The discrete universality of L-functions of newforms
A. Laurin¢ikas, K. Matsumoto, J. Steuding

In the paper a discrete universality theorem of Voronin’s type for L-
functions of newforms is obtained.

References: 34 titles.

1. Introduction. In the work [1] S. M. Voronin, see also [2| — [6],
obtained a brilliant theorem on the universality of the Riemann zeta-function
((s), s = o +it. He proved that every analytic non-vanishing on the disc
{se€C:|s| <r r<i} function which is continuous on the boundary of this
disc can be uniformly approximated with desirable accuracy by translations of
the function ((s). This theorem was improved and generalized for other zeta-
functions and Dirichlet series by many authors. We will state the last version
of the Voronin theorem [7]. Let meas{A} denote the Lebesgue measure of the
set A, and let, for "> 0,

vr(...) = %meas{T €0,7]:...},

where the dots mean some condition satisfied by 7. Suppose that K is a
compact subset with connected complement of the strip {s € C : 1/2 <
o < 1}, and let a function f(s) be continuous and non-vanishing on K, and
analytic in the interior of K. Then, for every ¢ > 0,

liminf vr(sup [((s +iT) — f(s)] <€) > 0.
T—o0 seK

The later theorem shows that the set f shifts of the Riemann zeta-function

which approximate a given analytic function is sufficiently rich: it has a positive

lower density.

The universality property for other functions defined by Dirichlet series
has been obtained by S. M. Gonek [8], A. Reich [9], [10], B. Bagchi [11], [12],
A. Laurin&ikas [7], [13] — [17], A. Lauriné¢ikas and K. Matsumoto [18], [19],
A. Laurinéikas, K. Matsumoto and J. Steuding [20], K. Matsumoto [22], J.
Steuding [23], [24], H. Mishou [25], [26], H. Bauer [27], R. Garunkstis [28],
A. Laurin¢ikas, W. Schwarz and J. Steuding [21], and by other authors. It
turned out that the majority of classical zeta and L- functions are universal in
the Voronin sense. The Linnik - Ibragimov conjecture says that all functions
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in a certain half-plane given by Dirichlet series, analytically continuable to
the left of the half-plane of absolute convergence and satisfying some natural
growth conditions are universal. Without any doubt the latter conjecture is
complicated thouth all examples support it.

In [20] we obtained the universality of L-functions of newforms by using a
method based on the method of the work [19], where the case of newforms of
level 1 was considered. Let SL(2,7Z) be the full modular group, and let

To(q) = {(Z 2) € SL(2,Z) : ¢ = 0 (mod q)}

be its Hecke subgroup. A function F'(z) analytic in the upper half-plane Im z >
0 is called the cusp form of weight s and level ¢ if, for all (Z 2) € To(q),

F(az—l—b

) = DTRG),

and if F(z) is analytic and vanishing at the cusps. In this case F'(z) has at
oo the following Fourier series expansion

F(z) = Z c(m)e* M=,
m=1
A form F(z) is called a newform if it is not a cusp form of level less that ¢,
and if it is an eigenfunction of all Hecke operators. This implies the inequality
¢(1) # 0, and we can suppose that ¢(1) = 1.
To each normalized newform we can attach the L-function

L(s,F) =Y elm)

mS

m=1

The later series converges absolutely for o > (»+1)/2. Moreover, the function
L(s, F) is analytically continuable to the whole s-plane and is an entire
function. In the half-plane o > (»r 4 1)/2 the function L(s, F') has the Euler
product over primes

en-T- ) e e te)

plg plq
Let D ={s € C: k/2 <o < (k+1)/2}. Then in [20] the following
statement has been obtained.

Theorem 1. Suppose that F(z) is a normalized newform of weight > and
level q. Let K be a compact subset of the strip D with connected complement,
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and let f(s) be a continuous non-vanishing on K function which is analytic
in the interior of K. Then, for every € > 0

lim inf vp(sup |L(s + i1, F') — f(s)| <e) > 0.
T—o0 seK

The aim of this note is to obtain a discrete version of Theorem 1. Let, for
positive integer N,

) = e #OSm SN,

where the dots mean a certain condition satisfied by m. Suppose that A is a
fixed positive number such that exp {%} is irrational for all integers k& # 0.
For example, we can take h = 7, since by the Lindemann theorem exp{2k},
k # 0, is irrational.

Theorem 2. Let F(z), K and f(s) satisfy the conditions of Theorem 1.
Then, for every € >0,

li]\rfllinfﬂN(sup |L(s 4+ imh, F) — f(s)] <e&) > 0.
—0 seK

Recently, the Schimura-Taniyama conjecture has been proved [29].
Consequently, every non-singular elliptic curve over the field of rational number
E:y*=a2%+tar+b A =—16(4a®+270%) # 0,

is modular, therefore its L-function

Lg(s) = H (1 — M>_11_[ (1 — M + p21_1>_1, o> gu
PIA

oA p p

coincides with L-function of a certain newform of weight 2 of some Hecke
subgroup. Then, in view of Theorem 2 Lg(s) has the discrete universality
property. Here in the difinition of Lg(s) A(p) = p — v(p), where v(p) is the
number of solutions of the congruence

y* = a® + ax + b(modp).
Similarly to Theorem 2 the following statement can be obtained.

Theorema 3. Let F(z) and K satisfy the conditions of Theorem 2, and
let the function f(s) be continuous on K and analytic in the interior of K .
Then, for every € >0,

li]{[ninf,uN(sup |L'(s 4+ imh,F) — f(s)] <e) > 0.
o0 seK



Note that in Theorem 3 the function f(s) may have zeros on K.

Theorema 4. For arbitrary o1, 03, /2 < 01 < 09 < (k+ 1)/2, there
exists a constant ¢ = c(oy,09) > 0 such that for sufficiently large N the
function L'(s + imh, F) has a zero on the disc |s — 6| < (o9 — 01)/2,
o= (”Tm, for more than ¢N numbers m, 0 < m < N.

2. A limit theorem for the function L(s, F'). The proof of Theorem 2
uses a discrete limit theorem in the sence of the weak convergence of probability
measures in the space of analytic functions for the function L(s, F'). Let H(G)
be the space of analytic on G functions equipped with the topology of uniform
convergence on compacta. Denote by B(S) the class of Borel sets of the space
S'. In this section we will study the weak convergence of the probability measure

Prn(A) = un(L(s + imh, F) € A), A€ B(H(Dy)),

where Dy ={s€C:k/2<o<(k+1)/2, |t| < M}.
Let v ={s € C: |s| = 1} denote the unit circle on the complex plane, and

Q = H7p7
p

where 7, = v for all primes p. With product topology and pointwise
multiplication the infinite-dimensional torus {2 is a compact topological
Abelian group. Therefore on (€2, B(2)) the probability Haar measure mpy
exists, and this leads to a probability space (€2, B(£2), my). Denote by w(p) the
projection of element w € €2 to the coordinate space v,, and on the probability
space (2, B(2), my) define an H(D,;)-valued random element L(s,w, F') by
the formula

Lis.o.F) =] (1 3 C(p)w(p)>1 1 (1 _ cp)wlp) w*(p) )1' 1)

plg piq

Let P;, stand for the distribution of the random element L(s,w, F'), i. e.
PrL(A) =mpg(weQ: L(s,w, F)e A), AeB(H(Dy)).

Lemma 1. The probability measure Py weakly converges to Py, as N —
00 .

Proof. The lemma is a consequence of a general discrete limit theorem for
the Matsumoto zeta function obtained in [30].



For primes p define positive integers g(p). Moreover, let ap € C and
f(4,p), 1 <j<g(p), be positive integers. Define a polynomial

g(p)

H (1 —al f(Jp)>

of degree f(1,p)+ ...+ f(g(p),p). In [31] K. Matsumoto began to study the
following zeta-function
=14, . (2)
p

Under restrictions ¢(p) < cp® and |a§,j )| < pP with positive constant c
and non-negative constants « and [ the infinite product in (2) aconverges
absolutely for ¢ > a + § + 1 and defines there an analytic function with no
Zeros.

In the work [30] a discrete limit theorem in the space of meromorphic
functions for the function ¢(s) has been obtained. Suppose that the function
¢(s) is meromorphically continuable to the region D = {s € C : ¢ > p,}
where o + (0 + % < po < a+ (#+ 1, and that all poles in this region are
included in a compact set. Moreover, let, for o > pg,

e(o+it) = O(|t°), [t| > to,

with some § > 0, and
T
/ lo(o +it)|*dt = O(T), T — oo.
0

Denote by M(D) the space of meromorphic on D functions with the topology

of uniform convergence on compacta, and let
wf(]p (p)ay G\
H H psfp)
p j=1

be an H(D)-valued random element on the probability space (Q, B(Q), my).
Then in [30] it was proved that the probability measure

pn(e(s +imh) € A), A e B(M(D)),

weakly converges to the distribution of the random element ¢(s,w) as N —
00 .



For ¢ > (k +1)/2 the function L(s, F') can be written in the form

- T(-2) (- 22) (-9

plg plq

where ¢(p) = a(p) + b(p), and in view of the Deligne estimates
1

la(p)] <p7, |b(p)| <p°7 .

Consequently, the function L(s, F') is a particular case of the Matsumoto zeta-
function with a =0 and = (k —1)/2.
The function L(s, F') satisfies the functional equation

q>(2m)°T(s)L(s, F) = e(=1)"2 (27)* "I'(k — s)L(rk — s, F),

where, as usual, I'(s) is the Euler gamma-function, and ¢ = +1 is the sign
of the function equation. The latter functional equation and the Phragmén-
Lindelof principle imply, for ¢ > k/2, the estimate

L(o +it, F) = O([t]°),  [t| > to,

with some § > 0. Moreover, in [32] it was proved that, for o > k/2,
T
/ |L(o +it, F)|*dt = O(T), T — oc.
0

Thus, we have that all hypotheses of the theorem from [30] are satisfied with
po = %5, and, since the function L(s, F') is entire, the probability measure

pn(L(s+imh, F) € A), Ae B(H(D)),

A

weakly converges to the distribution of the H(D)-valued random element
defined by (1) as N — oo. Since the function u : H(D) — H(D,;) given by
the coordinatewise restriction is continuous, hence and from Theorem 2.1 [33]

we obtain the assertion of the lemma.

3. The support of the measure P;. Let P be a probability measure
on (S,B(S)). We recall that a support of the measure P is the minimal closed
set Sp C S such that P(Sp) = 1. The set Sp consists of all elements = € S
such that for every neighbourhood G of element x the inequality P(G) > 0
takes place.

Let

Sy ={g9g€ HDy):9(s) 0 or g(s)=0}.
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Lemma 2. The support of the measure Pj, is the set Sy .
Proof. In [20] it was proved that the probability measure

vr(L(s+ir, F) € A), A€ B(H(Dy)),

weakly converges to the measure P, as T — oo, and also there it was
obtained that the support of the measure Pj, is the set Sy;.

4. Proof of Theorem 2. Obviously, there exists M > 0 such that the
compact set K C Dy, .

First we suppose that the function f(s) has a non-vanishing analytic
continuation to the region D), . Denote by G the set of functions g € H(Dyy)
such that

Sup lg(s) — f(s)| <e.

In view of Lemma 2 the set G lies in the support of the measure P, . Therefore
Pr(G) > 0. Moreover, the set GG is open. Consequently, Theorem 2.1 from 33|
and Lemma 1 yield.
li]{[ninfuN(sup |L(s +imh, F) — f(s)| <e) > PL(G) > 0. (3)
0 seK
Now let f(s) satisfy the hypotheses of Theorem 2. Then by the Mergelyan
theorem [34] there exists a polynomial p,(s), p,(s) #0 on K, such that
€
sup | f(s) = pu(s)] < 7- (4)
seK
The polynomial p,(s) has only finitely many of zeros. Therefore there is a
region GG; with conected complement such that K C G; and p,(s) # 0 on
G1. This shows that on G; there exists a continuous branch logp,(s) which

is analytic in the interior of G;. By the Margelyan theorem again there exists
a polynomial ¢,,(s) such that

£
sup [pa(s) = expigm(s)} < 7-
seK
This and (4) show that
£
sup [ f(s) — exp{gm(s)}| < 5. (5)
seK 2

However, exp{gm(s)} # 0. Consequently, by (3)

liminf gy (sup |L(s +imh, F') — exp{qm(s)}| < E) > 0.
N—oo seK 2



This and (5) yield the assertion of Theorem 2.
The proof of Theorem 3 is similar to that of Theorem 2. In this case the
support of the limit measure of the measure

pn(L'(s +imh, F) € A), A€ B(H(Dy)),

as N — oo is the whole of H(D,,). This is obtained by asing the arguments
similar to those used in [17].
Proof of Theorem /. Let

o1+ 02
2

o= g1 —

2/-@4—1)
y |02 —

2/@+1)}
4 b

4

, aozmax{

and f(s)=s—0¢ and 0 <& < (09 —01)/10. Then, by Theorem 3 there exists
a constant ¢ = ¢(oy,02) > 0 such that for sufficiently large N

,uN( max |L'(s—|—z’mh,F)—f(s)]<8>>c. (6)

|s—25E <o

The circle |s — 6| = (02 — 01)/2 lies in the disc

2 1
)8— nt ‘S(fo.

Therefore for m satisfying (6)

02 — 01

max |L'(s+imh,F)—(s—0)| <
|s—6|=22771 10

This shows that the functions (s — &) and L'(s + imh) — (s — &) on the disc
|s — | < (09 — 01)/2 satisfy the hypotheses of Rouche’s theorem. However,
the function s — & on this disc has exactly one zero. Therefore, by Rou che’s
theorem the function L'(s + imh, F') on the disc |s — | < (02 — 01)/2 has
one zero. Since the number of such m, 0 < m < N, in view of (6) is greater
then ¢V, the theorem is proved.

References

1] Boponua C. M. Teopema 06 ”ynuBepcanbHOCTH n3eta-(QpyHKIUM Pumana
p

N3s. AH CCCP. Cep. Marem. 1975. T. 39. No 3. C. 475-486.

[2] Bopomun C. M. Teopema o0 pacupenegeHun 3HAYEHUN n3eTa-(yHKIAN

Pumana// IAH CCCP. 1975. T. 221. No 4. C. 771.



[3] Bopouun C. M. Mccaenosanue nosenenus n3era-pyuruuu Pumana: luc. kagm.
¢us.-marem. Hayx. M.: MU AH CCCP, 1972.

[4] Boporun C. M. Amamurudeckue cBodcTBa npomsBomamux ¢yuruuid dupuxie

apupMeTndecknx obpkToB: uc. A- pa. ¢us.-maTem. Hayk. M.: MU AH CCCP, 1977.

[5] Bopounu C. M.Amnanntuueckne cpolicTBa mpomsBomsmux (Gyurunii lupuxie

apudmernyecknx obnexros// Marem. samersn. 1978. T. 29. No 6. C. 879-884.

[6] Bopouun C. M., Kapanyb6a A. A. Ilzera-¢pyuruua Pumana. M.: Pusmariur,
1994.

[7] Laurincikas A. Limit theorems for the Riemann zeta-function.
Dordrecht, Boston, London: Kluwer Academic Publishers, 1996.

[8] Gonek S.M. Analytic properties of zeta and L-functions: Ph.D. Thesis.
University of Michigan, 1979.

[9] Reich A. Universelle Wertverteilung von Eulerprodukten // Nach. Akad.
Wiss. Gottingen. Math.-Phys. Kl1. 1977. P. 1-17.

[10] Reich A. Zur Universalitdt und Hypertranszendenz der Dedekindschen
Zetafunktion // Abh. Braunschweig. Wiss. Ges. 1982. V. 33. P. 187-203.

[11] Bagchi B. The statistical behaviour and universality properties of
the Riemann zeta-function and other allied Dirichlet series: Ph. D. Thesis.
Calcutta: Indian Statistical Institute, 1981.

[12] Bagchi B. A joint universality theorem for Dirichlet L-functions //
Math. Z. 1982. V. 181. P. 319-334.

|13] Laurinc¢ikas A. Distribution des valeurs de certaines séries de Dirichlet
// C. R. Acad. Sci. Paris. 1979. V. 289. Série A. P. 43-45.

[14] Jlaypurumkac A. YHuUBepCaJbHOCTL n3era-Qyurnun Jlepxa// Jlutos. marem.

6. 1997. T. 37. No 2. C. 367-375.

[15] Laurin¢ikas A. On the Matsumoto zeta-function // Acta Arith. 1988.
V. 84. P. 1-16.

|16] Laurin¢ikas A. The universality of zeta-functions // Acta Appl. Math.
2003. V. 78. P. 251-271.

[17] Laurin¢ikas A. On the derivatives of zeta-function of certain cusp
forms// Preprint 2004-06, Department of Math. and Inform., Vilnius
University.



[18] Laurin¢ikas A., Matsumoto K. The joint universality and the functional
independence for Lerch zeta-functions // Nagoya Math. J. 2000. V. 157. P.
211-227.

[19] Laurin¢ikas A., Matsumoto K. The universality of zeta-functions
attached to certain cusp-forms // Acta Arith. 2001. V. 98. P. 345-359.

[20] Jlaypumumkac A., Marcymoro K., Creymumr J. YumsepcambmocTh Li-

¢ynrmmit, ceazamabx ¢ HoBbiMuM (opmamu// Mazs. PAH. Cep.matem. 2003. T. 67.
No 1. C. 83-98.

[21] Laurin¢ikas A., Schwarz W., Steuding J. The universality of general
Dirichlet series // Analysis. 2003. V. 23. P. 13-26.

[22] Matsumoto K. The mean values and universality of Rankin-Selberg L -
functions // Number Theory, Proceedings of the Turku Symposium on Number
theory in memory Kustaa Inkeri (1999)/Eds. M. Jutila, T. Metsénkyl&. Berlin-
N.Y.: Walter de Gruyter, 2001. P. 201-221.

[23] Steuding J. Upper bounds for the density of universality. Acta Arith.
2003. V. 107. P. 195-202.

[24] Steuding J. On the universality for functions in the Selberg class
// Proceedings of the Session in Analytic Number Theory and Diophantine
Equations (Bonn, January/June 2002)/ Eds. D. R. Heath- Brown, B. Z. Moroz.
Bonn: Bonner Math. Schriften, V. 360, 2003, Paper No 28.

[25] Mishou H. The universality theorem for L-functions associated with
ideal class characters // Acta Arith. 2001. V. 98. P. 395-410.

[26] Mishou H. The universality theorem for Hecke L-functions // Acta
Arith. 2003. V. 110. P. 45-71.

[27] Bauer H. The value distribution of Artin L-series and zeros of zeta-
functions // J. Number Theory. 2003. V. 98. P. 254-279.

[28] Garunkstis R. The effective universality theorem for the Riemann
zeta-function // Proc. Session in Analytic Number Theory and Diophantine
Equations, MPI - Bonn (2002) / Eds. D.R. Heath-Brown, B.Z. Moroz. Bonn
Math. Schriften, 2003. V. 360. P. 1-21.

[29] Breuil C., Conrad B., Diamond F., Taylor R. On the modularity of
elliptic curves over Q: wild 3-adic exercises // J. Amer. Math. Soc. 2001. V.
14. P. 843-939.

10



[30] Kauuncratite P. Huckpernas npenesnpHas Tteopema mias Marcymoro n3era-

GyHEIUM B mpocTpanCcTBEe MepoMOPdHLIX ¢yHEmmii// Jlutos. marem. c6. 2002. T. 42.

No 1. C. 46-67.

[31] Matsumoto K. Value-distribution of zeta-functions // Lecture Notes
in Math. 1990. V. 1434. P. 178-187.

[32] Matsumoto K. A probabilistic study on the value distribution of
Dirichlet series attached to certain cusp forms // Nagoya Math. J. 1989. V.
116. P. 123-138.

[33] Billingsley P. Convergence of probability measures. New York: John
Wiley, 1967.

[34] Walsh J. L. Interpolation and approximation by rational functions in
the complex domain // Amer. Math. Soc. Colloq. Publ. 1960. V. 20.

11



