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Abstract. We construct tessellations of the filled Julia sets of hyperbolic and parabolic
quadratic maps. The dynamics inside the Julia sets are then organized by tiles which play
the role of the external rays outside. We also construct continuous families of pinching
semiconjugacies associated with hyperbolic-to-parabolic degenerations without using
quasiconformal deformation. Instead, we achieve this via tessellation and investigation
of the hyperbolic-to-parabolic degeneration of linearizing coordinates inside the Julia set.

1. Introduction
After the work of Douady and Hubbard, the dynamics of quadratic maps f = fc : z 7→
z2
+ c with an attracting or a parabolic cycle have been investigated intensively; this is

because such parameters c of fc are contained in the Mandelbrot set and are very important
elements that determine the topology of the Mandelbrot set. See [DH] or [Mi2] for
more details.

The aim of this paper is to present a new method for describing combinatorial changes
of dynamics when the parameter c moves from one hyperbolic component to another via
a ‘parabolic parameter’ (i.e. c of fc with a parabolic cycle). The simplest example is
the motion in the Mandelbrot set along a path joining c = 0 to the center cp/q of the
p/q-satellite component of the main cardioid via the root of the p/q-limb. In particular,
we join these points by the two segments characterized as follows:
(s1) c of fc which has a fixed point of multiplier re2π i p/q with 0< r ≤ 1; and
(s2) c of fc which has a q-periodic cycle of multiplier 1≥ r > 0.
Note that we avoid the hyperbolic centers (c of fc with a superattracting cycle) because we
regard these as non-generic special cases far away from parabolic bifurcations.

In the magnified box of Figure 1, segments (s1) and (s2) for p/q = 1/3 are drawn in
the Mandelbrot set. By the Douady–Hubbard theory, the change in dynamics of f = fc
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FIGURE 1. Chubby rabbits.

on and outside the Julia set is described by the external rays R f (θ) with θ ∈ T= R/Z and
their landing points γ f (θ), which satisfy f (R f (θ))= R f (2θ) and f (γ f (θ))= γ f (2θ).
For example, as c moves from (s1) to (s2), the map γ f : T→ J f loses injectivity at a
dense subset 2 f of T consisting of the countably many angles that eventually land on
{1/7, 2/7, 4/7} by angle doubling δ : θ 7→ 2θ .

On the other hand, for the dynamics inside the filled Julia set K f , there are no particular
means, such as external rays, for describing degeneration and bifurcation. However, as
indicated by the pictures of filled Julia sets in Figure 1 (with equipotential curves drawn
in), the interior of K f does preserve a certain pattern along (s1) and (s2).

1.1. Degeneration pairs and tessellation. In this paper, we introduce tessellation of
the interior K ◦f of K f as a means of detecting hyperbolic-to-parabolic degeneration or
parabolic-to-hyperbolic bifurcation of quadratic maps.

Let X be a hyperbolic component of the Mandelbrot set. By a theorem due to Douady
and Hubbard [Mi2, Theorem 6.5], there exists a conformal map λX from D onto X that
parameterizes the multiplier of the attracting cycle of f = fc for c ∈ X . Moreover, the
map λX has the homeomorphic extension λX : D̄→ X̄ such that λX (e2π i p/q) is a parabolic
parameter for all p, q ∈ N. A degeneration pair ( f → g) consists of a hyperbolic f = fc

and a parabolic g = fσ , where (c, σ )= (λX (re2π i p/q), λX (e2π i p/q)) for some 0< r < 1
and coprime p, q ∈ N. By letting r→ 1, the map f converges uniformly to g on C̄, and
we have a path which generalizes segment (s1) or (s2). For a degeneration pair, we have
associated tessellations which have the same combinatorics.

THEOREM 1.1. (Tessellation) Let ( f → g) be a degeneration pair. There exist families
Tess( f ) and Tess(g) of simply connected sets with the following properties.
(1) Each element of Tess( f ) is called a tile and is identified by an angle θ in Q/Z, a

level m in Z and a signature ∗ which is either + or −.
(2) If T f (θ, m, ∗) is such a tile in Tess( f ), then f (T f (θ, m, ∗))= T f (2θ, m + 1, ∗).
(3) The interiors of tiles in Tess( f ) are disjoint topological disks. Tiles with the same

signature are univalently mapped to each other by a branch of f −i
◦ f j , for some

i, j > 0.
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(4) Let5 f (θ, ∗) denote the union of tiles with angle θ and signature ∗. Then its interior
5 f (θ, ∗)

◦ is also a topological disk, and its boundary contains the landing point
γ f (θ) of R f (θ). In particular, f (5 f (θ, ∗))=5 f (2θ, ∗).

The above properties hold if f is replaced by g; moreover, we have the following.

(5) There exists an f -invariant family I f of star-like graphs such that the union of tiles
in Tess( f ) is K ◦f − I f ; on the other hand, the union of tiles in Tess(g) is K ◦g .

(6) The boundaries of T f (θ, m, ∗) and T f (θ
′, m′, ∗′) in K ◦f − I f intersect if and only if

the boundaries of Tg(θ, m, ∗) and Tg(θ
′, m′, ∗′) in K ◦g do.

Here the angles of tiles must be the angles of external rays which eventually land on
the parabolic cycle of g. For example, if ( f → g) are on (s1) or (s2) in Figure 1, the set
of angles of tiles coincides with 2 f . See §§2 and 3 for the construction of tessellations
and Figure 2 for examples. The combinatorics of tessellations are found to be preserved
along (s1) and (s2); this is justified in §4 in more generality. Since fc ∈ X − {λX (0)} is
structurally stable, the tessellation of K fc has the same properties as Tess( f ).

1.2. Pinching semiconjugacy. As an application of tessellation, we show that there
exists a pinching semiconjugacy from f to g for the degeneration pair ( f → g). In §§4
and 5 we will establish the following.

THEOREM 1.2. (Pinching semiconjugacy) Let ( f → g) be a degeneration pair. There
exists a semiconjugacy h : C̄→ C̄ from f to g such that:

(1) h only pinches I f to the grand orbit of the parabolic cycle of g;
(2) h sends all possible T f (θ, m, ∗) to Tg(θ, m, ∗), R f (θ) to Rg(θ), and γ f (θ) to γg(θ);
(3) h tends to the identity as f tends to g.

One may easily imagine the situation by looking at the figures of tessellation. As a
corollary, we have convergence of the tiles when f of ( f → g) tends to g (Corollary 5.2).

First, the existence of h with properties (1) and (2) will be proved in §4 (Theorem 4.1)
by using combinatorial properties of tessellation. Property (3) is then proved in §5
(Theorem 5.1); this is done by means of continuity results for extended Böttcher
coordinates (Theorem 5.4) on and outside the Julia sets and linearizing coordinates
(i.e. Königs and Fatou coordinates) inside the Julia sets associated with ( f → g)
(Theorem 5.5).

In Appendix A, we present some useful results on perturbation of parabolics which are
used in the proofs of the theorems.

Notes.

(1) For any fc ∈ X − {λX (0)}, we have a semiconjugacy hc which has properties similar
to (1) and (2) by structural stability. From the work of Cui [Cu] and Haı̈ssinsky and
Tan Lei [Ha2, HT], it is already known that such a semiconjugacy exists. Their
results are based on quasiconformal deformation theory and hold even for some
geometrically infinite rational maps. On the other hand, our method is faithful to
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FIGURE 2. Examples of tessellation. For the two upper-left panels, parameters are taken from period-12 and
period-4 hyperbolic components of the Mandelbrot set, as indicated in the picture of a small Mandelbrot set.

the quadratic dynamics, and the semiconjugacy is constructed in a more explicit way
without using quasiconformal deformation. It is possible to extend our results to
certain classes of higher-degree polynomials or rational maps, but such extensions
are out of the scope of this paper.

(2) This paper is the first part of a project on Lyubich–Minsky laminations. In [LM],
hyperbolic 3-laminations associated with rational maps were introduced as an
analogue of the hyperbolic 3-manifolds associated with Kleinian groups. In
the second part of this project [Ka3] we shall investigate, also by means of
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tessellation and pinching semiconjugacies, combinatorial and topological changes
of 3-laminations associated with hyperbolic-to-parabolic degeneration of quadratic
maps.

2. Degeneration pairs and degenerating arc systems
Segments (s1) and (s2) in the previous section are considered as hyperbolic-to-parabolic
degeneration processes of two distinct directions. Degeneration pairs generalize all of
such processes in the quadratic family. The aim of this section is to give a dichotomous
classification of the degeneration pairs {( f → g)} and to define invariant families of star-
like graphs (degenerating arc systems) for each f of ( f → g).

2.1. Classification of degeneration pairs. First let us define some notation to be used
throughout this paper. Let p and q be relatively prime positive integers, and set ω :=
exp(2π i p/q); we allow the case of p = q = 1. Take a number r from the interval (0, 1),
and set λ := rω. As in the previous section, we take a hyperbolic component X of the
Mandelbrot set. Then we have a degeneration pair ( f → g) that comprises a hyperbolic
f = fc and a parabolic g = fσ , where (c, σ )= (λX (re2π i p/q), λX (e2π i p/q)).

For the degeneration pair ( f → g), let O f := {α1, . . . , αl} be the attracting cycle of
f with multiplier λ= rω and f (α j )= α j+1 (taking subscripts modulo l). Similarly, let
Og := {β1, . . . , βl ′} be the parabolic cycle of g with g(β j ′)= β j ′+1 (taking subscripts
modulo l ′). Let ω′ = e2π i p′/q ′ denote the multiplier of Og with relatively prime positive
integers p′ and q ′ (so Og is a parabolic cycle with q ′ repelling petals).

Our fundamental classification is described in the following proposition.

PROPOSITION 2.1. Any degeneration pair ( f → g) satisfies one of the following.
Case (a): q = q ′ and l = l ′;
Case (b): q = 1< q ′ and l = l ′q ′.
In both cases, we have lq = l ′q ′.

This proposition is proved by combining the results in [Mi2, §§2, 4 and 6]. For example,
a degeneration pair ( f → g) on segment (s1) (respectively (s2)) with q > 1 falls into
Case (a) (respectively Case(b)). Degeneration pairs ( fc→ fσ ) with σ = 1/4 or σ =−7/4
satisfy q = q ′ = 1 and thus Case (a).

A note on terminology. According to [Mi2], a parabolic g with q ′ = 1 is called primitive.
The parabolic map g = fσ with σ = 1/4 is also called trivial. For these g’s, any
degeneration pair ( f → g) automatically belongs to Case (a) by the proposition above.

2.2. Perturbation of Og and degenerating arcs. For a degeneration pair ( f → g) with
r ≈ 1, the parabolic cycle Og is approximated by an attracting or repelling cycle O ′f with

the same period l ′ and multiplier λ′ ≈ e2π i p′/q ′ . Let α′1 be the point in O ′f such that
α′1→ β1 as r→ 1 (cf. [Mi2, §4]).

In Case (a), the cycle O ′f is attracting (thus O ′f = O f ) and there are q ′ symmetrically
arrayed repelling periodic points around α1 = α

′

1; we will then show that there exists an
f l ′ -invariant star-like graph I (α′1) that joins α′1 and the repelling periodic points by q ′
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arcs. In Case (b), the cycle O ′f is repelling and there are q ′ = l/ l ′ symmetrically arrayed

attracting periodic points around α′1; we will then show that there exists an f l ′ -invariant
star-like graph I (α′1) that joins α′1 and the attracting periodic points by q ′ arcs.

In both cases, we define the degenerating arc system I f by

I f :=
⋃
n≥0

f −n(I (α′1)).

The rest of this section is mainly devoted to the detailed construction of I f , which plays
the role of a parabolic cycle and its preimages. It may be helpful to look at Figure 3 first,
which illustrates what we are aiming for.

2.3. External and internal landing. First, consider the parameter c on segment (s1)
such that f = fc has an attracting fixed point O f = {α1} of multiplier λ= rω; thus
c = λ/2− λ2/4. When r tends to 1, the hyperbolic map f tends to a parabolic map g
which has a parabolic fixed point Og = {β1} with multiplier ω = e2π i p/q . Note that q = q ′

and l = l ′ (=1), hence this situation falls into Case (a) of Proposition 2.1. It is known
that the Julia set J f of f is a quasicircle, and the dynamics on J f is topologically the
same as that of f0(z)= z2 on the unit circle. Since J f is locally connected, for any angle
θ ∈ R/Z= T the external ray R f (θ) has a unique landing point γ f (θ). The same is true
for Rg(θ), since Jg is also locally connected. (See [DH, Exposé No. X].)

2.3.1. External landing. By [Mi1, Theorem 18.11] due to Douady, there is at least one
external ray with rational angle landing at β1. Now [GM, Lemma 2.2] and the local
dynamics of β1 ensure the following.

LEMMA 2.2. In the dynamics of g, there exist exactly q external rays, corresponding to
angles θ1, . . . , θq with 0≤ θ1 < · · ·< θq < 1, which land on β1. Moreover, the map g
sends Rg(θ j ) onto Rg(θk) univalently (or equivalently, θk = 2θ j modulo 1) if and only if
k ≡ j + p mod q.

In particular, such angles are determined uniquely by the value p/q ∈Q/Z. We take the
subscripts of {θ j } modulo q . For these angles, we call p/q ∈Q/Z the (combinatorial)
rotation number. Note that the external rays Rg(θ j ) divide the complex plane into q open
pieces, called sectors based at β1.

2.3.2. Internal landing. On the other hand, the set of landing points {γ f (θ j )} of
{R f (θ j )} is a repelling cycle of period q, and the corresponding rays do not divide the
plane. They do, however, continuously extend and penetrate through the filled Julia set,
landing at the attracting fixed point.

LEMMA 2.3. For θ1, . . . , θq as above, there exist q open arcs I (θ1), . . . , I (θq) such that:
• for each j modulo q, the arc I (θ j ) joins α1 and γ f (θ j );
• f maps I (θ j ) onto I (θk) univalently if and only if k ≡ j + p mod q.
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There is no canonical choice for the arcs {I (θ j )}, but we will make a judicious choice
in the proof. An important fact is that the set {I (θ j ) ∪ γ f (θ j ) ∪ R f (θ j )}

q
j=1 divides the

plane into q sectors based at α1. This is topologically the same situation as for g. Indeed,
as r tends to 1, we can consider the arcs {I (θ j )} constructed above as degenerating to the
parabolic β1.

Sketch of the proof. (See [Ka2, Lemma 2.3.3] for a detailed proof.) Let w = φ f (z) be a
linearizing coordinate near α1, where f near α1 is viewed as w 7→ λw. We can extend this
to φ f : K ◦f → C and normalize it so that φ f (0)= 1 [Mi1, §8]. Now we pull back the qth
roots of the negative real axis in the w-plane, which are q symmetrically arrayed invariant
radial rays, to the original dynamics. We can then show that the pulled-back arcs land at
a unique repelling cycle with external angles determined by the rotation number p/q. In
particular, they are disjoint from the critical orbit. 2

Definition. (Degenerating arcs) In the construction of {I (θ j )}, we make a particular choice
of such arcs so that they are laid opposite to the critical orbit in the w-plane. We call these
arcs degenerating arcs.

2.4. Degenerating arc systems. Let us now return to a general degeneration pair
( f → g).

2.4.1. Renormalization. Let B1 be the Fatou component containing the critical value c.
We may assume that B1 is the immediate basin of α1 for f l . It is known that there exists
a topological disk U containing B1 such that f l maps U over itself properly by degree
two; that is, the map f l

:U → f (U ) is a quadratic-like map which is a renormalization of
f . See [Mi2, §8] or [Ha1, Partie 1]. In particular, the map f l

:U → f (U ) is hybrid
equivalent to f1(z)= z2

+ c1 with c1 = λ/2− λ2/4 in segment (s1), which we dealt
with earlier. More precisely, the dynamics of f l near B1 (respectively on B1) can be
topologically (respectively conformally) identified with that of f1 near K f1 (respectively
on K ◦f1

).

2.4.2. Definition of degenerating arc systems. In K f1 , we have q degenerating arcs
associated with the attracting fixed point of f1. By pulling them back to the closure of B1

with respect to the conformal identification above, we obtain q open arcs {I j }
q
j=1 which

are cyclic under f l .
When q = q ′ and l = l ′, i.e. in Case (a), the arcs {I j }

q
j=1 join q ′ repelling points (cyclic

under f l
= f l ′ ) and α1 = α

′

1; in this case we define I (α′1) by the closure of the union of
{I j }

q
j=1. When 1= q < q ′ = l/ l ′, i.e. in Case (b), we only have I1 that joins the repelling

point α′1 (fixed under f l ′ ) and α1; in this case we define I (α′1) by the closure of the union

of { f kl ′(I1)}
q ′−1
k=0 . In both cases, we have I (α′1) as desired. Now we define the degenerating

arc system of f by
I f :=

⋃
n>0

f −n(I (α′1)).
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FIGURE 3. The left panel shows the Julia set of an f in segment (s2) for p/q = 1/3; the right panel shows the Julia
set of an f in segment (s1). Their degenerating arc systems are roughly drawn in. Attracting cycles are depicted

by heavy dots, and degenerating arcs of types {1/7, 2/7/4/7} and {1/28, 23/28, 25/28} are emphasized.

For z ∈ I f , it is useful to denote the connected component of I f containing z by I (z).
For later use, we define α f :=

⋃
n>0 f −n(α1), the set of all points that eventually land

on the attracting cycle O f . Note that I f and α f are forward and backward invariant, and
are disjoint from the critical orbit. In particular, for any z ∈ I f , the components I (z) and
I (α′1) are homeomorphic. In Case (a), the points in α f and the connected components
of I f have a one-to-one correspondence. In Case (b), however, they have a q ′-to-one
correspondence. See Figure 3 and Proposition 2.5.

Similarly, for g of the degeneration pair ( f → g) and one of its parabolic points
β1 ∈ Og , we define

Ig :=
⋃
n>0

g−n(β1).

We shall see that this naturally corresponds to I f rather than α f .

2.4.3. Types. After [GM], we define the type 2(z) of z in J f (or Jg) by the set of all
angles of external rays which land on z. Let δ : T→ T be the angle-doubling map. Since
J f has no critical points, one can easily see that δ(2(z)) coincides with 2( f (z)). The
same holds for g. By an unpublished result of Thurston, if z in the quadratic Julia set
does not have a finite orbit, then card(2(z))≤ 4. See [Ki] for a generalized statement and
proof. In our case, (pre-)periodic points in J f and Jg have uniformly bounded numbers of
landing rays. Hence we have the following.

LEMMA 2.4. For any point z in J f or Jg , the set 2(z) consists of finitely many angles.

We shall abuse the notation 2(·): for any subset E of the filled Julia set, its type 2(E)
will be the set of angles of the external rays that land on points in E . (So 2(E) is empty
when E does not touch the Julia set.) For each ζ in α f , we formally define the type of
ζ by 2(ζ) :=2(I (ζ )). Then one can easily see that δn(2(ζ ))=2(α1) for some n > 0.
We also set 2 f :=2(I f ) and 2g :=2(Ig). We will show that 2 f is equal to 2g in the
next proposition.
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2.4.4. Valence. For any ζ ∈ α f , the component I (ζ ) of I f is univalently mapped onto
I (α1) by iteration of f . Thus the value val( f ) := card(2(ζ )) is a constant for a given f .
Similarly, since a small neighborhood of ξ in Ig is sent univalently over β1 by iteration of
g, the value val(g) := card(2(ξ)) is constant for g. Now we claim the following.

PROPOSITION 2.5. For any degeneration pair ( f → g), we have 2 f =2g and
val( f )= val(g). Moreover:
• if q = q ′ = 1 and l = l ′ > 1 (i.e. Case (a) and non-trivial primitive), then val(g)= 2;
• otherwise val(g)= q ′.

We call val( f )= val(g) the valence of ( f → g). Note that the valence depends only on g.
The proof of this proposition makes use of some facts from [Mi2].

Proof. The two possibilities of val(g) above are shown in [Mi2, Lemma 2.7, §6]. If we
can prove that 2(α′1)=2(β1), then 2 f =2g and val( f )= val(g) follow automatically.

Case (a): q = q ′. (Recall that in this case we have l = l ′ and α1 = α
′

1.) First, consider
q = q ′ = 1. By the argument of [Mi2, Theorem 4.1], there exists a repelling cycle
{γ1, . . . , γl ′} of f which satisfies γ j ′→ β j ′ as f → g and 2(γ j ′)=2(β j ′) for j ′ =
1, . . . , l ′. Take the degenerating arc {I1} in the construction of I f . Then I1 joins α1(= α

′

1)

and γ1, and hence 2(α′1)=2(I (α1))=2(γ1)=2(β1).
Next, consider q = q ′ > 1. When f is in segment (s1), the identity 2(α′1)=2(β1) is

clear by Lemma 2.3. In the general case, we use renormalization.
Let us take a path η in parameter space that joins c to σ according to the motion

as r→ 1. By [Ha1, Théorème 1], there is an analytic family of quadratic-like maps
{ f l

c′ :Uc′→ f l
c′(Uc′)} over a neighborhood of η such that the straightening maps are

continuous and they give one-to-one correspondence between η and (s1).
Let α1 ∈ O f and β1 ∈ Og be the attracting and parabolic fixed points of f l

= f l
c :

Uc→ f l
c (Uc) and gl

= f l
σ :Uσ → f l

σ (Uσ ), respectively, satisfying α1→ β1 as f → g.
By Lemma 2.2, we can find q external rays landing at β1 in the original dynamics of
g, which is cyclic under gl . In particular, there can be no more rays landing at β1,
because any such rays must be cyclic of period q under gl , and this would contradict [Mi2,
Lemma 2.7]. Similarly, in the dynamics of f , by Lemma 2.3 and continuity of the
straightening, there are exactly q external rays of angles in 2(β1) landing at q ends of
I (α1)= I (α′1). In fact, if there is another ray of angle t /∈2(β1) landing on such an end,
then Rg(t) must land on β1 by orbit forcing [Mi2, Lemma 7.1]; but this is a contradiction.
Thus 2(α1)=2(α

′

1)=2(β1).

Case (b): q = 1< q ′. By the argument of [Mi2, Theorem 4.1], the repelling points
O ′f = {α

′

1, . . . , α
′

l ′} must satisfy 2(α′j ′)=2(β j ′) for j ′ = 1, . . . , l ′. 2

In both Case (a) and Case (b), it is convenient to assume that the α j ′ , α j ′+l ′ , . . . ,

α j ′+(q ′−1)l ′ have the same types as β j ′ , for each j ′ = 1, . . . , l ′. Equivalently, we assume
throughout this paper that

I (α j ′)= I (α j ′+l ′)= · · · = I (α j ′+(q ′−1)l ′).
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2.5. Critical sectors. For ξ in Ig , the external rays of angles in 2(ξ) cut the plane up
into val(g) open regions, called sectors based at ξ . Similarly, for ζ in α f , the union of
the external rays of angles in 2(ζ) and I (ζ ) cut the plane up into val( f )= val(g) open
regions. We abuse the term sectors based at I (ζ ) for these regions.

Let B0 be the Fatou component of g that contains the critical point z = 0. We may
assume that β0 = βl ′ is on the boundary of B0. Now one of the sectors based at β0 contains
the critical point 0; this is called the critical sector. For later use, let θ+0 , θ

−

0 ∈ R/Z denote
the angles of external rays bounding the critical sector, such that if we take representatives
θ+0 < θ−0 ≤ θ

+

0 + 1, the external ray of angle θ with θ+0 < θ < θ−0 is contained in the
critical sector. For example, we defined θ+0 := 4/7 and θ−0 := 1/7 for Figure 3, while
for Figure 8 we took θ+0 := 5/7 and θ−0 := 2/7. We also define the critical sector based at
I (α0) to be one of the sectors bounded by I (α0) and R f (θ

±

0 ).

3. Tessellation
In this section, we develop (and make more concise) the method in [Ka2], and construct a
tessellation of the interior of the filled Julia sets for a degeneration pair ( f → g).

For each θ ∈2 f =2g and some m ∈ Z (with a condition depending on θ ), we will
define the tiles T f (θ, m,±) and Tg(θ, m,±) with the properties listed in Theorem 1.1.
As one can see from Figure 2, the idea of tessellation is simple, but we need to do the
construction precisely in order to figure out the combinatorial structure in detail.

3.1. Fundamental model of tessellation. Take R ∈ (0, 1), and consider the affine maps
F(W )= RW + 1 and G(W )=W + 1 on C as the W -plane. The map F has a fixed point
a = 1/(1− R) and one can see the action by the relation F(W )− a = R(W − a).

3.1.1. Tiles for F. Set I := [a,∞), a half line invariant under F . For each µ ∈ Z, we
define ‘tiles’ of level µ for F by

Aµ(+) := {W ∈ C− I : Rµ+1a ≤ |W − a| ≤ Rµa, Im W ≥ 0},

Aµ(−) := {W ∈ C− I : Rµ+1a ≤ |W − a| ≤ Rµa, Im W ≤ 0}.

One can check that F(Aµ(∗))= Aµ+1(∗), where ∗ ∈ {+,−}. For the boundary of each
Aµ(∗), we define:
• the circular edges by the intersection with Aµ±1(∗);
• the degenerating edge by Aµ(∗) ∩ I ; and
• the critical edge by the intersection with (−∞, a).
Note that Aµ(∗)⊂ C− I , so the degenerating edge is not contained in Aµ(∗).

3.1.2. Tiles for G. Analogously, for each µ ∈ Z, we define ‘tiles’ of level µ for G by

Cµ(+) := {W ∈ C : µ≤ Re W ≤ µ+ 1, Im W ≥ 0},

Cµ(−) := {W ∈ C : µ≤ Re W ≤ µ+ 1, Im W ≤ 0}.

Then one can check that G(Cµ(∗))= Cµ+1(∗). For the boundary of each Cµ(∗), we
define:
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FIGURE 4. The fundamental model.

• the circular edges by the intersection with Cµ±1(∗), which are vertical half lines;
• the critical edge by the intersection with (−∞,∞).
Note that there is no degenerating edge for Cµ(∗). One can consider Cµ(∗) the limit of
Aµ(∗) as R→ 1.

3.2. Tessellation for f and g. First we reduce the dynamics of f |K ◦f and g|K ◦g to the
dynamics of F and G on C.

3.2.1. From f to F. Let B0 be the Fatou component of f containing 0. We may assume
that α0 = αl ∈ B0. There exists a unique extended linearizing coordinate φ f : B0→ C
such that φ f (α0)= φ f (0)− 1= 0 and φ f ( f l(z))= λφ f (z) [Mi1, §8]. Set w := φ f (z)
and R := λq

= rq . Then f lq
|B0 is semiconjugate to w 7→ Rw. To reduce this situation

to our fundamental model, we first take a branched covering W = wq . Then f l
|B0 and

f lq
|B0 are semiconjugate to W 7→ RW and W 7→ Rq W , respectively. Next, we take an

affine conjugation W 7→ a(1−W ). Then f l
|B0 and f lq

|B0 are finally semiconjugate to F
and Fq in the fundamental model, respectively. Let 8 f denote this final semiconjugation.
Now we have 8 f (0)= 0 and 8 f (B0 ∩ I f )= I (the second equality comes from the
construction of the degenerating arcs in Lemma 2.3). In particular, the map 8 f branches
at z ∈ B0 if and only if either f ln(z)= 0 for some n ≥ 0, or q > 1 and f ln(z)= α0 for
some n ≥ 0.

3.2.2. From g to G. Let B ′0 be the Fatou component of g containing 0. We may assume
that β0 = βl ′ ∈ ∂B ′0. There exists a unique extended Fatou coordinate φg : B ′0→ C such
that φg(0)= 0 and φg(glq(z))= φg(z)+ 1 [Mi1, §10]. Set w := φg(z); then glq

|B0 is
semiconjugate to w 7→ w + 1. To adjust the situation to that of f , we take an additional
conjugacy w 7→W = qw. Then glq

|B0 is semiconjugate to Gq(W )=W + q. We denote
this semiconjugation z 7→ w 7→W by8g . Note that8g(0)= 0 and8g branches at z ∈ B ′0
if and only if glqn(z)= 0 for some n ≥ 0.

Let us summarize these reduction steps. Now 8 f : B0→ C semiconjugates the
action of f lq

: B0 − I f → B0 − I f to that of Fq
: C− I → C− I . Similarly, the
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FIGURE 5. f lq and glq are semiconjugate to Fq and Gq .

map 8g : B ′0→ C semiconjugates the action of glq
: B ′0→ B ′0 to that of Gq

: C→ C
(see Figure 5). In addition, we have one important property as follows.

PROPOSITION 3.1. The branched linearization8 f does not ramify over C− (−∞, 0] or
C− (−∞, 0] ∪ {a} according to q = 1 or q > 1. Similarly, the branched linearization8g

does not ramify over C− (−∞, 0]. In particular, both8 f and8g do not ramify over tiles
of level µ > 0.

See Theorem 5.5 for another important property of 8 f and 8g .

3.2.3. Definition of tiles and their addresses. A subset T ⊂ K ◦f is a tile for f if
there exist n ∈ N and µ ∈ Z such that f n(T ) is contained in B0 and 8 f ◦ f n maps T
homeomorphically onto Aµ(+) or Aµ(−). We define circular, degenerating and critical
edges for T by their corresponding edges of Aµ(±). We call the collection of such tiles
the tessellation of K ◦f − I f , and denote it by Tess( f ). In fact, one can easily check that

K ◦f − I f =
⋃

T∈Tess( f )

T .

Each z ∈ K ◦f − I f is in the interior of a unique T ∈ Tess( f ), on a vertex shared by four or
eight tiles in Tess( f ) if f m(z)= f n(0) for some n, m > 0, or on an edge shared by two
tiles in Tess( f ).
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FIGURE 6. Angles of tiles in Case (a) (left) and Case (b) (right) with q ′ = 3. The thick curves represent
degenerating arcs.

Tiles for g and the tessellation of K ◦g − Ig = K ◦g are defined by replacing f , B0 and
Aµ(±) by g, B ′0 and Cµ(±), respectively.

Each tile is identified by an address, which consists of an angle, a level and a signature.
These are defined as follows.

Level and signature. For T ∈ Tess( f ), i.e. f n(T )⊂ B0 and 8 f ◦ f n(T )= Aµ(∗) with ∗
being + or −, we say that T has level m = µl − n and signature ∗. Then the critical point
z = 0 is a vertex of eight tiles of level 0 and −l.

For a tile T ′ ∈ Tess(g), its level and signature are defined in the same way.

Angle. For T ∈ Tess( f ), there exists ζ in α f such that I (ζ ) contains the degenerating edge
of T . There are then val( f )= v ≥ 1 rays landing on I (ζ ), and these rays and I (ζ ) divide
the plane into v sectors. (In the case of v = 1, or equivalently g(z)= z2

+ 1/4, we consider
the sector as the plane with a slit.) Take two angles θ+ < θ−(≤ θ+ + 1) of external rays
bounding the sector that contains T (so any external ray of angle θ with θ+ < θ < θ− would
be contained in the sector). We define the angle of T by θ∗, where ∗ is the signature of T ;
see Figure 6.

For a tile T ′ ∈ Tess(g), one can check that there exists a unique point β ′ ∈ Ig ∩ ∂T ′.
Since there are v rays landing on β ′ and they divide the plane into v sectors as in the case
of T ∈ Tess( f ), we can define the angle of T ′ in the same way as above.

We denote such tiles by T = T f (θ∗, m, ∗) and T ′ = Tg(θ∗, m, ∗), and we call the triple
(θ∗, m, ∗) the address of the tiles. For example, Figure 7 shows the structure of addresses
for the two tessellations on the lower left of Figure 2.

Now one can verify the desired property

f (T f (θ, m, ∗))= T f (2θ, m + 1, ∗).

The same holds if we replace f by g. One can also check properties (1) to (5) of
Theorem 1.1 easily.
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FIGURE 7. ‘Checkerboard’ and ‘Zebras’, showing the structure of the addresses of tiles. Checkerboard (top
panel), with some external rays drawn in, illustrates the relation between the external angles and the angles of
tiles. The invariant regions colored in white and gray correspond to tiles of signature + and −, respectively.
Zebras (middle and bottom panel) show the levels of tiles for fc with −1< c < 0; the levels get higher near the

preimages of the attracting periodic points.

Remarks on angles and levels.

• We make an exception for non-trivial primitives (q = q ′ and l = l ′ > 1). If ( f → g)
is non-trivial primitive, then v = 2 and only tiles of addresses (θ±, m,±) are defined.
However, we can formally define tiles of addresses (θ±, m,∓) by tiles of addresses
(θ∓, m,∓) respectively; see Figure 8.)

• For a degeneration pair ( f → g), the space of possible addresses of tiles is not
equal to 2 f × Z× {+,−} in general. For both f and g, all possible addresses are
realized when l = 1. But when l > 1, the address (θ, m,±) is realized if and only if
m + n ≡ 0 mod l for some n > 0 with 2nθ = θ±0 . In any case, note that T f (θ, m, ∗)
exists if and only if Tg(θ, m, ∗) exists.
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FIGURE 8. A non-trivial primitive ( f → g) with g(z)= z2
− 7/4. We define, for example, T f (2/7, m,+) by

T f (5/7, m,+).

3.3. Edge sharing. Let us investigate the combinatorics of tiles in Tess( f ) and Tess(g).
We will prove the next proposition, which is a detailed version of Theorem 1.1(6).

PROPOSITION 3.2. For θ ∈2 f =2g and ∗ ∈ {+,−}, let us take an m ∈ Z such that
T = T f (θ, m, ∗) and S = Tg(θ, m, ∗) exist. Then the following hold.
(1) The circular edges of T and S are shared by T f (θ, m ± l, ∗) and Tg(θ, m ± l, ∗),

respectively.
(2) The degenerating edge of T is contained in I (ζ ) with ζ ∈ α f of type 2(ζ) if and

only if S attaches at ξ ∈ Ig of type 2(ξ)=2(ζ). Moreover, the degenerating edge
of T is shared with T f (θ, m, ∗̄), where ∗̄ is the opposite signature of ∗.

(3) T shares its critical edge with T f (θ
′, m′, ∗′) if and only if S does the same with

Tg(θ
′, m′, ∗′). In this case, we have m′ = m and ∗′ = ∗̄.

Thus, the combinatorics of Tess( f ) and Tess(g) are the same.

Proof. (1) Circular edges: By Proposition 3.1, for any n ≥ 0, the inverse map f −n
◦8−1

f
over C− (−∞, a] is a multivalued function with univalent branches. It follows that the
property ‘Aµ(∗) shares its circular edges with Aµ±1(∗)’ is translated to ‘T (θ, m, ∗) shares
its circular edges with T (θ, m ± l, ∗)’ by one of these univalent branches. The same
argument works for 8g : B ′0→ C, which does not ramify over C− (−∞, 0].

(2) Degenerating edges: The statement follows from the definitions of tiles and addresses.

(3) Critical edges: The combinatorics of tiles are essentially determined by the connections
of critical edges, which are organized as follows.

In the fundamental model, we consider the families of curves

Aµ(∗) ∩ {|W − a| = Rµ+1/2
},

Cµ(∗) ∩ {Re W = µR + 1/2}

for µ ∈ Z, and we call these the essential curves of Aµ(∗) and Cµ(∗). Since 8 f ◦ f n and
8g ◦ gn do not ramify over these essential curves, their pulled-back images in the original
dynamics form ‘equipotential curves’ in K ◦f and K ◦g . The essential curve of a tile is the
intersection with such equipotential curves.
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FIGURE 9. The thick curves show η0 and η′0 in Case (a) with q = q ′ = 3. The dashed lines indicate the
degenerating arcs or external rays.

Let us consider a general tile T ∈ Tess( f ) as in the statement. By taking a suitable
n� 0, we may assume that f n(T ) is a tile in B0, with angle t in {θ+0 , θ

−

0 } ⊂2(α0) and
level µl for some µ≥ 0. In particular, we may assume that f n(T ) is in the critical sector
based at I (α0). Then, for S in the statement, we can take the same n and µ as those for T ,
so that gn(S) is a tile in B ′0 with angle t in 2(β0)=2(α0) and level µl.

Case (a): q = q ′. Let η0 be the union of essential curves of tiles of the form T f (t, µl, ∗)
with t in 2(α0). Then η0 forms an equipotential curve around α0, since 8 f |η0 is a q-fold
covering over the circle {|W − a| = R1/2+µ

}. For n > 0, set η−n = f −n(η0). Then η−n

is a disjoint union of simple closed curves passing through tiles of level µl − n and with
angles in δ−n(2(α0)). In particular, each curve crosses degenerating edges and critical
edges alternately. More precisely, let η be a connected component of η−n . Then the degree
of f n

: η→ η0 varies according to how many curves in { f k(η)}
n
k=1 enclose the critical

point z = 0. One can check the degree by counting the number of points of f −n(α0) inside
η. Let ζ1, . . . , ζN be these points; then η crosses each I (ζi ), and thus η crosses the tiles
of level −n with angles in 2(ζ1) ∪ · · · ∪2(ζN )⊂ T in cyclic order, and with signatures
switching as the edges of tiles are crossed. This observation provides a description of how
critical and degenerating edges are shared among tiles along η.

Now we can take η passing through T . From the above observation we deduce that:
if T shares its critical edge with T f (θ

′, m′, ∗′), then m′ = m and ∗′ = ∗̄; if T shares its
degenerating edge with T f (θ

′, m′, ∗′), then θ ′ = θ , m′ = m and ∗′ = ∗̄.
For S, consider a circle around β0 which is so small that the circle and the essential

curves of tiles with angle θ ∈2(β0) and levelµl bound a flower-like disk; see Figure 9. Let
us denote the boundary of the disk by η′0, which works as η0. Since the combinatorics of
pulled-back sectors based at β0 and I (α0) are the same, the observation of g−n(η′0)= η

′
−n

must be the same as that of η−n . This concludes the proof in Case (a).

Case (b): q = 1< q ′. (Recall that in this case, Og is perturbed into the repelling cycle
O ′f = {α

′

1, . . . , α
′

l ′ = α
′

0}, with α′0→ β0 as f → g.) The same argument as above works
if we take η0 and η′0 as follows: first, in the fundamental model, take ε� 1 and two radial
half-lines from a with arguments ±ε. Then there are univalently pulled-back arcs of two
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FIGURE 10. η0 and η′0 in Case (b) with q ′ = 3.

lines in the critical sector that joins α0 and α′0. Next, we take simple closed curves around
α0 and α′0. For α0, we take the essential curves along tiles of address (θ±0 , µl,±). For
α′0, we take just a small circle around α′0. Then the two arcs and two simple closed curves
bound a dumbbell-like topological disk. We define η0 to be its boundary curve.

Similarly, for g, the essential curves of tiles of address (θ±0 , µl,±) and a small circle
around β0 bound a topological disk. We take η′0 as its boundary; see Figure 10. 2

3.4. Tiles and panels with small diameters. We now show that the diameters of tiles
are controlled by their angles. For θ in 2 f =2g and ∗ ∈ {+,−}, let 5 f (θ, ∗) and
5g(θ, ∗) be the union of tiles with angle θ and signature ∗ in Tess( f ) and Tess(g),
respectively; we call these panels of angle θ and signature ∗. (For later convenience,
we shall denote 5 f (θ,+) ∪5 f (θ,−) by 5 f (θ).) The depth of angle θ is the minimal
n ≥ 0 such that 2nθ = θ+0 , where θ+0 ∈2(α0)=2(β0) is as defined in §2.5. (Note
that 5 f (θ

+

0 )=5 f (θ
−

0 ) when ( f → g) is non-trivial primitive.) We denote such an n
by depth(θ).

PROPOSITION 3.3. For any fixed degeneration pair ( f → g) and any ε > 0, there exists
N = N (ε, f, g) such that

diam5 f (θ, ∗) < ε and diam5g(θ, ∗) < ε

for any signature ∗ and any θ ∈2 f with depth(θ)≥ N.

Proof. We first work with f and signature +. One can easily check that the interior 5 of
5 f (θ

+

0 ,+) is a topological disk. For any θ ∈2 f , the panel5 f (θ,+)
◦ is sent univalently

onto5 by f n with n = depth(θ). Let Fθ be the univalent branch of f −n which sends5 to
5 f (θ,+)

◦. Since the family {Fθ : θ ∈2 f } on 5 avoids the values outside the Julia set, it
is normal.

Now we claim that diam5 f (θ,+)→ 0 as depth(θ)→∞. Suppose otherwise;
then one can find a sequence {θk}k>0 with depth nk→∞ and a δ > 0 such that
diam5 f (θk,+) > δ for any k. By passing to a subsequence, we may assume that
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Fk := Fθk has a non-constant limit φ. Fix any point z ∈5, and set ζ := φ(z)= lim Fk(z).
Since φ is holomorphic and is therefore an open map, there exists a neighborhood V of ζ
such that V ⊂ φ(5) and V ⊂ Fk(5) for all k� 0. Since f nk (V )⊂5⊂ K ◦f , any point in
V is attracted to the cycle O f . However, by univalence of Fk , there exists a neighborhood
W of z with W ⊂ F−1

k (V )= f nk (V ) for all k� 0. This is a contradiction; thus the claim
is verified.

Finally, we arrange the angles of 2 f in a sequence {θi }i>0 such that depth(θn) is non-
decreasing. Note that for any integer n, there are only finitely many angles with depth n.
Thus there exists an integer N = N (ε, f,+) such that 5 f (θ,+) has diameter less than ε
if depth(θ)≥ N .

This argument also works if we switch the map (from f to g) or the signature (from
+ to −). Thus we obtain four distinct N ’s, and we can take N (ε, f, g) to be their
maximum. 2

Indeed, as depth tends to infinity, we have uniformly small panels for f ≈ g (see
Proposition 5.6).

4. Pinching semiconjugacy
In this section we construct a semiconjugacy h : C̄→ C̄ associated with ( f → g) by gluing
tile-to-tile homeomorphisms inside the Julia sets and using the topological conjugacy
induced by the Böttcher coordinates outside the Julia sets.

THEOREM 4.1. For a degeneration pair ( f → g), there exists a semiconjugacy
h : C̄→ C̄ from f to g such that:
(1) h maps C̄− I f to C̄− Ig homeomorphically and is a topological conjugacy between

f |C̄−I f
and g|C̄−Ig

;
(2) for each ζ ∈ α f with type 2(ζ), h maps I (ζ ) onto a point ξ ∈ Ig with type

2(ξ)=2(ζ);
(3) h sends all possible T f (θ, m, ∗) to Tg(θ, m, ∗), R f (θ) to Rg(θ), and γ f (θ) to γg(θ).

This theorem emphasizes the combinatorial properties of h. In the next section we will
show that h→ id as f tends to g uniformly.

4.1. Trans-component partial conjugacy and subdivision of tessellations. Let
( f1→ g1) and ( f2→ g2) be distinct satellite degeneration pairs with g1 = g2. More
precisely, we consider ( f1→ g1) and ( f2→ g2) to be tuned copies of degeneration pairs
in segments (s1) and (s2), with q > 1 by the same tuning operator. By composing
homeomorphic parts of the conjugacies associated with ( f1→ g1) and ( f2→ g2), we
deduce the following.

COROLLARY 4.2. There exists a topological conjugacy κ = κ f1, f2 : C̄− I f1 → C̄− I f2

from f1 to f2.

For example, the panel 5 f1(θ, ∗) is mapped to the panel 5 f2(θ, ∗). Now we can
compare Tess( f1) and Tess( f2) via Tess(gi ). By comparing Tess(g1) and Tess(g2), one
can easily check that
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FIGURE 11. H maps A0(+) to C0(+).

Tg2(θ, µ, ∗)=

q−1⋃
j=0

Tg1(θ, µ+ l j, ∗)

for any Tg2(θ, µ, ∗) ∈ Tess(g2). Thus Tess(g1) is just a subdivision of Tess(g2).
Take a tile T f1(θ, m, ∗) ∈ Tess( f1). Then there is a homeomorphic image

T ′2(θ, m, ∗) := κ(T f1(θ, m, ∗)) in K ◦f2
. We say that the family

Tess′( f2) := {κ(T ) : T ∈ Tess( f1)}

is the subdivided tessellation of K ◦f2
− I f2 . Since Tess( f1) and Tess( f2) have, respectively,

the same combinatorics as Tess(g1) and Tess(g2), it follows that

T f2(θ, µ, ∗)=

q−1⋃
j=0

T ′f2
(θ, µ+ l j, ∗)

for any T f2(θ, µ, ∗) ∈ Tess( f2). Now we have a natural tile-to-tile correspondence
between Tess( f1), Tess(g1) and Tess′( f2). In other words, the combinatorial property
of tessellation is preserved under the degeneration from f1 to g and the bifurcation from g
to f2.

In [Ka3], we will use this property to investigate the structures of the Lyubich–Minsky
hyperbolic 3-laminations associated with f1, g and f2.

4.2. Proof of Theorem 4.1. The rest of this section is devoted to the proof of our main
theorem. The proof can be broken down into five steps.

(1) Conjugacy on the fundamental model. We define a topological map H : C− I → C
which maps Aµ(±) to Cµ(±) homeomorphically. For W ∈ C− I , set W := a + ρei t ,
where ρ > 0 and 0< t < 2π . The map H is then given by

H(W ) :=
log ρ − log a

log R
+ 2ai tan

π − t

2
∈ C.

One can check that H conjugates the action of F on C− I to that of G on C, and H maps
Aµ(±) homeomorphically onto Cµ(±).
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(2) Tile-to-tile conjugation. Consider the critical sectors of f and g. Let50 and5′0 denote
the union of tiles of addresses (θ±0 , µl,±)withµ > 0 in Tess( f ) and Tess(g), respectively.

By Proposition 3.1, the map 8 f :50→ C is univalent, and we can choose a univalent
branch 9g of 8−1

g which sends {W : Re W ≥ 1} to 5′0. For each point in 50, we define
h :=9g ◦ H ◦8 f |50 . Then h is a conjugacy between f lq

|50 and glq
|5′0

. Note that
all tiles will eventually land on tiles in 50 or 5′0. According to the combinatorics of
tiles determined by pulling back essential curves in 50 and 5′0, we can pull back h over
K ◦f − I f . Now the map h : K ◦f − I f → K ◦g conjugates f |K ◦f−I f and g|K ◦g .

(3) Continuous extension to the degenerating arc system. Take ζ ∈ α f . For any point z in
I (ζ ), we define h(z) by the unique ξ ∈ Ig such that 2(ξ)=2(ζ).

We now show the continuity of the h : K ◦f ∪ I f → K ◦g ∪ Ig which we have defined
above. Take any z in I (ζ ). We claim that any sequence zn ∈ K ◦f ∪ I f converging to z must
satisfy h(zn)→ ξ .

First, when z is neither ζ nor one of the endpoints of I (ζ ), it is enough to consider
the case of zn ∈ K ◦f − I f for all n. Now, z is on the degenerating edges of at most four
tiles; let T = T f (θ, m,+) be one of these tiles. The subsequence zni of zn contained in
T is mapped to Tg(θ, m,+). In the fundamental model, the sequence h(zni ) corresponds
to a sequence whose imaginary part is getting larger. Thus h(zni ) converges to ξ with its
type containing θ , which must coincide with 2(ζ). By varying the choice of T , we have
h(zn)→ ξ with 2(ξ)=2(ζ).

Next, if z is ζ or one of the endpoints of I (ζ ), then it is an attracting or repelling
periodic point. If z is attracting, the levels of tiles containing zn go to +∞. According to
the fundamental model, we then have h(zn)→ ξ .

The remaining case is that z is repelling and hence in the Julia set. We deal with this
case in the next step of the proof.

(4) Continuous extension to the Julia set. Take any z ∈ J f and any sequence zn ∈ K ◦f ∪ I f

converging to z. Then pick a sequence θn ∈2 f such that zn ∈5 f (θn). After passing to a
subsequence, we may assume that θn and h(zn) converge to some θ ∈ T and some w ∈ Kg ,
respectively.

We first claim that z = γ f (θ); that is, θ ∈2(z). If the depth of θn is bounded, then
θn = θ ∈2 f for all n� 0. This implies that zn ∈5 f (θ) for all n� 0 and it follows that
z ∈5 f (θ) ∩ J f . Thus z = γ f (θ) by definition of 5 f (θ). If the depth of θn is unbounded,
it is enough to consider subsequences with the depth of θn monotonically increasing.
Take any ε > 0. For n� 0, we have |γ f (θn)− zn|< ε by Proposition 3.3, and we also
have |γ f (θn)− γ f (θ)|< ε by continuity of γ f : T→ J f . Finally, |z − zn|< ε for n� 0
implies |z − γ f (θ)|< 3ε, and we conclude the proof of the claim.

Since h(zn) ∈5g(θn), the same argument works for h(zn) and w. Hence we also have
w = γg(θ) ∈ Jg . It follows that for the original zn→ z, the sequence h(zn) accumulates
only on γg(θ), with θ ∈2(z).

By Theorem A.1, there exists a semiconjugacy h J : J f → Jg with h J ◦ γ f = γg . Since
γ f (θ)= γ f (θ

′) for any θ, θ ′ in 2(z), we have γg(θ)= γg(θ
′). This implies that h(zn)

accumulates on a unique point γg(θ). Thus h continuously extends to the Julia set by
h(γ f (θ)) := γg(θ) for each θ ∈ T.
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(5) Global extension. The final step is to define h : C̄− K f → C̄− Kg via the conformal
conjugacy between f |C̄−K f

and g|C̄−Kg
given by the Böttcher coordinates. This conjugacy

and the semiconjugacy above are continuously glued along the Julia set, thus giving a
semiconjugacy on the sphere.

Properties (2) and (3) of Theorem 4.1 are clear by construction. To check property (1),
we need to show that h−1

: C̄− I f → C̄− Ig is continuous. Continuity in C̄− Kg and
K ◦g is obvious by construction. Take any point w ∈ Jg − Ig . An argument similar to that in

step 4 shows that any sequencewn→ w within C̄− Ig is mapped to a convergent sequence
zn→ z within C̄− I f that satisfies 2(z)=2(w)⊂ T−2g . 2

5. Continuity of pinching semiconjugacies
In this section we deal with continuity of the dynamics of the degeneration pair ( f → g)
as f tends to g. We will establish the following result.

THEOREM 5.1. Let h : C̄→ C̄ be the semiconjugacy associated with a degeneration pair
( f → g) as given in Theorem 4.1. Then h tends to the identity as f tends to g.

Here are two immediate corollaries.

COROLLARY 5.2. The closures of T f (θ, m, ∗) and 5 f (θ, ∗) in Tess( f ) converge
uniformly to those of Tg(θ, m, ∗) and 5g(θ, ∗) in Tess(g) in the Hausdorff topology.

COROLLARY 5.3. As f → g, the diameters of the connected components of I f tend to
zero uniformly.

Let us start with some terminology to be used in the proof. Two degeneration pair
( f1→ g1) and ( f2→ g2) are said to be equivalent if g1 = g2 and both f1 and f2 are in the
same hyperbolic component. For a degeneration pair ( f → g), by f ≈ g we mean that f
is sufficiently close to g; in other words, the multiplier rω of O f is sufficiently close to ω,
i.e. r ≈ 1.

Formally, we consider a family of equivalent degeneration pairs {( f → g)}
parameterized by 0< r < 1, and investigate its behavior as r tends to 1. To prove the
theorem, it suffices to show the following.
(i) For any compact set K in C̄− Kg , we have K ⊂ C̄− K f for all f ≈ g and h→ id

on K .
(ii) For any compact set K in K ◦g , we have K ⊂ K ◦f for all f ≈ g and h→ id on K .
(iii) h is equicontinuous as f → g on the sphere.

In fact, any sequence hk associated with fk→ g has a subsequential limit h∞ which is
the identity on C̄− Jg and continuous on C̄. Since C̄− Jg is open and dense, the map h∞
must be the identity on the whole sphere.

5.1. Proof of (i). Let B f : C̄− D→ C̄− K ◦f be the extended Böttcher coordinate of

K f , i.e. B f : C̄− D̄→ C̄− K f is a conformal map such that B f (w
2)= f (B f (w)),

B f (w)/w→ 1 as w→∞, and B f (e2π iθ ) := γ f (θ) ∈ J f . Now (i) follows immediately
from this stronger claim below.
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THEOREM 5.4. (Böttcher convergence) As f → g, we have uniform convergence
B f → Bg on C̄− D.

Note that establishing uniform convergence on compact sets in C̄− D̄ is not difficult. Our
proof is a mild generalization of the proof of [Po, Theorem 2.11].

Proof. By Corollary A.2, one can easily check that C̄− K f converges to C̄− Kg in the
sense of Carathéodory kernel convergence with respect to∞. Thus pointwise convergence
B f → Bg on each z ∈ C̄− D̄ is given by [Po, Theorem 1.8] and B ′f (∞)= B ′g(∞)= 1. To
prove the theorem, it is enough to show that K f is uniformly locally connected as f → g,
by [Po, Corollary 2.4]. In other words, it is sufficient to show that for any ε > 0, there
exists a δ > 0 such that for any f ≈ g and any a, b ∈ K f with |a − b|< δ, there exists a
continuum E ⊂ K f such that a, b ∈ E and diam E < ε.

For contradiction, suppose we have a sequence of equivalent degenerating pairs
( fn→ g) which satisfies: fn→ g uniformly; for each fn , there exist an and a′n in J fn ,
with |an − a′n| → 0, which cannot be contained in the same continuum in K fn of diameter
less than ε0 > 0. We may set an = γ fn (θn) and a′n = γ fn (θ

′
n) for some θn, θ

′
n ∈ T, since

γ fn maps T onto J fn . By passing to a subsequence, we may also assume that θn→ θ

and θ ′n→ θ ′. Since γ fn → γg uniformly by Corollary A.3, the assumption |an − a′n| → 0
implies that we have γg(θ)= γg(θ

′)=: w ∈ Jg . Now we consider the following cases.

Case 1: θ = θ ′. We may assume that θn ≤ θ
′
n and that both sequences tend to θ . Set

En := {γ fn (t) : t ∈ [θn, θ
′
n]}, which is a continuum containing an and a′n . Then, for any t ∈

[θn, θ
′
n], we have |γ fn (t)− w| ≤ |γ fn (t)− γg(t)| + |γg(t)− γg(θ)| → 0, since γ fn → γg

uniformly and γg is continuous. This implies that diam En→ 0, which is a contradiction.

Case 2-1: θ 6= θ ′ and w /∈ Ig . First we show that γ fn (θ)= γ fn (θ
′). Let hn : J fn → Jg be

the semiconjugacy given by Theorem A.1. Since hn ◦ γ fn = γg , we have

w = hn ◦ γ fn (θ)= hn ◦ γ fn (θ
′) /∈ Ig.

By property (1) of Theorem A.1, this implies that γ fn (θ)= γ fn (θ
′). Now set

En := {γ fn (t) : |t − θ | ≤ |θn − θ | or |t − θ ′| ≤ |θ ′n − θ
′
|},

which is a continuum containing an and a′n . Again one can easily check that
|γ fn (t)− w| → 0 uniformly for any γ fn (t) ∈ En , and thus diam En→ 0, a contradiction.

Case 2-2: θ 6= θ ′ and w ∈ Ig . There exists an m ≥ 0 such that gm(w)= β0. Since
hn ◦ γ fn = γg , we have γ fn (θ), γ fn (θ

′) ∈ h−1
n (w)⊂ J fn ∩ I fn . If q = 1, then hn is

homeomorphism by Theorem A.1. Thus γ fn (θ)= γ fn (θ
′), and a contradiction follows

by the same argument as before.
Suppose q > 1. Then we are in Case (a) (q = q ′ and l = l ′) of Proposition 2.1. In

particular, we have wn ∈ α fn such that wn→ w and f m
n (wn) is an attracting periodic point

α0,n ∈ O fn which tends to β0. Let λn = rne2π i p/q be the multiplier of O fn with rn ↗ 1. In
a fixed small neighborhood of w, we have

f −m
◦ f lq

◦ f m(z) = rq
n z (1+ zq

+ O(z2q))

−→ g−m
◦ glq

◦ gm(z) = z (1+ zq
+ O(z2q))
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by using suitable local coordinates as in Appendix A.2. (For simplicity, we abbreviate
conjugations by the local coordinates.)

By Lemma A.7, we can find a small continuum E ′n ⊂ K fn which joins wn and pre-
periodic points γ fn (θ), γ fn (θ

′). Set En as in Case 2-1. Now E ′n ∪ En is a continuum
containing an and a′n . Since diam (E ′n ∪ En)→ 0, we again obtain a contradiction. 2

5.2. Proof of (ii). We start with the following theorem.

THEOREM 5.5. (Linearization convergence) Let K be any compact set in K ◦g . Then
K ⊂ K ◦f for f ≈ g, and 8 f →8g uniformly on K .

Proof. One can easily check that, by Corollary A.2, K ⊂ K ◦f if f ≈ g. Let β0 ∈ Og

∩ ∂B ′0. By taking a suitable N � 0, we may assume that K ′ = gN (K ) is sufficiently
close to β0 and contained in B ′0. Then K ′ is attracted to β0 along the attracting direction
associated with B ′0 by iteration of gl ′q ′ . For simplicity, set l̄ := lq = l ′q ′.

Recall that 8 f and 8g semiconjugate f l̄ and gl̄ to Fq and Gq , respectively, in the
fundamental model. We will construct further semiconjugacies 8̃ f and 8̃g which have the
same property as 8 f and 8g , and are such that 8̃ f → 8̃g on compact subsets of a small
attracting petal in B ′0. Then we will show that they coincide.

By Appendix A.2, there exist local coordinates ζ = ψ f (z) and ζ = ψg(z), with

ψ f → ψg near β0, such that we can view f l̄
→ gl̄ as

f l̄(ζ ) = Λζ (1+ ζ q ′
+ O(ζ 2q ′))

−→ gl̄(ζ ) = ζ (1+ ζ q ′
+ O(ζ 2q ′))

where Λ→ 1. (To simplify notation, we abbreviate conjugations by these local
coordinates. For example, we write f l̄(ζ ) to mean ψ f ◦ f l̄

◦ ψ−1
f (ζ ).) There are two

cases for Λ.
• In Case (a) (q = q ′ and l = l ′), the fixed point ζ = 0 is attracting, and Λ= λq

= rq

= R < 1.
• In Case (b) (q = 1< q ′ = l/ l ′), the fixed point ζ = 0 is repelling, and |Λ|> 1.
By taking branched coordinate changes w =9 f (ζ )=−Λ

q ′/(q ′ζ q ′) and w =9g(ζ )

=−1/(q ′ζ q ′), respectively, we can view f l̄
→ gl̄ as

f l̄(w) = Λ−q ′w + 1+ O(1/w)

−→ gl̄(w) = w + 1+ O(1/w).

Case (a). Set τ =Λ−q ′
= R−q > 1. By simultaneous linearization as described in

Appendix A.3, we have convergent coordinate changes W = u f (w)→ ug(w) on compact

sets of Pρ := {Re w > ρ� 0} such that f l̄
→ gl̄ can be viewed as

F̃(W ) := f l̄(W ) = τW + 1

−→ G̃(W ) := gl̄(W ) = W + 1.

Let us adjust F̃→ G̃ to Fq
→ Gq in the fundamental model. Recall that the map

F(W )= RW + 1 has an attracting fixed point at a = 1/(1− R). On the other hand,
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the map F̃ has the repelling fixed point ã = 1/(1− R−q) instead. Set T f (W ) := aW/
(W − ã). Then T f (W )= qW (1+ O(W/ã))→ Tg(W )= qW on any compact sets on the
W -plane as R→ 1. By taking conjugations with T f and Tg , we can view F̃→ G̃ as
Fq
→ Gq on any compact sets of the domain of G̃.

Case (b). By Rouché’s theorem, there exists a fixed point b of f l̄(w)=Λ−q ′w + 1
+ O(1/w) that has the form b = 1/(1−Λ−q ′)+ O(1). Indeed, this b belongs to the
image of the attracting cycle O f , hence its multiplier is r < 1. Set S f (w) := bw/(b − w).
Then S f (w)= w(1+ O(w/b))→ Sg(w)= w on any compact sets of the w-plane as

r→ 1. By taking conjugations by S f and Sg , we can view f l̄(w)→ gl̄(w) as

f l̄(w) = τw + 1+ O(1/w)

−→ gl̄(w) = w + 1+ O(1/w),

where τ = 1/r > 1. By simultaneous linearization, we have convergent coordinate
changes W = u f (w)→ ug(w) on compact sets of Pρ , such that f l̄

→ gl̄ is again viewed
as

F̃(W ) := f l̄(W ) = τW + 1

−→ G̃(W ) := gl̄(W ) = W + 1.

Since q = 1, we adjust F̃→ G̃ to F→ G in the fundamental model. Set b̃ := 1/(1− τ)
and T f (W ) := b̃W/(b̃ −W ). Then T f (W )=W (1+ O(W/b̃))→ Tg(W )=W on any
compact sets on the W -plane as r→ 1. By taking conjugations by T f and Tg , we can
view F̃→ G̃ as F→ G on any compact sets of the domain of G̃.

Adjusting critical orbits. Now we denote these final local coordinates conjugating f l̄
→ gl̄

to Fq
→ Gq by 8̂ f → 8̂g , where the convergence holds on compact subsets of a small

attracting petal P ′ in B ′0 corresponding to Pρ in the w-plane.
We need to compare the images of the critical orbits by 8̂ f → 8̂g on the W -plane with

those by 8 f and 8g , and adjust their positions. We may assume that gnl̄(0) ∈ P ′ for fixed

n� 0. Then f nl̄(0) ∈ P ′ for all f ≈ g. Set s := 8̂ f ( f nl̄(0)) and s′ := 8̂g(gnl̄(0)). Then
s→ s′ as f → g. On the other hand, we have

8 f ( f nl̄(0))= Fnq(8 f (0))= Fnq(0)= Rnq−1
+ · · · + 1=: Rn

and 8g(gnl̄(0))= nq . Set U f (W ) := k(W − a)+ a and Ug(W ) :=W + nq − s′, where
k = (Rn − a)/(s − a). Then one can check that U f →Ug on any compact sets in the W -
plane as f → g, and U f and Ug commute with F and G, respectively. By defining 8̃ f

and 8̃g by U f ◦ 8̂ f and Ug ◦ 8̂g , respectively, we have 8̃ f → 8̃g on compact sets of P ′,

with 8̃ f ( f nl̄(0))= Rn and 8̃g(gnl̄(0))= nq.
Finally, we need to check that 8̃ f =8 f and 8̃g =8g . The latter equality is clear by

uniqueness of the Fatou coordinate [Mi1, §8]. For the former, recall that W =8 f (z) is
given by

z 7→ φ f (z)= w 7→ wq
=W 7→ a(1−W )=:8 f (z),
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and φ f is uniquely determined under the condition of φ f (0)= 1 [Mi1, §10]. Let us
consider the local coordinate φ̃ f on a compact set of P ′ given by

z 7→ 8̃ f (z)=W 7→

(
1−

W

a

)1/q

=: φ̃ f (z)= w,

where we take a suitable branch of the qth root so that φ̃ f ( f nl̄(0))= λnq on the w-plane.

Then φ̃ f ( f (z))= λφ̃ f (z). Since φ f (0)= 1 is equivalent to φ f ( f nl̄(0))= λnq , the map φ̃ f

coincides with φ f . This implies the equality 8̃ f =8 f .
Now we may assume that K ′ = gN (K )⊂ D b P ′ for some open set D. If f ≈ g, then

f N (K )⊂ D and we have uniform convergence 8g→8 f on D. Uniform convergence
on K is then obtained by 8 f (z)= F−N (8 f ( f N (z)))→ G−N (8g(gN (z))=8g(z)
for z ∈ K . 2

Proof of (ii). We begin by working with the fundamental model. Suppose that ε↘ 0, and
set R = 1− ε. Then F(W )= RW + 1 fixes aε = 1/(1− R)= ε−1. For a fixed γ with
1/2< γ < 1, we define a compact set Qε ⊂ C by

Qε := {W = aε + ρe(π−t)i
∈ C : |t | ≤ εγ , |ρ − aε | ≤ aε sin εγ }.

Let D be any bounded set in C. For all ε� 1, the compact set Qε contains
D. Let H : C− [aε,∞)→ C be the conjugacy between F and G(W )=W + 1 as
described in §4. Then one can easily check that |Re W − Re H(W )| = O(ε2γ−1) and
|Im W − Im H(W )| = O(ε2γ−1) on Qε . Thus H → id uniformly on D.

Let K be any compact set in K ◦g , and let D be the 1/10-neighborhood of 8g(K ). For
all f ≈ g, we have K ⊂ K ◦f and 8 f (K )⊂ D by Theorem 5.5. By the argument above for

the fundamental model, the restriction h|K is a branch of 8−1
g ◦ H ◦8 f that converges to

the identity. (The branch is determined by the tile-to-tile correspondence given by h.) 2

5.3. Proof of (iii). To show (iii), we need two propositions on the properties of panels
as f → g. The first one is a refinement of Proposition 3.3, and the second is on the
convergence of panels with a fixed angle.

PROPOSITION 5.6. (Uniformly small panels) For any ε > 0, there exists N = N (ε) such
that for all f ≈ g, ∗ = ± and θ ∈2g with depth(θ)≥ N,

diam5 f (θ, ∗) < ε and diam5g(θ, ∗) < ε.

PROPOSITION 5.7. (Hausdorff convergence to a panel) For a fixed angle θ ∈2g and
signature ∗ ∈ {+,−}, we have5 f (θ, ∗)→5g(θ, ∗) as f → g in the Hausdorff topology.

Let us prove (iii) first by assuming these propositions hold.
By (i), we have equicontinuity near ∞. Assume that there exist degeneration pairs

( fk→ g) with semiconjugacies hk as given in Theorem 4.1, points ak, a′k ∈ C with
|ak − a′k | → 0, and bk = hk(ak), b′k = hk(a′k) with |bk − b′k | ≥ ε0 > 0.

Suppose that ak, a′k ∈ C− K ◦f and hence bk, b′k ∈ C− K ◦g . Then there exist wk ,
w′k ∈ C− D such that ak = B fk (wk), a′k = B fk (w

′

k) and bk = Bg(wk), b′k = Bg(w
′

k).
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By Theorem 5.4, we have B fk → Bg . Thus |ak − a′k | → 0 implies |bk − b′k | → 0, which
is a contradiction.

Now it suffices to prove the case where ak, a′k ∈ K fk and hence bk, b′k ∈ Kg . By
taking subsequences, we may assume that ak→ a, a′k→ a, bk→ b and b′k→ b′, with
|b − b′| ≥ ε0/2> 0. Since K fk → Kg in the Hausdorff topology, a, b and b′ are all in Kg .

First let us consider the case where a is bounded away from Jg . Then we have a compact
neighborhood E of a such that hk |E → id|E and ak, a′k ∈ E for all k� 0. This implies that
|bk − b′k | → 0, a contradiction.

Next, consider the case where a ∈ Jg . For ak→ a and bk→ b, we claim that a = b.
Then, by the same argument, we obtain a = b′ which is a contradiction.

For ak ∈ K fk , we take any θk ∈ T such that ak = γ fk (θk) if ak ∈ J fk , and otherwise ak is
contained in the closure of5 fk (θk). (Hence bk = γg(θk), or bk is in the closure of5g(θk).)
By passing to a subsequence, we may assume that θk→ θ for some θ ∈ T.

If θk /∈2g , we define its depth by ∞. Then there are two more cases according to
whether lim sup depth(θk)=∞ or not.

If lim sup depth(θk)=∞, we take a subsequence again and assume that depth(θk)

is strictly increasing. Then, by Proposition 5.6, we have |ak − γ fk (θk)| → 0. Since
θk→ θ and γ fk → γg uniformly (Corollary A.3), we have |ak − γg(θ)| → 0, so a = γg(θ).
Similarly, we conclude that b = γg(θ), and this gives a contradiction.

If lim sup depth(θk) <∞, we take a subsequence again and assume that θk = θ ∈2g for
all k� 0. By Proposition 5.7, the ak ∈5 fk (θ) are approximated by some ck ∈5g(θ) such
that |ak − ck | → 0; thus ck→ a ∈ Jg . Since 5g(θ) ∩ Jg = {γg(θ)}, we have a = γg(θ).
On the other hand, if bk ∈5g(θ) is bounded away from Jg , there exists a compact
neighborhood E ′ ⊂ K ◦g of b where hk |E ′→ id|E ′ , and this leads to a contradiction.
Therefore b ∈ Jg and must be γg(θ). Now we obtain a = b as claimed. 2

To complete the proof of Theorem 5.1, we need to finish the proofs of the propositions.

Proof of Proposition 5.6. We modify the argument of Proposition 3.3. Suppose that
there exist fk→ g which determine equivalent degeneration pairs ( fk→ g) and θk with
nk = depth(θk)↗∞ such that diam5 fk (θk,+)≥ ε0 > 0 for all k. Then we can take a
branch Fk of f −nk

k such that Fk maps 5 fk (θ
+

0 ,+)
◦ onto 5 fk (θk,+)

◦ univalently.
Take a small ball B b Tg(θ

+

0 , 0,+) and fix a point z ∈ B. By (ii), we may assume that
B b T fk (θ

+

0 , 0,+) for all k� 0. Since the Fk |B avoid values near∞, they form a normal
family. By passing to a subsequence, we may also assume that there exists φ = lim Fk |B

which is non-constant by assumption. Now we have a small open set V b φ(B) with
V ⊂ Fk(B) for all k� 0, thus f nk

k (V )⊂ B ⊂ K ◦fk
. This implies that V ⊂ K ◦fk

for all
k� 0; hence, by Corollary A.2, we have V ⊂ K ◦g too. Since V is open, there exist a
tile T = Tg(θ, m,+) and a small ball B ′ such that B ′ b (T ∩ V )◦. From B ′ ⊂ T and (ii)
again, we deduce that B ′ ⊂ Tk := T fk (θ, m,+) for all k� 0. Moreover, since B ′ ⊂ V ,
we have f nk

k (B ′)⊂ B ⊂ T fk (θ
+

0 , 0,+). Thus f nk
k (Tk) must be T fk (θ

+

0 , 0,+); however,
f nk
k (Tk) has level m + nk→∞. This is a contradiction.

The proof is completed by following the same argument as for Proposition 3.3. 2

Proof of Proposition 5.7. It is enough to consider the case of θ = θ+0 and ∗ = +. Recall
that the attracting cycle O f has multiplier re2π i p/q . We introduce a parameter ε ∈ [0, 1)
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of f → g such that rq
= R = 1− ε. Set 5ε :=5 f (θ

+

0 ,+) and 50 :=5g(θ
+

0 ,+). Then
the semiconjugacy h = hε sends 5ε to 50. To conclude the proof it suffices to show
the following statement: for any δ > 0, we have 50 ⊂ Nδ(5ε) and 5ε ⊂ Nδ(50) for all
ε� 1, where Nδ(·) denotes the δ-neighborhood.

It is easy to check that 50 ⊂ Nδ(5ε). We can take a compact set K such that
K ⊂5◦0 b Nδ(K ). Since hε→ id on K , we have K ⊂5◦ε for all ε� 1. Thus
50 ⊂ Nδ(K )⊂ Nδ(5ε).

The proof of 5ε ⊂ Nδ(50) is more technical. Here let us assume that q = q ′, i.e. Case
(a). The proof for Case (b) (q = 1< q ′) is analogous.

Local coordinates. Set B := B(β0, δ). For fixed δ that is sufficiently small, there exists
a convergent family of local coordinates ζ = ψε(z)→ ψ0(z) on B, with the following
properties for all 0≤ ε� 1.
• There exists a δ′ > 0 independent of ε� 1 such that 1 := B(0, δ′) b ψε(B).
• Let fε := f lq , f0 := glq and Rε = 1− ε; then fε(ζ )= Rεζ (1+ ζ q

+ O(ζ 2q)) on
1. (See Appendix A.2.)

• ψε maps 5ε ∩ ψ−1
ε (1) into 1′ := {ζ ∈1 : −π/2q < arg ζ < 3π/2q}. (This is just

a technical assumption.)
• Let Eε := {ζ ∈1′ : |arg ζ q

| ≤ π/3, |ζ q
| ≥ ε/2}; then f −1

0 (E0)⊂ E0 ∪ {0} and
f −1
ε (Eε)⊂ Eε for all 0< ε� 1. (See the argument of Lemma A.7.)

Let us interpret the setting of Theorem 5.5 by using ε ∈ [0, 1). For 0< ε < 1, we denote
8 f , 9 f , u f , T f and U f by 8ε , 9ε , uε , Tε and Uε , respectively; for ε = 0, these denote
8g , 9g , etc. In particular, we consider 9ε only on 1′. For later use, we define W = χε(ζ )
for each ζ ∈ ψε(K ◦fε ∩ B) by χε :=8ε ◦ ψ−1

ε .
Now, through w =9ε(ζ ), we can view fε on1′ as fε(w)= τεw + 1+ O(1/w) where

τε := R−q
ε . On this w-plane, take P = Pρ = {Re w ≥ ρ� 0} such that for all 0≤ ε� 1,

the set P̂ :=9−1
ε (P) is contained in1′ and uε is defined on P . Note that for all 0≤ ε� 1

we have fε(P)⊂ P and u0(w)= w(1+ o(1)) by Lemma A.6. One can also check that
χε ◦9

−1
ε (w)=Uε ◦ Tε ◦ uε(w) on P , and that

Uε ◦ Tε ◦ uε(w)=U0 ◦ T0 ◦ u0(w)+ o(1)= qw(1+ o(1))

on compact sets of P .

Rectangles. For fixed positive integers M and N , we define the following compact sets in
the W -plane:

C0 := {W ∈ C : (N − 1)q ≤ Re W ≤ Nq, 0≤ Im W ≤ Nq},

Q0 :=

M⋃
k=0

G−kq(C0) and C ′0 := G−Mq(C0),

where G(W )=W + 1.
By taking sufficiently large N and M , we may assume the following.

(1) Let Q̃0 :=50 ∩8
−1
0 (Q0) in the z-coordinate; then 50 − Q̃0 b ψ−1

0 (1).
(2) In the w-coordinate, we have χ−1

0 (C0)⊂ P̂ and χ−1
0 (C ′0)⊂ E0.

See Figure 12. In fact, for any compact set K with 50 − K b ψ−1
0 (1), the set 80(K )

is compact in HW := {Im W ≥ 0} and covered by Q0 if we choose sufficiently large N
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FIGURE 12. Choosing M and N .

and M . Thus we have (1). If N � 0, the set C0 must be contained in χ0(P). Since
50 ∩8

−1
0 (C0) is compact, it is uniformly attracted to the repelling direction by iteration

of (g|50)
−lq . Thus, by taking M much larger, we have (2) .

Perturbation. Fix integers N and M as described above. Now we consider perturbations
of fixed rectangles C0, C ′0 and Q0 having properties (1) and (2). By using the conjugacy
H = Hε : C− [a,∞)→ C between F = Fε and G = F0, we define Cε , C ′ε and Qε by
their homeomorphic images by H−1

ε . Since Hε→ id as ε→ 0 on any compact sets (see
the proof of (ii)), we have Cε→ C0, C ′ε→ C ′0 and Qε→ Q0 in the Hausdorff topology.
Moreover, the following properties hold for all ε� 1.
(1′) Let Q̃ε :=5ε ∩8

−1
ε (Qε) in the z-coordinate; then Q̃ε ⊂ Nδ/2(Q̃0).

(2′) In the ζ -coordinate, we have χ−1
ε (Cε)⊂ P̂ and χ−1

ε (C ′ε)⊂ Eε .
In fact, since Q̃0 = hε(Q̃ε) and is compact, property (1′) follows from8ε→80 as ε→ 0.
Property (2′) holds because χε→ χ0 on compact sets in P̂ and f lq M

→ glq M .
Now it is enough to show that 5ε − Q̃ε b ψ−1

ε (1)⊂ B, which is equivalent to
χ−1
ε (HW − Qε) b1 in the ζ -coordinate. We consider the following three sets in HW :

X0 := {W ∈HW : Re W ≤ (N − M − 1)q, Im W ≤ Nq},

Y0 := {W ∈HW : Re W ≥ Nq, Im W ≤ Nq},

Z0 := {W ∈HW : Im W ≥ Nq}.

Let Xε, Yε , and Zε be their homeomorphic images by H−1
ε . Then Xε ∪ Yε ∪ Zε

=HW − Q◦ε .
Note that Xε =

⋃
k≥1 F−kq

ε (C ′ε) and Yε =
⋃

k≥1 Fkq
ε (Cε). Since f −1

ε (Eε)⊂ Eε and

fε(P̂)⊂ P̂ in the ζ -coordinate, (2′) implies χ−1
ε (Xε)⊂ Eε and χ−1

ε (Yε)⊂ P̂ , hence we
have χ−1

ε (Xε ∪ Yε)⊂1.
The proof is completed by showing that χ−1

ε (Zε)⊂1. It suffices to prove that
χ−1
ε (∂Zε)⊂1. Note that ∂Zε consists of two half lines: one is the interval Iε := [aε,∞)

where aε is the attracting fixed point of Fε , and the other is I ′ε := H−1
ε (∂Z0) along the top

edge of Qε .
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FIGURE 13. An orbit in the w-plane. The dotted square has height N .

First we show that χ−1
ε (Iε)⊂1. Recall that χ−1

ε (Iε) is the image of a degenerating
arc in the ζ -coordinate. Let E ′0 := {ζ ∈1

′
: |arg(−ζ q)| ≤ π/3}. Then one can check that

fε(E ′0)⊂ E ′0 and f −1
ε (E0)⊂ E0 for all ε� 1 as in the argument of Lemma A.7.

The real part of glqk(0) in the w-coordinate increases as k→∞, thus the critical orbit
of f0 = glq in 1′ is tangent to the attracting direction in the ζ -coordinate. Therefore
we may assume that glqn(0) in the proof of Theorem 5.5 is contained in E ′0. Hence
f lqn(0)= f n

ε (0) in the ζ -coordinate is contained in E ′0 for all ε� 1. Moreover, the
property fε(E ′0)⊂ E ′0 implies that the critical orbit of fε = f lq in 1′ is eventually
contained in E ′0. By construction of the degenerating arcs in Lemma 2.3 and by f −1

ε (E0)⊂

E0, the arc χ−1
ε (Iε) must be contained in E0 ⊂1.

Next we show that χ−1
ε (I ′ε)⊂1. Let sε and `ε be the top edges of quadrilaterals Cε

and Qε that intersect I ′ε . Then `ε =
⋃M

k≥0 F−kq
ε (sε). It is enough to show that χ−1

ε (`ε) is
contained in 1, since χ−1

ε (Xε ∪ Yε)⊂1.

Take any point w0 in 9ε ◦ χ−1
ε (sε)= (Uε ◦ Tε ◦ uε)−1(sε) in the w-plane. We may

assume that N is sufficiently large and w0 ∈ B(N + Ni, N/4) for all ε� 1, because
Uε ◦ Tε ◦ uε(w)= qw(1+ o(1)) on compact sets of P . Moreover, we may assume that
9ε(∂1)⊂ B(0, N/4).

Recall that fε(w)= τεw + 1+ O(1/w) and so f −1
ε (w)= τ−1

ε (w − 1)+ O(1/w).
Take any w with N/4≤ |w| ≤ 4N ; then we have | f −1

ε (w)− (w − 1)| = O(εN )
+ O(1/N ). Thus, for any fixed κ � 1, by taking N � 0 we have | f −1

ε (w)− (w − 1)| ≤ κ
for all ε� 1. This implies that |arg( f −1

ε (w)− w)| ≤ arcsin κ .

By (2′), the orbit wk = f −k
ε (w0) of w0 lands on 9ε(Eε) by at most M iterations of

f −1
ε (so arg wM > 2π/3). For small enough κ , the point wk satisfies N/4≤ |wk | ≤ 4N

and |arg(wk − w0)| ≤ arcsin κ for all k = 0, . . . , M ; see Figure 13. This implies that
9ε ◦ χ

−1
ε (`ε) never crosses over 9ε(∂1), and thus we have χ−1

ε (`ε)⊂1. 2
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A. Appendix
In this section we present some results on the perturbation of a parabolic cycle
corresponding to the degeneration pair ( f → g).

A.1. Pinching semiconjugacy on the Julia sets. Let ( f → g) be a general degeneration
pair. Recall that the attracting cycle O f = {α1, . . . , αl = a0} has multiplier λ= rω
= r exp(2π i p/q) with 0< r < 1, and the parabolic cycle Og = {β1, . . . , βl ′ = β0} has
multiplier ω′ = exp(2πp′/q ′).

By applying [Ka1, Theorem 1.1] to ( f → g), we obtain the following.

THEOREM A.1. If f ≈ g, then there exists a unique semiconjugacy h J : J f → Jg with the
following properties.
(1) If card h−1

J (w)≥ 2 for some w ∈ Jg , then w ∈ Ig and card h−1
J (w)= q

(thus q = q ′ ≥ 2).
(2) h J is a homeomorphism if and only if ( f → g) is of type q = 1.
(3) supz∈J f

|z − h J (z)| → 0 as f → g.

See also Proposition 2.1. The proof of [Ka1, Theorem 1.1] is based on a pull-back
argument and does not use quasiconformal maps. Here is a useful corollary which follows
easily from property (3).

COROLLARY A.2. As f → g, the Julia set J f converges to Jg in the Hausdorff topology.

Since h J ◦ γ f and γg determines the same ray equivalence, we have h J ◦ γ f = γg . For
θ ∈ T, put γ f (θ) into z in property (3) of Theorem A.1. Then we obtain the following
corollary.

COROLLARY A.3. As f → g, the map γ f : T→ J f converges uniformly to
γg : T→ Jg .

A.2. Normalized form of a local perturbation. For a degeneration pair ( f → g), the
parabolic cycle Og is approximated by an attracting or a repelling cycle O ′f with the same

period l ′ and multiplier λ′ ≈ ω′ = e2π i p′/q ′ (see §2). Let α′0 ∈ O ′f with α′0→ β0. Then,
by looking through the local coordinates ψ f (z)= z − α′0 and ψg(z)= z − β0 near β0, one
can view the convergence f l ′

→ gl ′ as

ψ f ◦ f l ′
◦ ψ−1

f (z) = λ′z + O(z2)

−→ ψg ◦ gl ′
◦ ψ−1

g (z) = ω′z + O(z2).
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Here we claim that replacing ψ f → ψg with better local coordinates yields a normalized
form of convergence

ψ f ◦ f l ′
◦ ψ−1

f (z) = λ′z + zq ′+1
+ O(z2q ′+1)

−→ ψg ◦ gl ′
◦ ψ−1

g (z) = ω′z + zq ′+1
+ O(z2q ′+1).

More generally, we have the following.

PROPOSITION A.4. For ε ∈ [0, 1], let { fε} be a family of holomorphic maps on a
neighborhood of 0 such that as ε→ 0,

fε(z)= λεz + O(z2) −→ f0(z)= λ0z + O(z2)

where λ0 is a primitive qth root of unity. Then there exists a family of holomorphic maps
{φε} such that

φε ◦ fε ◦ φ
−1
ε (z)= λεz + zq+1

+ O(z2q+1)

and φε→ φ0 near z = 0.

Proof. First suppose that fε(z)= λεz + Aεzn
+ O(zn+1), where 2≤ n ≤ q. Let us

consider a coordinate change z 7→ z − Bεzn with Bε = Aε/(λn+1
ε − λε). Note that

λn+1
ε − λε is bounded away from 0 when ε� 1, because λε converges to a primitive

qth root of unity. In particular, the coordinate change z 7→ z − Bεzn also converges to
z 7→ z − B0zn near 0. By applying these coordinate changes, we can view the family { fε}
as

fε(z)= λεz + O(zn+1).

By repeating this process until n = q, we have the family { fε} taking the form

fε(z)= λεz + Cεz
q+1
+ A′εz

n
+ O(zn+1),

where q + 2≤ n ≤ 2q . Next, for each ε, take a linear coordinate change z 7→ C1/q
ε z

which effectively normalizes Cε to 1. Using another coordinate change of the form
z 7→ ζ = z − B ′εz

n with B ′ε = A′ε/(λ
n+1
ε − λε), we have

fε(z)= λεz + zq+1
+ O(zn+1).

Repeating this process until n = 2q gives the desired form of convergence. 2

For this new family { fε(z)= λεz + zq+1
+ O(z2q+1)} and n ≥ 0, one can easily check

that
f n
ε (z)= λ

n
ε z + Cε,nzq+1

+ O(z2q+1),

where Cε,n is given by the recursive formula Cε,n+1 = λ
q+1
ε Cε,n + λn

ε . Let n = q and set
Λε := λ

q
ε (→1 as ε→ 0). By taking linear coordinate changes z 7→ (Cε,q/Λε)1/q z, we

obtain convergence of the form

f q
ε (z) = Λεz (1+ zq

+ O(z2q))

−→ f q
0 (z) = z (1+ zq

+ O(z2q)).
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The application of further coordinate changes with w =9ε(z)=−Λ
q
ε /(qzq) yields

9ε ◦ f q
ε ◦9

−1
ε (w) = Λ−q

ε w + 1+ O(1/w)

−→ 90 ◦ f q
0 ◦9

−1
0 (w) = w + 1+ O(1/w)

on a neighborhood of infinity. Note that we have a similar representation for f l ′q ′
→ gl ′q ′ .

A.3. Simultaneous linearization. Ueda [Ue] recently proved a simultaneous lineariza-
tion theorem which explains hyperbolic-to-parabolic degenerations of linearizing coordi-
nates. Here we state a simpler version of the theorem which suffices for our purposes. For
R ≥ 0, let ER denote the region {z ∈ C : Re z ≥ R}.

THEOREM A.5. (Ueda) For ε ∈ [0, 1], let { fε} be a family of holomorphic maps on
{|z| ≥ R > 0} such that

fε(z) = τεz + 1+ O(1/z)

−→ f0(z) = z + 1+ O(1/z)

uniformly as ε→ 0, where τε = 1+ ε. If R� 0, then for any ε ∈ [0, 1] there exists a
holomorphic map uε : ER→ C̄ such that

uε( fε(z))= τεuε(z)+ 1

and uε→ u0 uniformly on compact sets of ER .

Indeed, Ueda’s original theorem in [Ue] claims that a similar statement holds for any
radial convergence τε→ 1 outside the unit disk. In [Ka4] an alternative proof is given, and
the error term O(1/z) is refined to be O(z−1/n) for any n ≥ 1.

LEMMA A.6. u0(z)= z(1+ o(1)) as Re z→∞.

It is well-known that if f0(z)= z + 1+ a0/z + · · · , then the Fatou coordinate is of the
form u0(z)= z − a0 log z + O(1); see [Sh], for instance.

A.4. Small invariant paths joining perturbed periodic points. For a degeneration pair
( f → g) in Case (a) (q = q ′), we may consider that the parabolic cycle Og is perturbed
into the attracting cycle O f with the same period l = l ′ (see Proposition 2.1). In this case,
the convergence f lq

→ glq is viewed as

f lq(z)= rq z + zq
+ O(z2q) −→ glq(z)= z + zq

+ O(z2q),

with rq
↗ 1 through suitable local coordinates near β0 ∈ Og , as in §A.2.

By an additional linear coordinate change z 7→ z/r , we consider, instead, a family of
holomorphic maps { fε} of the form

fε(z)= λεz(1+ zq
+ O(z2q)),

where we set rq
= λε = 1− ε↗ 1. The local solution of fε(z)= z is then z = 0 or

zq
= ε + O(ε2). The latter means that q symmetrically arrayed repelling fixed points are

generated by the perturbation of a parabolic point with multiplicity q + 1. We claim that
the following holds.
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LEMMA A.7. For ε� 1, there exist q fε-invariant paths of diameter O(ε1/q) joining the
central attracting point z = 0 to each of the symmetrically arrayed repelling fixed points.

Proof. First,we show that D := {z : |z|q ≤ ε/2} satisfies fε(D)⊂ D◦. By checking the
real part of log fε(z), we find

| fε(z)| = λε |z|(1+ Re zq
+ O(z2q)).

Since Re zq
≤ ε/2 on D, we have | fε(z)| = |z|(1− ε/2+ O(ε2)) < |z|.

Next, we set

E :=

{
z :
ε

2
≤ |zq

| ≤ 4ε and |arg zq
| ≤

π

3

}
.

Note that E has q connected components around the repelling fixed points. Now we claim
that E satisfies f −1

ε (E)⊂ E◦. Since f −1
ε is univalent near 0, it is enough to show that

f −1
ε (∂E)⊂ E◦. Set

e1 :=

{
z : |zq

| =
ε

2
and |arg zq

| ≤
π

3

}
,

e2 :=

{
z : |zq

| = 4ε and |arg zq
| ≤

π

3

}
,

e±3 :=

{
z :
ε

2
≤ |zq

| ≤ 4ε and arg zq
=±

π

3

}
.

By checking log f −1
ε (z), we have

| f −1
ε (z)| = λ−1

ε |z|(1− λ
−q
ε Re zq

+ O(z2q)),

arg f −1
ε (z) = arg z − λ−q

ε Im zq
+ O(z2q).

If z ∈ e1, then Re zq
≤ ε/2 and hence | fε(z)| ≥ |z|(1+ ε/2+ O(ε2)) > |z|. If z ∈ e2, then

Re zq
≥ 2ε and hence | fε(z)| ≤ |z|(1− ε + O(ε2)) < |z|. For z ∈ e±3 , set |zq

| = ρ with
ε/2≤ ρ ≤ 4ε. Then arg f −1

ε (z)= arg z ∓ (
√

3/2)ρ(1+ O(ρ)). Thus, overall we have
f −1
ε (∂E)⊂ E◦.

Take any q points {z1, . . . , zq} from each connected component of e1. Let η j be the
segment joining z j and fε(z j ). Then the path

⋃
k∈Z f k

ε (η j ) has the desired property. 2

Remark. In Case (b) (q = 1< q ′), the cycle O ′f in §A.2 is repelling. By taking f −l ′q ′
→

g−l ′q ′ near Og , we have a form of convergence

fε(z)= λεz(1+ zq ′
+ O(z2q ′))

which is similar to that in the q = q ′ case, where λε = 1− ε + O(ε2) ∈ C∗. This λε comes
from the fact that any non-zero solution of fε(z)= z has derivative 0< r < 1 (since it is
actually a point in O f in different coordinates). One can easily check that the argument
used in Lemma A.7 works for this fε as well, and that the statement is also true when q is
replaced by q ′.
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