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SUMMARY

Restoration of mechanical energy dissipating on impact at
the ground is necessary for sustainable gait generation. Para-
metric excitation is one approach to restore the mechanical
energy. Asano et al. (“Parametric excitation mechanisms for
dynamic bipedal walking,” IEEE International Conference
on Robotics and Automation (2005) pp. 611–617.) applied
parametric excitation to a biped robot with telescopic-legs, in
which up-and-down motion restores total mechanical energy
like playing on the swing. In this paper, parametric excitation
principle is applied to a kneed biped robot with only knee
actuation and it is shown that the robot walks successively
without hip actuation. We also examine influences of several
parameters and reference trajectory on walking performance.

KEYWORDS: Biped gait; Dynamic walking; Parametric
excitation; Energy restoration; Knee-joint actuation.

1. Introduction

Passive dynamic walking proposed by McGeer 1 has received
much attention because of the higher energy efficient gait
generation method. In passive dynamic walking, a biped
robot walks continuously and stably down the slope by
gravity with no mechanical input. The kinetic energy lost
by the collision at the ground is restored by transporting
potential energy to kinetic energy in descending an incline.
However, on the level ground the energy restoration by
gravity is impossible. Therefore, it is necessary to restore
the kinetic energy by certain mechanical input, such as ankle
torque, hip torque and so on. A so-called virtual passive
dynamic walking proposed by Asano et al. 2 and energy
tracking control proposed by Goswami et al. 3 are examples
of methods that make passive dynamic walking possible on
level ground.

Another approach for restoring kinetic energy is
parametric excitation which is a principle to increase the
amplitude of vibration by swinging. Asano et al. 4 applied
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the parametric excitation method to a biped robot with a
telescopical actuator in its legs. They showed that energy
restoration was realized by elongating and contracting the
swing-leg. Asano et al. 5 also applied this method to a real
robot. The telescopic-legs have another advantage in that the
elongating and contracting swing-leg resolves the problem
of scuffing the ground.

In this paper, we apply the parametric excitation method to
a kneed biped robot. When a biped robot bends and stretches
its knees to avoid scuffing the ground, the center of mass of
a swing-leg moves up and down similar to a telescopic-leg,
and hence, mechanical energy is expected to be restored by
parametric excitation. Based on this observation, we propose
the gait generation method in which the mechanical energy
lost by the collision is restored by bending and stretching a
knee adequately.

We first verify that the total mechanical energy of a
biped robot increases by the motion of a double pendulum
which is very similar to a swing-leg. We then show that
a sustainable gait can be generated by this approach in
numerical simulations. In this method, we use only knee
torque. We have already proposed parametric excitation
based walking for a kneed biped robot and have shown that
the robot can walk sustainably.6 But there have been two
deficiencies. One is the problem of foot clearance when a
robot scuffs the ground, and another is that there is a singular
posture for which the input knee torque cannot be calculated.
In this paper, we resolve the above two problems. For the
former, we resolve the foot clearance problem by means of
revising the ratio of the thigh and shin lengths. For the latter,
we resolve it by giving a reference trajectory to the relative
angle of a knee. In ref. [6] the reference trajectory is defined
as the distance between the hip joint and the center of mass
of the swing-leg. We also introduce the bending delay which
defines the starting time of bending a knee and is used to
optimize the reference trajectory (see Section 5.1).

This paper is organized as follows: Section 2 describes
a biped robot with semicircular feet. Section 3 explains
the parametric excitation principle and its application to a
biped robot with telescopic-legs. In Section 4, we show that
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Fig. 1. Model of planar kneed biped robot with semicircular feet.

knee bending and stretching restores mechanical energy by a
double pendulum. Section 5 is the main part of this paper, in
which we apply parametric excitation to a biped robot with
knees. Section 6 discusses the effect of parameters and the
basin of attraction. Finally, in Section 7, we conclude the
paper.

2. Model of Planar Kneed Biped Robot with

Semicircular Feet

Figure 1 illustrates the biped robot dealt with in this paper.
The robot has four point mass and three degrees of freedom,
and has semicircular feet whose centers are on each leg. Since
there are two mass on the leg, the support-leg has an inertia
moment. The dynamic equation during single support phase
is given by

M(θ )θ̈ + C(θ , θ̇)θ̇ + g(θ ) = SuK − JTλ, (1)

where θ = [θ1 θ2 θ3 ]T is the generalized coordinate vector,
M ∈ R

3×3 is the inertia matrix, C ∈ R
3×3 is the Coriolis

force and the centrifugal force, g ∈ R
3 is the gravity vector,

and SuK is the control input vector. These are described in
detail in Appendix A. The matrix J = [0 1 −1 ] is the
Jacobian derived from a knee constraint, θ̇2 = θ̇3, and λ ∈ R

is the knee binding force. In this robot, collisions occur at the
knee and the ground. Therefore, the robot has three phases:

� The first phase (Single support phase I): The support-leg
rotates around the contact point between a semicircular
foot and the ground, and the swing-leg is bent.

� The second phase (Single support phase II): The support-
leg rotates around the contact point like in phase I, but the
knee of the swing-leg is locked in a straight posture. When
the first phase changes to the second phase, a collision
occurs at the knee.

� The third phase (Double support phase): This phase occurs
instantaneously, and the support-leg and the swing-leg are
exchanged after the collision at the ground.

When a swing-leg straightens, a completely inelastic
collision is assumed to occur at a knee of the swing-leg.
We also assume that, once after collision, a knee-joint is
fixed by the force JTλ until collision at the ground. Impact
equations are described in Appendix B.

3. Parametric Excitation

Parametric excitation is a phenomenon in which the
amplitude of vibration increases by swinging itself. Figure 2
presents the optimal trajectory, A→B→C→D→E, given by
Lavrovskii and Formalskii,7 along which the increase of total
mechanical energy is maximized, supposing that the length
of a pendulum, l, is changed instantaneously. However,
the length cannot be actually changed instantaneously, and
hence a reference trajectory close to the optimal trajectory
is chosen to restore total mechanical energy. Asano et al. 4

applied the parametric excitation principle to a biped robot
with telescopic-legs by pumping the swing-leg mass. The

Fig. 2. Optimal trajectory of pendulum in parametric excitation.
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Fig. 3. Three-link model of a planar underactuated biped robot with
telescopic-legs.

telescopic-leg length, b2, in Fig. 3 is controlled to track
the reference trajectory. Instance just after the collision at the
ground is set as t = 0, and the reference trajectory, b2d (t), is
given by

b2d =
{

b1 − Am sin3
(

π
Tset

t
)

(t ≤ Tset)

b1 (t > Tset),
(2)

where b1 is the distance between hip and mass point when the
telescopic-leg is straightened, Am is the desired amplitude
of vibration, and Tset is the desired settling-time which is
assumed before heel-strike collisions. In other words, the
condition T ≥ Tset must hold for the steady-step period T .
We call this the settling-time condition. Figure 4 shows the
simulation result of parametrically excited dynamic bipedal
walking by swing-leg actuation.

Remark 3.1. The optimal trajectory shown in Fig. 2 has
nothing but theoretical meaning because the center of mass
cannot be moved instantaneously in real machines. Moreover,
there is significant difference between a pendulum and the
biped robots in Figs. 1 and 3 in that the hip joint of a biped
robot is movable while the supporting point of a pendulum
is fixed at a ceiling, and hence the trajectory in Fig. 2 may
not be optimal for biped robots. In spite of this, we will
adopt the reference trajectory of the control input close to

Table I. Physical parameters of kneed biped robot in Fig. 1.

r1 0.40 m R 0.5 m
r2 0.20 m m1 5.0 kg
r3 0.30 m m2 1.0 kg
a2 0.40 m m3 4.0 kg
a3 0.60 m mH 5.5 kg
l 1.00 m I 0.20 kg · m2

the trajectory of Fig. 2 with the expectation of increasing
kinematic energy. As shown later (Section 5.1), a reference
trajectory is completely tracked by the proposed control
method when the trajectory is sufficiently smooth.

4. Parametric Excitation of Double Pendulum

It was shown 4 that total mechanical energy of a biped robot
with telescopic-legs was restored by the parametric excitation
approach. We verify that total mechanical energy of a
biped robot with knees can also increase by the parametric
excitation approach. A double pendulum, of which only the
joint between two links is actuated, mimics a kneed-actuation
leg. We note that the pendulum does not strike the ground,
but a collision at a joint occurs like a biped robot when a
joint is straightened. The dashed line in Fig. 5 illustrates a
virtual telescopic pendulum which connects a support point
and center of mass of the pendulum. This virtual telescopic
pendulum is controlled to track the reference trajectory. For
simplicity, the reference trajectory is given for a relative angle
by

(θ2 − θ3)d =
{

Am sin3
(

π
Tset

t
)

(t ≤ Tset),

0 (t > Tset).
(3)

The joint is actuated during only the first half of cycle. We set
t = 0 as instance of θ2 = θ3 > 0 and θ̇2 = θ̇3 = 0. Figures 6–
8 show the results of numerical simulation. The parameters
of the double pendulum are shown in Table I (Section 5).
The total mechanical energy is shown in Fig. 6. Figure 7
is the enlarged illustration of Fig. 6, and Fig. 8 shows the
distance between a support point and the center of mass of
the pendulum. Figure 6 shows that total mechanical energy
increases during one cycle. It is observed from Figs. 7 and
8 that the total mechanical energy increases when bending
and decreases when straightening. We have assumed that
the collision at a joint occurs, but mechanical energy is not

Fig. 4. Parametrically excited dynamic bipedal walking by swing-leg actuation.
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Fig. 5. Double pendulum and its equivalent one-link model with
prismatic joint.

Fig. 6. Total mechanical energy of double pendulum.

dissipated in Fig. 7. This is because the relative angular
velocity, θ̇2 − θ̇3, is almost zero at the collision. From this
result, it is expected that a sustainable gait of biped robots
with knees can be generated by this approach based on the
parametric excitation principle.

5. Gait Generation on Rotary Actuation System Based

on Parametric Excitation Principle

5.1. Control input design
In Section 4, we have shown that bending and stretching a
knee increases energy for a double pendulum. It is expected
that a sustainable gait can also be generated by parametric
excitation for bending and stretching a knee. In this section,
we propose a control design for a kneed biped robot shown
in Fig. 1.

Fig. 7. Enlarged illustration of Fig. 6.

Fig. 8. Distance between support point and center of mass.

First, we explain the reference trajectory. We give the
reference trajectory for the relative knee-joint angle as

(θ2 − θ3)d = f (t)

=
⎧⎨
⎩Am sin3

(
π

Tset−δ
(t − δ)

)
(δ ≤ t ≤ Tset),

0 (otherwise),
(4)

where δ > 0 is the bending delay. Here, we suppose the
instance just after the third phase as the initial time of the
cycle, t = 0 s. The difference between Eq. (3) and Eq. (4) is
the bending delay δ. We explain the reason why we introduce
the bending delay by referring to Fig. 9. Figure 9 shows the
reference trajectory, where a dashed-dotted line is the optimal
trajectory for parametric excitation shown in Fig. 2, a dashed
line is the case of δ = 0 s with Tset = 0.8 s, a solid line is the
case of δ = 0.2 s with Tset = 0.8 s, and a dotted line is the
case of δ = 0 s with Tset = 1.2 s. In the reference trajectory
of form (3), the trajectory shown by the dotted line is closest
to the optimal trajectory when Tset = 1.2 s. However, in the
case of a biped robot, a collision at the ground may occur
before straightening the knee for this trajectory. To avoid this,
we should make the reference trajectory close to the optimal
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Fig. 9. Reference trajectory.

trajectory without increasing Tset. From Fig. 9, it is shown
that by introducing bending delay δ, the reference trajectory
approaches the optimal trajectory, and hence it is expected to
restore more mechanical energy than those without delay.

Below we design a control input to track the
reference trajectory given by Eq. (4). If we define x =
[θ1 θ2 θ2 − θ3 − f ]T, then θ is rewritten by

θ =
⎡
⎣1 0 0

0 1 0
0 1 −1

⎤
⎦ x +

⎡
⎣ 0

0
−1

⎤
⎦ f =: Lx + Nf, (5)

and θ̇ and θ̈ are

θ̇ = Lẋ + N ḟ , (6)

θ̈ = Lẍ + N f̈ , (7)

respectively. The dynamic equation (1) is redefined as

M Lẍ + M N f̈ + C Lẋ + C N ḟ + g = SuK. (8)

Define K and Z as

K = −NT L−1 M−1 S,

Z = −NT L−1 M−1(M N f̈ + C Lẋ + C N ḟ + g),
(9)

and select the knee torque, uK , as

uK = K−1Z. (10)

Then, by using Eqs. (9) and (10) the dynamic equation (8)
reduces to

θ̈2 − θ̈3 = f̈ . (11)

By integrating this equation twice, we obtain

(θ2(t) − θ3(t)) − (θ2(0) − θ3(0)) − (θ̇2(0) − θ̇3(0))t

= f (t) − f (0) − ḟ (0)t. (12)

If initial states are set to equal initial states of the reference
trajectory, i.e., θ̇2(0) − θ̇3(0) = ḟ (0) and θ2(0) − θ3(0) =
f (0), then Eq. (12) reduces to

θ2(t) − θ3(t) = f (t). (13)

Therefore, θ2 − θ3 corresponds with the reference trajectory
by the input uK given by Eq. (10).

5.2. Numerical simulation
Parameters of the biped robot are shown in Table I. The
parameters of the reference trajectory are set as Am = 1.2
rad, Tset = 0.8 s, and δ = 0.2 s.

Simulation results of parametric excitation based walking
by knee-joint actuation are shown in Fig. 10 which illustrates
about three steps from 105 to 108 s after starting to walk.
Simulation results show that a sustainable gait can be
generated without a hip torque. Figure 10(a) shows angular
positions, 10(b) shows angular velocities, 10(c) shows the
total mechanical energy, 10(d) shows knee torque, uK , 10(e)
shows foot clearance, 10(f) shows distance between the hip
joint and the center of mass of the swing-leg, and 10(g) shows
knee-joint angle, i.e., θ2 − θ3. From Figs. 10(c) and 10(f), it
is observed that the total mechanical energy increases when
a knee of a biped robot is bended and that the total energy
decreases when a knee is stretched. This is because potential
energy increases with knee bending and decreases with knee
stretching. The difference between the energy increase and
the energy decrease is the quantity of total energy restoration.
From Fig. 10(c), it can be observed that energy dissipation
of the collision at the knee is almost negligible because
relative angular velocity equals almost zero just before the
knee impact. In our approach we expected to avoid scuffing
the ground similarly like a biped robot with telescopic-legs.
It is observed from Fig. 10(e) that this biped robot avoids
scuffing the ground. Figure 11 shows a stick diagram of
parametric excited based walking for a kneed biped robot.
In this figure, the dashed lines are support-legs and the solid
lines are swing-legs.

6. Effect of Parameters

In this section, we examine the influences of the ratio of
lengths between upper leg and lower leg to foot clearance.
We also examine the effect of parameters of the reference
trajectory for walking efficiency. To do these, we simulate
the cases of foot radii, R = 0.45, 0.50, and 0.55 m.

6.1. Effect of length between upper leg and lower leg
We first examine the effect of length between upper leg, a2,
and lower leg, a3, for foot clearance. We fix a2 + a3 = 1.0 m
and simulate numerically by changing the ratio.

We show simulation results in Fig. 12. Parameters of a
biped robot are the same as those in the preceding section
except for a2, a3, r2, r3, and the parameters of the reference
trajectory are set as follows: Am = 1.2 rad, Tset = 0.8 s, and
δ = 0.2 s. The length of upper leg, a2, is changed from 0.3
to 0.55m. The centers of mass of each link are as follows:
r2 = a2/2, r3 = a3/2. We show the results of only those
bipedal walking convergences.
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Fig. 10. Simulation results for steady gait pattern.

Fig. 11. Stick diagram for steady gait pattern.

In Fig. 12, circles represent the results of foot radius R =
0.45 m, squares the results of R = 0.50 m, and diamonds the
results of R = 0.55 m. In the case of R = 0.45 m, we show
results for a2 from 0.31 to 0.54 m; in the case of R = 0.50 m,
we show results for a2 from 0.34 to 0.55 m; and in the case
of R = 0.55 m, we show results for a2 from 0.36 to 0.55 m.

From Fig. 12, we may observe that the smaller the a2, the
larger is the foot clearance. For the same ratio, a large foot
is bad for foot clearance. It is also observed that bifurcation
occurs when a2 is beyond 0.48 m in the case of R = 0.45 m,

Fig. 12. Foot clearance with respect to a2.

a2 is beyond 0.48 m in the case of R = 0.50 m, and a2 is
beyond 0.49 m in the case of R = 0.55 m.

6.2. Effect of reference trajectory
In this subsection, we examine the effect of the reference
trajectory on some walking indices such as step period,
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Fig. 13. Gait descriptors with respect to Am.

walking speed, and specific resistance. The specific
resistance defined by

μ =
∫ T −

0+ |uK (θ̇2 − θ̇3)|dt/T

MggV
(14)

represents energy efficiency, and walking is more efficient as
this value is smaller. In Eq. (14), 0+ and T − represent the time
just after and before collision at the ground, respectively, Mg

is the total mass of a biped robot, and V is the average walking
speed. We note that, in the simulation of this subsection, the
problem of foot clearance is not taken into consideration, that
is, we regard that a biped robot walks sustainably even if a
foot scuffs the ground.

First, we show the simulation results when we fix Tset =
0.8 s and δ = 0.2 s and when we change the amplitude of
vibration, Am, from 1.0 to 1.5 rad. We show the results of only
those bipedal walking convergences. Figure 13(a) shows the

step period, 13(b) shows the walking speed, and 13(c) shows
the specific resistance. In the case of R = 0.45 m, results are
shown for Am from 1.04 to 1.4 rad; in the case of R = 0.50 m,
results are shown for Am from 1.02 to 1.44 rad; and in the
case of R = 0.55 m, results are shown for Am from 1.04
to 1.5 rad. The figure shows that the larger the amplitude
of vibration, Am, is, the larger are the step period and the
walking speed. On the other hand, specific resistance first
becomes smaller and then larger as Am increases. Therefore,
in the case of R = 0.45 m, walking is most efficient when
Am = 1.1 rad; in the case of R = 0.50 m, walking is most
efficient when Am = 1.1 rad; and in the case of R = 0.55 m,
walking is most efficient when Am = 1.08 rad. For the same
amplitude of vibration, Am, the walking speed becomes
large and the specific resistance becomes small when the
foot radius is large. In addition, bifurcation occurs when Am

becomes large.
Next, we show the simulation results of changing delay,

δ. In this simulation, we fix Tset = 0.8 s and Am = 1.2 rad
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Fig. 14. Gait descriptors with respect to δ.

and δ is changed from 0.05 to 0.40 s. Figure 14(a) shows the
step period, 14(b) the walking speed, and 14(c) the specific
resistance. In the case of R = 0.45 m, results are shown for
δ from 0.13 to 0.40 s; in the case of R = 0.50 m, results
are shown for δ from 0.14 to 0.40 s; and in the case of
R = 0.55 m, results are shown for δ from 0.16 to 0.40 s. We
show the results for only those bipedal walking convergences.
The figure shows that the larger the delay, δ, is, the larger are
the step period and the walking speed. On the other hand,
specific resistance first becomes smaller and then larger as δ

increases. Therefore, in the case of R = 0.45 m, walking is
most efficient when δ = 0.21 s; in the case of R = 0.50 m,
walking is most efficient when δ = 0.22 s; and in the case
of R = 0.55 m, walking is most efficient when δ = 0.22 s.
This is because the reference trajectory is closest to the
optimal trajectory when δ = 0.22 s as shown in Fig. 9. For the
same delay, δ, the walking speed becomes large and specific
resistance becomes small when the foot radius is large. It is
also observed that bifurcation occurs when δ becomes large.

We note that the biped robot scuffs the ground in the range
of large bending delays, such as larger than 0.33 s.

From these results, we can see that a large foot has
advantages with respect to walking speed and energy
efficiency. On the other hand, a large foot is bad for foot
clearance. There is trade-off between efficiency and foot
clearance. Because of this we have adopted the length of
the upper leg, a2 = 0.4 m, and the foot radius, R = 0.5m, in
the simulation of Section 5.

6.3. Basin of attraction
In this subsection, we analyze the basin of attraction with
respect to the initial conditions. To do this, we consider a
certain sustainable gait for which the target control input
corresponds to Am = 1.2 rad, Tset = 0.8 s, δ = 0.2 s, and then
we simulate the motion in the several initial conditions. Our
robot has three degrees of freedom for initial conditions, i.e.,
support-leg angle, support-leg angular velocity, and swing-
leg angular velocity. In the case of changing the swing-leg
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Fig. 15. Basin of attraction.

angle, we change the angle from 0.0 to 0.4 rad. In the cases of
changing the angular velocity, we change the angular velocity
from 0.0 to 3.0 rad/s. The initial conditions belong to the
basin of attraction when the biped robot walks 200 steps
successfully. In this simulation, we also ignore the problem
of foot clearance as in the previous subsection.

Simulation results of the basin of attraction are shown in
Fig. 15. The axes represent the initial state of the system.
Simulations have been performed on three-dimensional
spaces of parameters, but we depict three slices of two-
dimensional figures for the purpose of visibility. Figure 15(a)
shows the slice of the results at θ1 fixed to −0.2548 rad,
15(b) shows that of θ̇2 = 0.9299 rad/s, and 15(c) shows that
of θ̇1 = 1.0992 rad/s. In these figures, the black regions
indicate the initial conditions from which the robot walks
sustainably and the initial condition converges to the fixed
point indicated by the white circle, [θ1 θ2 θ3 θ̇1 θ̇2 θ̇3 ] =
[−0.2548 0.2548 0.2548 1.0992 0.9299 0.9299 ]. From the
figures, it is observed that the maximum radius of the ball,

which is contained in the basin of attraction, centered at the
fixed point is 5.38% in relative error.

7. Conclusion and Future Work

In this paper, we applied the parametric excitation principle
to a kneed biped robot, and showed that only knee actuation
generated sustainable gait. In particular, we resolved the
problem of foot clearance by revising the ratio of thigh
and shin lengths. We optimized the reference trajectory
by introducing bending delay. In addition, we showed the
effect of parameters on efficiency and showed the basin of
attraction.

In future work, we will search the optimal robot parameters
and the optimal reference trajectory. We will also combine
the hip torque with the knee torque and generate more
efficient bipedal walking, and we will apply this method
to a real machine. We guess that energy restoration based
on parametric excitation is not only realized by bending and
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stretching the swing-leg but also by using the support-leg,
torso, and arms. It should be investigated that the method
generates a sustainable gait by using the support-leg, torso,
and arm motion. In addition, we conjecture that the center of
mass of a human being moves up and down while walking and
hence this motion restores the total mechanical energy based
on the parametric excitation principle. It is also an important
research issue to measure the human walking motion and
analyze the motion to verify whether human walking makes
use of the parametric excitation principle or not.
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Appendix A: Dynamic Equation

Each element, M, C, and g, of dynamic equation (1) of a
biped robot shown in Fig. 1 is given by

M11(θ) = m1(R2 + (r1 − R)2) + 2m1R(r1 − R) cos θ1

+ (mH + m2 + m3)((R2 + (l − R)2)
+ 2R(l − R) cos θ1) + I

M12(θ) = −(m2r2 + m3a2)(l − R) cos(θ1 − θ2)
− (m2r2 + m3a2)R cos θ2

M13(θ) = −m3r3(l − R) cos(θ1 − θ3) − m3Rr3 cos θ3

M21(θ) = M12(θ )
M22(θ) = m2r

2
2 + m3a

2
2

M23(θ) = m3a2r3 cos(θ2 − θ3)
M31(θ) = M13(θ )
M32(θ) = M23(θ )
M33(θ) = m3r

2
3

C11(θ , θ̇) = (−m1R(r1 − R) − (mH + m2 + m3)
R(l − R))θ̇1 sin θ1

C12(θ , θ̇) = (m2r2 + m3a2)(−(l − R) sin(θ1 − θ2)
+ R sin θ2)θ̇2

C13(θ , θ̇) = (−m3r3(l − R) sin(θ1 − θ3) + m3Rr3 sin θ3)
θ̇3

C21(θ , θ̇) = (m2r2 + m3a2)(l − R) sin(θ1 − θ2)θ̇1

C22(θ , θ̇) = 0

C23(θ , θ̇) = m3a2r3 sin(θ2 − θ3)θ̇3

C31(θ , θ̇) = m3(l − R)r3 sin(θ1 − θ3)θ̇1

C32(θ , θ̇) = −m3a2r3 sin(θ2 − θ3)θ̇2

C33(θ , θ̇) = 0

g1(θ ) = −g(m1(r1 − R) + (mH + m2 + m3)(l − R))

sin θ1

g2(θ ) = g(m2r2 + m3a2) sin θ2

g3(θ ) = gm3r3 sin θ3

Matrix S is given by

S =
⎡
⎣ 0

−1
1

⎤
⎦ . (15)

Appendix B: Impact Equations

B.1. Impact equation at knee
In the biped robot model dealt with in this paper, there are
collisions at the knee and the ground. First, we explain an
impact equation at the knee. When a swing-leg straightens, a
completely inelastic collision is assumed to occur at a knee of
the swing-leg. The coordinates θ̇

−
and θ̇

+
, which correspond

to before and after knee impact, respectively, are related by
the following equation:

M θ̇
+ = M θ̇

− + JTλI , (16)

where λI is constraint force making J θ̇
+ = 0. This force is

given by

λI = −( J M−1 JT)−1 J θ̇
−
. (17)

From Eqs. (16) and (17), angular velocities after knee impact
are given by

θ̇
+ = −(I − M−1 JT( J M−1 JT)−1 J)θ̇

−
. (18)

On the other hand, we have θ− = θ+, because angular
positions do not change before and after the impact.

B.2. Impact equation at ground
Next, we explain impact equation at the ground. A completely
inelastic collision is assumed to occur at the ground.
Extended generalized coordinate for separated legs i (i =
1, 2) shown in Fig. 16 is given by

q =
[

q1

q2

]
, (19)

where qi = [xi zi θi1 θi2 ]T. Let “−” and “+” be superscripts
corresponding to before and after impact at the ground,
respectively. Then, we have θ− = θ+, because positions do
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Fig. 16. Geometric relation at the heel-strike instant.

not change before and after the impact. Impact equation of
extended generalized coordinate is given by

M̄(q)q̇+ = M̄(q)q̇− − J I (q)TλI , (20)

where λI ∈ R
6 is an undetermined multiplier vector which

is impulse force. M̄(q) ∈ R
8×8 is the inertia matrix given by

M̄(q) =
⎡
⎣M̃

1
(q1) 04×4

04×4 M̃
2
(q2)

⎤
⎦ . (21)

M̃
i

(i = 1, 2) are given by

M̃
i

11 = m2 + m3 + mH/2
M̃

i

12 = 0
M̃

i

13 = (m3(a3 − r3 − R) + (m2 + mH/2)(a3 − R))
cos θi1

M̃
i

14 = (m2(a2 − r2) + mHa2/2) cos θi2

M̃
i

21 = 0
M̃

i

22 = m2 + m3 + mH/2
M̃

i

23 = −(m3(a3 − r3 − R) + (m2 + mH/2)(a3 − R)
sin θi1

M̃
i

24 = −(m2(a2 − r2) + mHa2/2) sin θi2

M̃
i

31 = M̃
i

13

M̃
i

32 = M̃
i

23

M̃
i

33 = m3(a3 − r3 − R)2 + (m2 + mH/2)(a3 − R)2

M̃
i

34 = (m2(a2 − r2) + mHa2/2) cos θi2

M̃
i

41 = M̃
i

14

M̃
i

42 = M̃
i

24

M̃
i

43 = M̃
i

34

M̃
i

44 = m2(a2 − r2)2 + mHa2
2/2.

J I ∈ R
6×8 is the Jacobian which satisfies the condition

J I (q)q̇+ = 06×1. (22)

There are some constraints among coordinates. First, from
geometric conditions we have

z2 = R,

x1 + (a3 − R) sin θ11 + a2 sin θ12

= x2 + (a3 − R) sin θ21 + a2 sin θ22,

z1 + (a1 − R) cos θ11 + a2 cos θ12

= z2 + (a1 − R)cosθ21 + a2 cos θ22. (23)

These equations mean that the height of the center of foot of
the support-leg is constant (equal to foot radius) and that the
hip position (vertical and horizontal) from (x1, z1) equals to
the hip position from (x2, z2). In addition, the rate constraint
that the foot of the support-leg rolls on the ground is given
by

ẋ+
2 = Rθ̇+

21. (24)

The rate constraints that knees are stretched are given by

θ̇+
11 = θ̇+

12,

θ̇+
21 = θ̇+

22.
(25)

J I is derived from differentiating Eq. (23) and by
incorporating Eqs. (24) and (25).

The multiplier vector λI is given by

λI = X−1
I J I q̇−, (26)

where matrix XI is given by

XI = J I M̄−1 JT
I . (27)

As above, velocity of the extended generalized coordinate
after collision is given by

q̇+ = (
I8 − M̄−1 JT

I X−1
I J I

)
q̇−. (28)

http://www.journals.cambridge.org

