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Abstract—In this paper, we discuss a lexicographic bi-criteria
combinatorial optimization problem arising in automated food
packing systems known as so-called automatic combination
weighers. A typical food packing system possesses n weighing
hoppers. Some amount of foods is thrown into each hopper, and
it is called an item. We deal with a duplex packing operation
such that the food packing system chooses two disjoint subsets
I ′ and I ′′ from the set I of the current n items to produce
two packages of foods. After choosing two subsets I ′ and I ′′,
the resulting empty hoppers are supplied with next new items,
and the set I is updated. By repeating the duplex packing
operation, a large number of packages are produced two by
two. The primary objective of lexicographic bi-criteria duplex
food packing problem is to minimize the total weight of chosen
items for two packages, making the total weight of each package
no less than a specified target weight T . The second objective is
to maximize the total priority of chosen items for two packages
so that items with longer durations in hoppers are preferably
chosen. The priority of an item is given as its duration in hopper.
In this paper, we prove that the lexicographic bi-criteria duplex
food packing problem can be solved in O(nT 2) time by dynamic
programming if all input data are integral.

I. INTRODUCTION

We discuss a combinatorial optimization problem arising in
automated food packing systems known as so-called automatic
combination weighers (see Morinaka [8]). As depicted in
Fig. 1, a typical food packing system possesses n weighing
hoppers. Some amount of foods (such as a green pepper, a
ham, a handful of potato chips, and so on) is thrown into
each hopper, and it in the i-th hopper is called item i (i =
1, 2, . . . , n). Given a set I = {i | i = 1, 2, . . . , n} of the
current n items in hoppers, a duplex food packing system
chooses two disjoint subsets I ′ and I ′′ from the set I , and puts
the chosen items for the two subsets into individual packages.
The resulting empty hoppers are supplied with next new items,
and the set I is updated by taking the union of the remaining
items and the newly supplied items. The duplex food packing
system repeats the duplex packing operation to produce a large
number of packages two by two. Note that it always chooses
some current items in hoppers without knowing the weights
of next new items.

In this paper, we first formulate the problem of choosing

1 2 3 -1
Hopper

First Package Second Package

n - n

Choosing  Items

Hopper Hopper Hopper Hopper

Fig. 1. A duplex food packing system.

two disjoint subsets I ′ and I ′′ from the set I at each duplex
packing operation as a lexicographic bi-criteria combinatorial
optimization problem of off-line setting. From a viewpoint of
the service conscience, the total weight of chosen items for
each package must be no less than a specified target weight T .
This is referred to as the target weight constraint, which
is a hard constraint of automatic combination weighers (see
Morinaka [8] again). The primary objective of lexicographic
bi-criteria duplex food packing problem is to minimize the
total weight of chosen items for two packages under the
target weight constraint. In other words, this objective aims
at minimizing the amount of surplus in two packages. In
addition, items with longer durations in hoppers would like
to be preferably chosen (see Kameoka and Nakatani [3]). For
example, when the system handles some kind of fresh (or raw)
food that would like to be vacuum-packed as soon as possible,
it is undesirable that items with long durations in hoppers
occur. For the purpose, we introduce a priority to each current
item, following the previous papers (see Imahori et al. [2],
Karuno, Nagamochi and Ohshima [5], Karuno, Nagamochi
and Wang [6], [7]), and try to maximize the total priority of
chosen items for two packages as the second objective.



Then, we propose O(nT 2) time algorithms based on dy-
namic programming to the lexicographic bi-criteria duplex
food packing problem, where all input data are assumed to
be integral. The pseudo-polynomial time algorithms imply
that the problem is not strongly NP-hard, but is weakly NP-
hard [1].

A singular food packing system performs a packing op-
eration such that it chooses a single subset I ′ from the
set I of the current items. It repeats the singular packing
operation to produce a large number of packages one by one.
The singular food packing systems have been modeled, and
O(nT ) time algorithms have recently been proposed to their
lexicographic bi-criteria food packing problems (see Imahori
et al. [2], Karuno, Nagamochi and Wang [7] again). There
exist some automatic combination weighers which are able
to produce about two hundred packages per minute at the
maximum [13], i.e., approximately three hundred milliseconds
per singular packing operation. They spend most time in
measuring the weights of next new items accurately, and only a
few milliseconds may be left for choosing a subset I ′ of items
at each singular packing operation. Imahori et al. [2] have
also showed numerical results that the O(nT ) time algorithm
solved their test instances with up to n = 40 of the singular
food packing problem within four milliseconds on a personal
computer with Intel Pentium M CPU (1.20GHz) and 1GB
memory. Several simulation studies on automatic combination
weighers have also been reported (see Kameoka, Nakatani and
Inui [4], Murakami et al. [9], [10], [11], [12]).

Note that a singular food packing system generally measures
the weights of next new items at every singular packing
operation, and hence it performs the measuring step twice in
order to produce two packages. On the other hand, a duplex
food packing system performs the measuring step once while
it produces two packages. Thus, concerning the productivity,
duplex food packing systems may be more advantageous than
singular food packing systems, if a certain kind of food is
handled such that it takes much time to measure the weights
of next new items accurately.

II. PROBLEM DESCRIPTION

We denote by n the number of weighing hoppers as men-
tioned in the previous section. Let N be the total number of
packages to be produced, and let Kd be the total iteration
number of duplex packing operations to produce N packages.
Then, if the duplex food packing system always produces two
packages at every packing operation (for example, a sufficient
number of candidate items are given), it holds Kd = �N/2�.
On the other hand, let Ks be the total iteration number
of singular packing operations. Then, if the singular food
packing system always produces one package at every packing
operation, it holds Ks = N .

We call the duplex food packing problem with respect to
the lexicographic bi-criteria (i.e., the total weight of chosen
items for two packages as the primary objective, and total
priority as the second) LEXICO DUPLEX. When we disre-
gard the total priority (i.e., only with the primary objective of

the total weight), we call the duplex food packing problem
PRIMAL DUPLEX.

On the other hand, we call the singular food packing
problem with respect to the lexicographic bi-criteria LEX-
ICO SINGULAR, and the singular food packing problem only
with the primary objective PRIMAL SINGULAR.

The current item in the i-th hopper is referred to as
item i (see Fig. 1 again). Let � be the current iteration number
of duplex packing operation (1 ≤ � ≤ Kd), and let �i be the
iteration number at which the current item i has been thrown
into the i-th hopper when it was empty. Then, we refer to
ci = � − �i + 1 as the duration in hopper of item i. We are
going to set the priority of item i by the duration.

An instance of problem LEXICO DUPLEX at each duplex
packing operation is composed of the following inputs.

• I = {i | i = 1, 2, . . . , n}: set of the current n items.

• wi: positive integer weight of item i ∈ I .

• γi (:= ci): priority of item i ∈ I , which is assumed to
be a positive integer.

• T : target weight for each package, which is also assumed
to be a positive integer.

Besides them, the maximum of weights and total weight
over all n items in I are denoted by

wmax = max
i∈I

{
wi

}
and W =

n∑
i=1

wi,

respectively.
Problem LEXICO DUPLEX is formulated by using 0-1

vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), instead
of using subsets I ′ and I ′′, where

xi =
{

1 if item i is chosen for the first package,
0 otherwise, (1)

yi =
{

1 if item i is chosen for the second package,
0 otherwise. (2)

LEXICO DUPLEX

minimize f(x, y) =
n∑

i=1

wixi +
n∑

i=1

wiyi (3)

as the primary objective,

maximize g(x, y) =
n∑

i=1

γixi +
n∑

i=1

γiyi (4)

as the second objective,

subject to
n∑

i=1

wixi ≥ T, (5)

n∑
i=1

wiyi ≥ T, (6)

xi + yi ≤ 1, i = 1, 2, . . . , n, (7)

xi, yi ∈ {0, 1}, i = 1, 2, . . . , n. (8)



The target weight constraints for two packages are repre-
sented by Eqs. (5) and (6). The disjoint constraint for two
packages is expressed by Eq. (7). The binary constraint of
variables xi and yi is represented by Eq. (8). A solution (x, y)
satisfying Eqs. (5)–(8) is referred to as a feasible solution.
The primary objective of Eq. (3) aims at minimizing the
amount of surplus in a feasible solution, together with Eqs. (5)
and (6) (i.e., the target weight constraints). The second objec-
tive of Eq. (4) is introduced to expect that items with longer
durations in hoppers are preferably chosen (recall that we do
not solve the lexicographic bi-criteria duplex food packing
problem of on-line setting, but of off-line setting at each
duplex packing operation).

Suppose that by solving PRIMAL SINGULAR (resp. LEX-
ICO SINGULAR), a subset I ′ has already been chosen from
a given set I of current n items so that the surplus (i.e.,∑

i∈I′ wi−T ) is minimized, and that someone asks to choose
one more subset I ′′ from the set I − I ′ of the remaining
items. It is obvious that solving PRIMAL DUPLEX (resp.
LEXICO DUPLEX) is different from such a repetition of
solving PRIMAL SINGULAR (resp. LEXICO SINGULAR)
twice (we refer to the repetition as quasi-duplex packing
operation).

There may be many different ways to define the priority of
an item, for example γi := max{ci − α + 1, 1}, where the
α is a positive integer threshold. However, we assume that
the complexity of LEXICO DUPLEX is independent of the
definition of the priority.

For omitting some trivial cases, we also assume

wi < T for any item i ∈ I, (9)

and
3T ≤ W (≤ n · wmax). (10)

Under the above assumption, the duplex food packing system
can always produce two packages at each duplex packing
operation such that the total weight of each package is no less
than the target weight T (we see that the inequality 2T ≤ W
is not a sufficient condition, but is only a necessary condition
so that a given instance of problem LEXICO DUPLEX has
at least one feasible solution). The correctness can be derived
from Lemma 1, which is going to be provided in the next
section.

For a given instance of problem LEXICO DUPLEX, we
denote by Z∗ the minimum of the total weight of cho-
sen items for two packages in a feasible solution, and by
(x, y) = (x̂, ŷ) such a feasible solution that attains the
minimum Z∗ (= f(x̂, ŷ)) of the total weight. An optimal
solution (x, y) = (x∗, y∗) is defined as a feasible solution
such that it satisfies f(x∗, y∗) = Z∗ and maximizes the
total priority among feasible solutions with the minimum total
weight Z∗, i.e., it satisfies g(x∗, y∗) ≥ g(x̂, ŷ) for any feasible
solution (x̂, ŷ). We call the value g(x∗, y∗) of the second
objective conditionally maximum total priority, since it is the
maximum of the total priority of a feasible solution under
the condition that the primary objective is optimized. We

denote by G∗ = g(x∗, y∗) the conditionally maximum total
priority. Problem LEXICO DUPLEX asks to find an optimal
solution (x∗, y∗). If we are asked to find a feasible solution
(x, y) = (x̂, ŷ) with the minimum total weight f(x̂, ŷ) = Z∗,
the problem is PRIMAL DUPLEX.

III. DYNAMIC PROGRAMMING

In this section, we propose an O(nT 2) time algorithm based
on dynamic programming to problem LEXICO DUPLEX.
In § A, we first provide an upper bound on the total weight
of each package yielded by an optimal solution of LEX-
ICO DUPLEX. In § B, we then define state variables and
propose a dynamic programming algorithm. In § C, we finally
discuss the correctness of the dynamic programming recur-
sives.

A. Upper Bounds on the Total Weight of Each Package

Let (x∗, y∗) = ((x∗
1, x

∗
2, . . . , x

∗
n), (y∗

1 , y∗
2 , . . . , y∗

n)) be an
optimal solution of a given instance of LEXICO DUPLEX,
and let

Z∗
1 =

n∑
i=1

wix
∗
i and Z∗

2 =
n∑

i=1

wiy
∗
i

be the total weights of two individual packages yielded by the
optimal solution. It holds Z∗ = Z∗

1 + Z∗
2 by definition. As a

trivial upper bound, it holds Z∗
s ≤ W for each s ∈ {1, 2}.

We obtain a better upper bound on the Z∗
s (s ∈ {1, 2}) by the

following lemma.

Lemma 1 For an instance of problem LEXICO DUPLEX,
the total weights Z∗

1 and Z∗
2 of two packages yielded by an

optimal solution (x∗, y∗) satisfy the following inequalities.

T ≤ Z∗
s < T + wmax for each s ∈ {1, 2}. (11)

Proof. An optimal solution (x∗, y∗) satisfies the target weight
constraints (see Eqs. (5) and (6)), and hence it is clear that the
former of Eq. (11) holds.

On the other hand, by the optimality of (x∗, y∗), it holds
Z∗

1 − wk < T for any item k with x∗
k = 1, and it similarly

holds Z∗
2 − wk′ < T for any item k′ with y∗

k′ = 1, which
implies the latter of Eq. (11).

For notational convenience, we define

T ′ = T + wmax − 1. (12)

Note that T ′ < 2T = O(T ) holds from Eqs. (9) and (12),
while W = Ω(n) holds.

B. State Variables and Recursives

First, we define 0-1 state variables uk(p, q) (k = 1, 2, . . . , n,
p = 0, 1, . . . , T ′, q = 0, 1, . . . , T ′ as follows.

uk(p, q) = 1

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

There exists a pair of (partial) 0-1 vectors
(x1, . . . , xk) and (y1, . . . , yk) such that
xi + yi ≤ 1 for any i = 1, . . . , k,∑k

i=1 wixi = p, and
∑k

i=1 wiyi = q.



uk(p, q) = 0
⇐⇒ Such a pair of 0-1 vectors does not exist.

The common interval {0, 1, . . . , T ′} of parameters p and q is
determined by Lemma 1.

We also define variables vk(p, q) (k = 1, 2, . . . , n, p =
0, 1, . . . , T ′, q = 0, 1, . . . , T ′) to record the maximum of the
total priority

∑k
i=1 γixi +

∑k
i=1 γiyi of a pair of (partial)

0-1 vectors (x1, x2, . . . , xk) and (y1, y2, . . . , yk) such that it
satisfies xi + yi ≤ 1 for any i = 1, . . . , k,

∑k
i=1 wixi = p,

and
∑k

i=1 wiyi = q. Moreover, we introduce three kinds of
additional variables b

(1)
k (p, q), b

(2)
k (p, q) and b

(3)
k (p, q) (k =

1, 2, . . . , n, p = 0, 1, . . . , T ′, q = 0, 1, . . . , T ′) in order to
maintain the (conditionally) maximum total priority in the
vk(p, q), which correspond to the three possible cases for a
couple of xk and yk, i.e., 〈xk, yk〉 ∈ {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} (see
Eqs. (7) and (8)).

Then, we propose the following recursives of dynamic
programming. For p = 0, 1, . . . , T ′ and q = 0, 1, . . . , T ′,

u1(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (p = 0 and q = 0), or
if (p = 0 and q = w1), or

if (p = w1 and q = 0).
0 otherwise,

(13)

v1(p, q) =

⎧⎪⎪⎨
⎪⎪⎩

0 if (p = 0 and q = 0),
γ1 if (p = 0 and q = w1), or

if (p = w1 and q = 0).
−1 otherwise,

(14)

and for k = 2, 3, . . . , n, p = 0, 1, . . . , T ′ and q = 0, 1, . . . , T ′,

uk(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if uk−1(p, q) = 1, or
if (q − wk ≥ 0 and

uk−1(p, q − wk) = 1), or
if (p − wk ≥ 0 and

uk−1(p − wk, q) = 1),
0 otherwise,

(15)

b
(1)
k (p, q) =

{
vk−1(p, q) if uk−1(p, q) = 1,
−1 otherwise, (16)

b
(2)
k (p, q) =

⎧⎪⎪⎨
⎪⎪⎩

vk−1(p, q − wk) + γk

if (q − wk ≥ 0 and
uk−1(p, q − wk) = 1),

−1 otherwise,

(17)

b
(3)
k (p, q) =

⎧⎪⎪⎨
⎪⎪⎩

vk−1(p − wk, q) + γk

if (p − wk ≥ 0 and
uk−1(p − wk, q) = 1),

−1 otherwise,

(18)

vk(p, q) = max
{
b
(1)
k (p, q), b(2)

k (p, q), b(3)
k (p, q)

}
. (19)

The computation of all the uk(p, q), b
(1)
k (p, q), b

(2)
k (p, q),

b
(3)
k (p, q) and vk(p, q) requires O(n × T ′ × T ′) = O(nT 2)

time (see Eqs. (9) and (12)). After the computation, we find
a minimum of p + q such that it satisfies un(p, q) = 1, p ≥ T
and q ≥ T . Let p̂ + q̂ be the minimum. Then, it satisfies
un(p̂, q̂) = 1, p̂ ≥ T and q̂ ≥ T . We easily see that it also

satisfies p̂ + q̂ = Z∗ (i.e., the minimum of the total weight of
chosen items for two packages), where we regard p̂ = Z∗

1 and
q̂ = Z∗

2 (see Lemma 1).
Let S = {(p̂, q̂) | p̂ + q̂ = Z∗, un(p̂, q̂) = 1, p̂ ∈ {T, T +

1, . . . , T ′}, q̂ ∈ {T, T + 1, . . . , T ′}} be the set of pairs of
p̂ and q̂, and let (p∗, q∗) ∈ S be a pair such that it satisfies
vn(p∗, q∗) ≥ vn(p̂, q̂) for any pair (p̂, q̂) ∈ S. Note that the
set S satisfies |S| = O(T ′ − T ) × O(T ′ − T ) = O(T 2). We
can find the minimum p∗ + q∗ in O(T 2) time by checking
O(T 2) variables of un(p, q) and vn(p, q) with T ≤ p ≤ T ′

and T ≤ q ≤ T ′, which have already been computed.
In the next subsection, we are going to see that it holds

vn(p∗, q∗) = G∗ (i.e., the conditionally maximum total prior-
ity) from Eqs. (14), (16)–(19).

Thus, the proposed dynamic programming algorithm can
compute the Z∗ and G∗ in O(nT 2) time. By backtracking
the computation process, we can construct an optimal solu-
tion (x∗, y∗) in O(n) time additionally. We call the dynamic
programming algorithm Lexico Duplex DP.

Theorem 1 For an instance of problem LEXICO DUPLEX,
Lexico Duplex DP can obtain an optimal solution (x∗, y∗) in
O(nT 2) time.

C. Correctness of Recursives

In order to complete the proof of Theorem 1, it is left to
show that it holds vn(p∗, q∗) = G∗.

Recall that there are three possible cases for a couple of xk

and yk, i.e., 〈xk, yk〉 ∈ {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}, k = 1, 2, . . . , n,
due to the disjoint constraint for two packages and the binary
constraint (see Eqs. (7) and (8)). For k = 1, we consider the
following three cases: (i) the first item (i.e., item 1) is neither
chosen for the first package nor for the second package, (ii) it
is chosen for the second package, and (iii) it is chosen for
the first package. In the case of (i), the priority γ1 does not
contribute to the v1(0, 0) (i.e., v1(0, 0) = 0). In the cases
of (ii) and (iii), the priority γ1 contributes to the v1(0, w1)
and v1(w1, 0) (i.e., v1(0, w1) = γ1 and v1(w1, 0) = γ1),
respectively. Hence, the initialization of Eq. (14) is correct.

Similarly, for a general k (2 ≤ k ≤ n), we consider the
following three cases: (i) item k is neither chosen for the first
package nor for the second package, (ii) it is chosen for the
second package, and (iii) it is chosen for the first package.

In the case of (i), if uk−1(p, q) = 1 holds for a pair of p
and q, then uk(p, q) = 1 also holds. That is, 〈xk, yk〉 = 〈0, 0〉
is a candidate setting in an optimal solution. The priority γk

does not contribute to the total priority vk(p, q), and hence the
b
(1)
k (p, q) records the total priority vk−1(p, q) by Eq. (16). If

the candidate setting 〈xk, yk〉 = 〈0, 0〉 is actually taken up in
the output solution of the dynamic programming algorithm,
then item k is not chosen for any package.

In the case of (ii), if q − wk ≥ 0 and uk−1(p, q − wk) = 1
hold for a pair of p and q, uk(p, q) = 1 also holds. That is,
〈xk, yk〉 = 〈0, 1〉 is a candidate setting in an optimal solution.
The priority γk may contribute to the total priority of the
second package, and hence the b

(2)
k (p, q) records the total



priority vk−1(p, q − wk) + γk by Eq. (17). If the candidate
setting 〈xk, yk〉 = 〈0, 1〉 is actually taken up in the output
solution, then item k is chosen for the second package.

In the case of (iii), if p−wk ≥ 0 and uk−1(p−wk, q) = 1
hold for a pair of p and q, uk(p, q) = 1 also holds. That
is, 〈xk, yk〉 = 〈1, 0〉 is a candidate setting in an optimal
solution. The priority γk may contribute to the total priority
of the first package, and hence the b

(3)
k (p, q) records the total

priority vk−1(p − wk, q) + γk by Eq. (18). If the candidate
setting 〈xk, yk〉 = 〈1, 0〉 is actually taken up in the output
solution, then item k is chosen for the first package.

By Eq. (19), the vk(p, q) adopts the maximum of the
total priority of a candidate setting (which breaks ties ar-
bitrarily). Thus, the value vn(p̂, q̂) maintains the maximum
of the total priority of a pair of 0-1 vectors (x̂, ŷ) =
((x̂1, x̂2, . . . , x̂n), (ŷ1, ŷ2, . . . , ŷn)) such that it satisfies x̂i +
ŷi ≤ 1 for any i = 1, . . . , n,

∑n
i=1 wix̂i = p̂ ≥ T , and∑n

i=1 wiŷi = q̂ ≥ T . By definition, the pair (p∗, q∗) ∈ S
meets vn(p∗, q∗) ≥ vn(p̂, q̂) for any pair (p̂, q̂) ∈ S.

Therefore, we have vn(p∗, q∗) = G∗, which completes the
proof of Theorem 1.

IV. IMPROVEMENT FOR IMPLEMENTATION

We notice that for any k ∈ {1, 2, . . . , n}, and for any
pair of p ∈ {0, 1, . . . , T ′} and q ∈ {0, 1, . . . , T ′}, the state
variables and other variables for the conditionally maximum
total priority computed in dynamic programming algorithm
Lexico Duplex DP satisfy the following symmetric property.

uk(p, q) = uk(q, p) and vk(p, q) = vk(q, p). (20)

Applying the symmetric property, we can reduce the amount
of space used for maintaining the variables of uk(p, q),
b
(1)
k (p, q), b

(2)
k (p, q), b

(3)
k (p, q) and vk(p, q) in the dynamic

programming algorithm by about half (although the time
complexity remains O(nT 2) time).

The modified dynamic programming recursives are pre-
sented as follows. For p = 0, 1, . . . , T ′ and q = p, p +
1, . . . , T ′,

u1(p, q) =

⎧⎨
⎩

1 if (p = 0 and q = 0), or
if (p = 0 and q = w1),

0 otherwise,
(21)

v1(p, q) =

⎧⎨
⎩

0 if (p = 0 and q = 0),
γ1 if (p = 0 and q = w1),
−1 otherwise,

(22)

and for k = 2, 3, . . . , n, p = 0, 1, . . . , T ′ and q = p, p +
1, . . . , T ′,

uk(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if uk−1(p, q) = 1, or
if (q − wk ≥ p and

uk−1(p, q − wk) = 1), or
if (0 ≤ q − wk < p and

uk−1(q − wk, p) = 1), or
if (p − wk ≥ 0 and

uk−1(p − wk, q) = 1),
0 otherwise,

(23)

b
(1)
k (p, q) =

{
vk−1(p, q) if uk−1(p, q) = 1,
−1 otherwise,

b
(2)
k (p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk−1(p, q − wk) + γk

if (q − wk ≥ p and
uk−1(p, q − wk) = 1),

vk−1(q − wk, p) + γk

if (0 ≤ q − wk < p and
uk−1(q − wk, p) = 1),

−1 otherwise,

(24)

b
(3)
k (p, q) =

⎧⎪⎪⎨
⎪⎪⎩

vk−1(p − wk, q) + γk

if (p − wk ≥ 0 and
uk−1(p − wk, q) = 1),

−1 otherwise,

vk(p, q) = max
{
b
(1)
k (p, q), b(2)

k (p, q), b(3)
k (p, q)

}
.

The remaining procedure of the modified dynamic program-
ming is similar to Lexico Duplex DP proposed in the previous
section. That is, let S = {(p̂, q̂) | p̂ + q̂ = Z∗, un(p̂, q̂) =
1, T ≤ p̂ ≤ T ′, p̂ ≤ q̂ ≤ T ′} be the set of pairs of p̂
and q̂, and let (p∗, q∗) ∈ S be a pair such that it satisfies
vn(p∗, q∗) ≥ vn(p̂, q̂) for any pair (p̂, q̂) ∈ S. Then, we
can find the minimum p∗ + q∗ in O(T 2) time by checking
O(T 2) variables of un(p, q) and vn(p, q) with T ≤ p ≤ T ′

and p ≤ q ≤ T ′, which have already been computed.
We refer to the modified dynamic programming algorithm

as Lexico Duplex MDP. Even if we follow the modified
recursives, the computation of all the uk(p, q), b

(1)
k (p, q),

b
(2)
k (p, q), b

(3)
k (p, q) and vk(p, q) requires O(nT 2) time. Thus,

the theoretical time complexity of Lexico Duplex MDP is the
same as that of Lexico Duplex DP.

Theorem 2 For an instance of problem LEXICO DUPLEX,
Lexico Duplex MDP can obtain an optimal solution (x∗, y∗)
in O(nT 2) time.

However, by applying Eq. (20), Lexico Duplex MDP main-
tains the variables of uk(p, q), b

(1)
k (p, q), b

(2)
k (p, q), b

(3)
k (p, q)

and vk(p, q) only with respect to p ≤ q. In other words,
Lexico Duplex MDP is concerned with duplex packing op-
erations such that the total weight of the second package
is no less than that of the first package. This implies that
the amount of space used for maintaining the variables in
Lexico Duplex DP can be reduced by about half in the actual
implementation.

V. CONCLUDING REMARKS

In this paper, we discussed a duplex food packing problem
LEXICO DUPLEX, which is a lexicographic bi-criteria com-
binatorial optimization problem. The primary objective is to
minimize the total weight of chosen items for two packages,
making the total weight of each package no less than a
specified target weight. The second objective is to maximize
the total priority of chosen items for two packages. We
proposed two pseudo-polynomial time dynamic programming



algorithms, basic version Lexico Duplex DP and a modified
version Lexico Duplex MDP, to the lexicographic bi-criteria
duplex food packing problem, in which all input data are
assumed to be integral.

The following directions for future research are open. It
would be significant to compare the execution time of the
modified version Lexico Duplex MDP with that of the basic
version Lexico Duplex DP by conducting numerical experi-
ments. It would be interesting to compare the execution time
of Lexico Duplex MDP with that of a dynamic programming
algorithm for problem LEXICO SINGULAR to be required
for producing the same number of packages. It would also
be interesting to compare the amount of surplus yielded
by solving the duplex food packing problem (i.e., solving
LEXICO DUPLEX) with that by solving the quasi-duplex
food packing problem (i.e., solving LEXICO SINGULAR for
a given set I of items to produce a single package, and then
solving LEXICO SINGULAR once more for the remaining
items to produce another package).
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