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Abstract: In this paper, a stabilization problem for an aircraft at a high angle of attack is considered. Though aircrafts
obtain large lift force over the high angle of attack regime, nonlinearities of aerodynamics over the regime are considerably
high. Using aerodynamic coeffients data given as a table, we design a nonlinear optimal control law to stabilize an existing
aircraft at a high angle of attack by a new method based on stable manifold theory. As a result, the nonlinear optimal
control law stabilizes attitudes of the aircraft in a larger region than the linear optimal control does.
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NUMENCLATURE

b = wing span

c = mean aerodynamic chord

g = acceleration of gravity

I = moment of inertia about body axis Y

m = aircraft mass

q = dynamic pressure

S = wing area

u, w = body-axis velocity components

V = aircraft speed

α = angle of attack

δ = elevator angle

θ = pitch angle

ρ = atmospheric density

1. INTRODUCTION

When an aircraft operates at high angle of attack, large
aerodynamic forces exert on it. These forces make advan-
tages such as large lift, enhancement of agility, et cetera.
The dynamics of aircraft, however, is highly nonlinear
over the regime where the nonlinearities of aerodynamics
considerably high, so it is difficult to stabilize by a linear
control. Therefore, we need to design nonlinear control
laws to stabilize an aircraft over the regime.
In this paper, we design a nonlinear optimal control

law to stabilize an aircraft at a high angle of attack. Mod-
els for design and evaluation are based on aerodynamic
data of an existing aircraft. The control law will be de-
veloped using a new method derived from stable mani-
fold theory to solve a Hamilton-Jacobi equation approx-
imately[5]. It will be shown that the nonlinear optimal

control law thus obtained stabilizes attitudes of the air-
craft in a larger region than linear optimal control does.

2. MODELS

The aircraft to be controlled in this paper is the
research vehicle used in ALFLEX(Automatic Landing
FLight Experiment) conducted by NAL and NASDA to
develope their automatic landing technologies. The ve-
hicle is essentially unstable (in particular it is statically
unstable in longitudinal motion), so it is necessary to sta-
bilize it by feedback control. This characteristic makes it
easy to compare how control laws effectively work. We
construct a model for the ALFLEX veichle using aero-
dynamic data that is on the basis of secondary low-speed
wind tunnel test. [7]

2.1 State Space Equation

In this paper, we will be concerned only with the lon-
gitudinal dynamics of the aircraft. In body fixed coordi-
nates (Fig. 1), the equations of motion are described as

X : m(u̇+ wθ̇) = −mg sin θ + Fx

Z : m(ẇ − uθ̇) = mg cos θ + Fz (1)

Pitch : Iθ̈ = M

Aerodynamic forces are described as

Fx = L sinα−D cosα , Fz = −L cosα−D sinα
L = qSCL , D = qSCD , M = qScCM
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Fig. 1 body fixed coordinates

where q = 0.5ρV 2. Let u = U = const (i.e., u̇ = 0) and
substituting w = U tanα into Eq. (1), we finally obtain

α̇ =
cos2 α
U

×
�
Uθ̇ + g cos θ − qS

m
(CL cosα+ CD sinα)

�

θ̈ =
qScCM

I
(2)

V is equal to
U

cosα
, and the parameters are given by

b = 3.295 [m]
c = 3.154 [m]

g = 9.80665 [kg/sec2]

I = 1366 [kgm2]
m = 760 [kg]
S = 9.45 [m]

ρ = 1.225 [kg/m3]

By setting aerodynamic coefficients CL, CD, CM as
functions of α, θ, θ̇, the state space model is developed
completely.

2.2 Aerodynamic Data

According to [7], each aerodynamic coefficient in Eq.
(2) is described as

CL(α, δ) = CL(basic)(α) + ΔCL(δ)(α, δ)

+ ΔCL(gear)(α)

CD(α, δ) = CD(basic)(α) + ΔCD(δ)(α, δ)

+ ΔCD(gear)(α)

CM (α, δ, θ̇, V ) = CM(basic)(α) + ΔCM(δ)(α, δ)

+ ΔCM(gear)(α)

+ ΔCM(θ̇)(α) · 1
2V
θ̇c. (3)

Each function is given as a table for several values of
α or (α, δ) in the range of α ∈ [−10, 30] [deg], δ ∈

[−25, 35] [deg]. To write these functions as analytic func-
tions, we approximate them by polynomial functions (de-
grees are at most five) using the method of least squares,
shown as Figs. 2∼14. Note that two variable functions
are assumed to be linear for δ ( e.g.,CL(α, δ) � C�

L(α)·δ
).

2.3 Design Model and Evaluation Model
We design control laws for the system Eq. (2) where

the aerodynamic coefficients are approximated as poly-
nomial functions as mentioned in §2.2. Notice that
ΔCD(δ)(α, δ) is treated as 0 in the model. To evaluate the
effect of this neglection and the modeling error in the ap-
proximations of polynomial functions, we build another
model where all functions in Eq. (3) are approximated as
numerical functions generated by interpolation of the ta-
ble. In this model, all aerodynamic coefficients, including
ΔCD(δ)(α, δ), are taken account of. In the following, the
former is called ”design model”, and the latter is ”evalu-
ation model”.
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Fig. 2 approximation of CL(basic)(α)
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Fig. 5 approximation of ΔCL(δ)(α, δ) (δ is fixed)
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Fig. 6 approximation of ΔCL(δ)(α, δ) (α is fixed)
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Fig. 7 approximation of ΔCD(δ)(α, δ) (δ is fixed)
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Fig. 8 approximation of ΔCD(δ)(α, δ) (α is fixed)
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Fig. 9 approximation of ΔCM(δ)(α, δ) (δ fixed)
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Fig. 10 approximation of ΔCM(δ)(α, δ) (α is fixed)
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Fig. 11 approximation of ΔCL(gear)(α)
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- 1809 -

−15 −10 −5 0 5 10 15 20 25 30 35
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5
x 10

−3

alpha [deg]

dC
M

Fig. 13 approximation of ΔCM(gear)(α)
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Fig. 14 approximation of ΔCM(θ̇)(α)

3. OPTIMIZATION PROBLEM

3.1 Problem Settings
Let us consider the control problem for landing of an

aircraft. For a gentle landing, the speed of the aircraft
must be sufficiently slow, and also the aircraft needs suffi-
cient lift force. Unfortunately, the lower the aircraft speed
is, the weaker aerodynamic forces are. Thus, the aircraft
needs to hold at high angle of attack to obtain large lift if
it try to land at low speed.

Here, we design a nonlinear optimal control law to sta-
bilize the aircraft at a high angle of attack and low speed.
The trim condition are U = 35 [m/sec], α = 23 [deg],
θ = 23.3 [deg], θ̇ = 0 [deg/sec], δ = −0.45 [deg]. Eq.
(2) is transformed into

ẋ = f(x) + g(x)v, f(0) = 0 (4)

by setting the states and the input as xT = [ x1 x2 x3 ] =
[ α − 23 θ − 23.3 θ̇ ] , v = δ − (−0.45). The cost
function to be minimaized is defined as

J =
� ∞

0

xTQx+ rv2dt Q = I(3×3) , r = 1.

3.2 Control Law Design
To design control laws, some simplifications are made.

Trigonometric functions (i.e., sin, cos, tan) are approxi-
mated as 2nd degree polynomial function by the 2nd de-
gree Taylor expansion. As a result, each component of
right hand side of Eq. (4) is a polynomial function. The
terms whose degree is larger than 5 are neglected. In ad-
dition, input coefficient function g(x) is treated as con-
stant matrix B = g(0).

After these simplifications, we calculate an approxi-
mate solution of canonical equation (cf. Appendix Eq.

(6)) x1(t, ξ), p1(t, ξ) using the stable manifold theorem,
and obtain an approximate soltion V of corresponding
Hamilton-Jacobi equation as a 10 degree polynomial
function. Finally, a nonlinear optimal control law is ob-

tained as v = −1
2
r−1BT

�
∂V

∂x

�T

. As for the calcula-

tion argorithm in detail, see [5].

4. RESULTS

To compare stabilizability of the obtained nonlinear
optimal controller with a linear optimal controller that is
developed for the linear system at the trim condition (the
cost function is the same), simulation for ”design model”
is carried out. (Note that evaluation model is not appro-
priate for the purpose because it needs table-look-up that
is impossible when value of α or δ get out of the table.)

Table. 1 shows the simulation results for several ini-
tial conditions [α θ 0] (θ̇ = 0 is fixed), comparing the
nonlinear optimal control with the linear optimal control.

Table. 1 comparison of stabilizable initial conditions
(O : stabilizable, X : unstabilizable)

The colored regions in the table indicates the condi-
tions that only linear/nonlinear controller can stabilize.
We see from Table. 1 that the region of initial condi-
tions where the nonlinear control stabilizes are consider-
ably larger than the linear control does though there are
several conditions for which the nonlinear control is infe-
rior to the linear one.

The simulation for ”evaluation model” is also carried
out for the intial conditions and similar results are ob-
tained, which suggests that the control law developed for
design model is also valid for the real system. The val-
ues of cost function for several cases in the simulation for
evaluation model are shown below. The initial conditions
are

[ α θ θ̇ ] =

⎧
⎨
⎩

(a) [10[deg] 0[deg] 0[deg/sec]]
(b) [20[deg] 10[deg] 0[deg/sec]]
(c) [30[deg] 20[deg] 0[deg/sec]]
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The values of cost function J for each cases are
�

linear control (a) 0.239 (b) 0.0775 (c) 0.0284
nonlinear control (a) 0.234 (b) 0.0764 (c) 0.0219

Consequently, implovements for each cases are

J(nonlinear)
J(linear)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
0.234
0.239

= 97.5%

(b)
0.0764
0.0775

= 98.6%

(c)
0.0219
0.0284

= 77.1%

The time histories of states and input for each cases are
shown as below.
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Fig. 15 Case (a) : time history of states and input
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Fig. 16 Case (b) : time history of states and input

5. CONCLUSIONS

In this paper, we have considered an attitude stabiliza-
tion problem to hold an aircraft at a high angle of attack.
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Fig. 17 Case (c) : time history of states and input

The models for control law design and performance eval-
uation have been developed based on aerodynamic data
for an existing aircraft. A nonlinear optimal control law
has been designed using a new method derived from sta-
ble manifold theory.

It has been found from the simulation results that the
obtained nonlinear optimal control law stabilizes in a
considerably larger region than linear control does, and is
effective not only for the analytic design model but also
the numerical model constructed by interpolation of aero-
dynamic data table. In the latter case, it has been con-
firmed that value of the cost function can be decreased
more than 20% compared with the linear optimal control.
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APPENDIX

A OPTIMAL CONTROL THEORY

Consider a system Σ and a cost function J as below.
Assuming that the system has at least one equilibrium
point. Without loss of generality, it is assumed to be
x = 0.

⎧
⎪⎪⎨
⎪⎪⎩

Σ : ẋ = f(x) + g(x)v

J =
� ∞

0

xTQx+ vTRv dt

The solution for the optimal control problem is given by

v = −1
2
R−1g(x)T

�
∂V

∂x

�T

where V (x) is the solution of nonlinear partial equation
– so called Hamilton-Jacobi equation – described as

�
∂V

∂x

�
f(x) − 1

4

�
∂V

∂x

�
g(x)R−1g(x)T

�
∂V

∂x

�T

+xTQx = 0

Furthermore, the following holds.

V (x0) = min
u
J(x0) for x(0) = x0 (5)

Now, let us consider the linear system

Σ� : ẋ = Ax+Bv

where A =
�
∂f

∂x

�����
x=0

, B = g(0)

Assuming that the stabilizing solutionP exists for Riccati
equation

(RIC) PA+ATP − PBR−1BTP +Q = O

andW is the solution to the Lyapunov equation

(LYAP) (A− SP )W +W (A− SP )T = S

where S = BR−1BT

and set

T =

⎡
⎢⎣
I

1
2
W

2P PW + I

⎤
⎥⎦

The solution of Hamilton-Jacobi equation can be ob-
tained from the stable manifold of the system of differ-
ential equations such as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ =
∂H

∂p

ṗ = −∂H
∂x

(6)

where H(x, p) = pT f(x) − 1
4
pT g(x)R−1g(x)T p

+ xTQx

Transforming [x, p]T to [x�, p�] by [x, p]T = T [x�, p�]T ,
then we obtain

�
x�

p�

�
=

�
A− SP O
O −(A− SP )T

� �
x�

p�

�

+
�
φ(t, x�, p�)
ψ(t, x�, p�)

�

where φ,ψ are smooth nonlinear functions. The stable
manifold of this system of equations can be obtained ap-
proximately by theorem below.
Theorem 1 (Sakamoto, N., van der Schaft, A.J.)

Consider a system of equations given by
�
ẋ = Fx+ φ(x, y)
ẏ =−F T y + ψ(x, y) (7)

where F is a stable matrix, φ,ψ are smooth nonlinear
functions. Then, consider recurrence relations;

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1(t, ξ)

= eFtξ +
� t

0

eF (t−s)φ(s, xk(s, ξ), yk(s, ξ))ds

yk+1(t, ξ)

= −
� ∞

t

e−F T (t−s)ψ(s, xk(s, ξ), yk(s, ξ))ds
�
x0(t, ξ) =eFtξ
y0(t, ξ) = 0 .

if ||ξ|| is sufficiently small, xk(t, ξ), yk(t, ξ) converge
uniformly to the solution on the stable manifold of Eq.
(7) as k → ∞. �
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