
answer to the problem introduced in Section 1.
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