Modeling of Rebound Phenomenon of a Rigid Ball
with Friction and Elastic Effects
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Abstract—We derive analytical models of the rebound phe- The rebound phenomenon between a ball and a surface
nomenon between a ping-pong ball and the table/racket rubber. has been studied by many researchers. Garwin [1] proposed
In the rebound model of the table, the determination of the type the coefficient of restitution (COR) in the directigrarallel

of the contact during the impact is derived as a generalized . . .
condition in the 3-dimensional space. In the model between the to the surface. He determined from experimental data which

ball and racket rubber, it is assumed that the kinetic energy the contact is the rolling, sliding or both together during the
of the tangent velocity is stored as the potential energy due impact and whether the kinetic energy is storedebsstic

to the elastic_ity of the_rubber. This_asgumption I_eads to that one or not. Brody [2] considered the effect fifction of
the impulse in the horizontal direction is proportional to the — ne gyyrface with the assumption of no compression of the
tangent velocity. The models are verified by experimental data. ball. He derived the condition of the rolling contact which
is related to the translational and rotational velocities just
I. INTRODUCTION before the rebound. Shibukawa [3] derived the condition
It is a challenging task for a robot to play table tennigVhich determines whether the rolling contact happens or not
with a human because playing table tennis is a dexterous t&&ing the impact. As specified situations of the rebound,
for humans. For simplicity, consider the situation of Fig. 1C70Ss [4] considered the effect of friction between the
where a robot tries to hit a flying ball. The dexterous cafall and strings of a racket in tennis. He also considered
be implied by the strategy of the robot playing table tennis‘?th_er S|tuat|on§, e.g., the ho.rlzontal COR between balls of
which can be decomposed as the following subtasks: 1) #fious properties and a solid surface [5]. Furthermore, he
detect the states of the flying ball with vision sensors; vestigated the bounce of a spinning ball being |n_C|de_nt near
To predict the ball trajectory; 3) To determine the trajector}?‘:_‘e_ normal to the surface as an example of situations of
of the racket attached to the robot for hitting the ball td!itting a ball by a racket [6]. For the normal COR, Cross [7]
achieve desired trajectory. The number 1) means the imags/estlgated the relation between the normal COR and the
processing algorithm to obtain the position, the translation&§ynamics hysteresis of the impact force. _
and rotational velocities of the ball. The number 2) means From the reviewed studies, the friction and elastic effects

the prediction of the position and translational/rotationa®® Very important facts in the rebound phenomenon. It is
velocities of the ball for the next task of the determinationl’€ré assumed that a table tennis ball does not deform when
The number 3) means the determination of the trajectories BiPounding. The friction effect is dominative in the case of
the position and orientation of the racket attached to the rob§té rebound on the table and determines the type of the
for the ball to follow desired trajectory. In the subtasks 2) angontact (sliding/rolling) during the impact, while the elastic
3), the ballreboundsfrom the table and the racket rubber.€ffect is QOmlngtlve in the case of the rebound on the racket.
It is therefore necessary to model the rebound phenomenf§ Mentioned in the above reviews, these effects are not

between the ball and the table/rubber in order to achieve t§@nsidered analytically in the rebound. The friction effect
subtasks 2) and 3). was considered in only the 2-dimensional case in [3] and

the elastic effect was considered only experimentally in the
some previous mentioned studies.

We derive analytical models of the rebound phenomenon
between a ping-pong ball and the table/racket rubber. In the
rebound model of the table, the determination of the type
of the contact during the impact is derived as a generalized
condition in the 3-dimensional space. In the model between
the ball and racket rubber, it is assumed that the kinetic
energy of the tangent velocity is stored as the potential
energy due to the elasticity of the rubber. This assumption
leads to that the impulse in the horizontal direction is
proportional to the tangent velocity. The models are verified
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Fig. 1. A robot tries to hit a flying ball.
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Fig. 4. Image data and calculation of the rotational velocity.
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Fig. 2. Experimental system. mediators of the lines betwee,; and&; (i = 1,--- ,4),
&5 = & as shown in Fig. 3 (d). Defing. as the center
of the ball. The centek. is obtained by the least squares
ball states. The table is an international standard one witjethod with the performance function, which is the sum of
the size of 1525(W760(H)x2740(D) [mm]. The ball is the squares of the distances ®ffrom the mediators. The
shot out from the automatical ball catapult ROBO-PONG.enter of the balpy, is calculated by, in the left and right
2040 (SAN-EI Co.) which is set at the end of the tablejmages [8]. The translational velocities of the ball by the

The flying ball is measured by the high-speed vision sensog§ean of all the velocities between thé + 1)th and ith
with 900 [fps] (Hamamatsu Photonics K.K.). The array anghosition as

pixel sizes per meter are 28232 anda,,, o, = 2.0 x 107> Noo . _

[pixel/m]. The sampled data are quantized as 2D image data vy = M o] = M 1)

with the monochrome brightness of 8bit (0-255). The focal N-1 7~ At ’

length of the lens isf = 35 [mm] and the chip size is where At = 1/900 [s] is the sampling time andV is the

13.0 x 14.3 [mm]. X is the reference frame. The racket isnumber of the frames. Note thit denotes theth frame.

a standard one (Butterfly K.K.) which is fixed with respect Next, consider the detection of the rotational velocity of

to X5 and is mounted such that its contact surface is normgde ball. Figure 4 (a) shows the feature points which are

to thez-axis. The cameras are calibrated with respe¢if0  marked on the ball as the black prints. This image can
The translational and rotational velocities are calculatede obtained by the appropriate gray scale transformation,

as the constant by assuming that there is no effect of thgarpening and binarization. Figure 4 (b) shows the ball in

air resistance. Figure 3 shows an example of the imaghe ith frame, wherew € R? is the rotation axispy, =

processing. The figure (a) is the image data where the thqw,ej —py andp;; € R® is the feature point on the ball

are the racket and the ball with the black feature points. Thg = 1,--., N;). For the jthe feature point, the following

figure (b) is the binarized one with an appropriate thresholdotational relationship holds [9]:

The white circle represents the ball. In the figure (c), the ) SAL . DA R

green closed line is the boundary of the ball. The four yellow poi, i + 1] = e*py [i], 7" = I3 + DAL, (2)

points on the boundary of the ball are detected by the simplghere & ¢ R®*® is the skew-symmetric matrix which

scannings as in the figures (c-1)-(c-4). In the scanning @brresponds to the cross productwf Note that the terms

(c-1), the arrows are scanned in turn from the left and t0gf the higher order with respect tat are approximated to

specified threshold. The scanning of (c-2)—(c-4) are similgfst eq. of (2) leads to

to the scanning of (c-1). The positions of the detected data are . ‘ R _
recorded ag; := (u;,v;) € R? (i = 1,--- ,4). Consider the pol; [i + 1] = pu, [i] + Atopy, 1],

whereWpy,, [i] is calculated as

wpyy, [i] = w x py, [i] = —puy, [i] X w = —py, [i] X w.
Then, we get
~ poyy i+ 1] — puy 1]
B At

[1l. M ODELING OF REBOUND

A. Rebound between the ball and table

Figure 5 shows the rebound of the ball from the table,
where (v, wp,) and (v, w;) are the translational and rota-
tional velocities of the ball just before and after the rebound
(©3) (c-4) and X g is the reference frame with the-axis normal to

the table. The simplest model of the rebound phenomenon
Fig. 3. Image data and detection of the center of the ball. is described by the equations oﬁz = —eUhs, U;n« = Upg

Feature
point

)

Dy, [i|lw = —vp, [i], vpy, [1] :




, Yy Assumption 3: The following simple bounce relationship
) in the z direction holds:

L= —€Uhs %)

Vs
. /[ $ \/ / Assumption 4: The impulse in thex and y directions

P,, =[P, P, 0]T € R® is given by

v

VbT
[vpr |

wherey is the dynamical coefficient of friction between the
and v}, = vy, Wheree, is the coefficient of restitution of ball and table.
the table in the: direction. In this model, it is assumed that Assumption 5: The contact velocitiesy, and v just
there is no friction on the table. Therefore, the componenigefore and after the rebound are in the same direction. That
z and y of the velocityv, do not change. However, sinceis, the following relation holds:
there actuallyexists the friction the velocity v; just after ,
the rebound changes due to the friction and the rotational Vyp = vopr, v 2 0. @)
velocity wy, as shown in Fig. 6. The red and blue circles]f y#0, A= | P,
represent the cases of the top and back spins respectively ang\ ’ :
the ball velocities just before the rebound are the same. It }%d
easily confirmed that the velocity, in the case of the back

spin is greater than in the case of the top spin. In additio%,ne in the~ direction as shown in Fig. 7 (a), where the

) L -
the rotational velocityw; also changes due to the f”Ct'on'friction force in thez andy directions is proportional td.

In order to predict the ball trajectory after the rebound from . T . . .
L ) . with p and its direction is the opposite . Ain (6) is
the table, it is necessary to consider the friction. K PP o (©)

For i . he off t the friction in th b dthe magnitude ofP,, and is equal to or smaller than P, |
(;)rl "_“_egra“”g the eflect of t % riction |r} the rebounGyecause the contact can be changed from sliding to rolling
model, it is very important to consider thgpe of the contact during the impact as shown in Fig. 7 (b). Note that the static

during the impact, i.e., the sliding and rolling contact. Thig;+isn force does not work on the ball when the contact
can be determined by using the tangent velocity given by i ojjing Assumption 5 means that the tangent velocity

Ve — TWhy vy after the rebound does not become negative because
Vy1 = [Ubs Uy O]T fwxr= vy trwoe|, (@) the rolling starts just aftgv{,T.:_ 0. Thg cond|t|.on ofv £ 0
0 means that the contact is sliding during the impact.
From Assumptions 1, 2, the following equations hold:

Py =—-A , 0 A< plP, (6)

Fig. 5. Ball velocities just before and after the rebound.

ssumptions 4 and 5 are necessary to express the sliding
rolling contacts during the impact. Assumption 4 means
that the impulse in the: and y directions is related to the

wherer := [0 0 — 7|7 € R? is the contact point of the ,
ball from its center and- € R, is the ball radius. For the mv, —mv, = P (8)
modeling, we make the following assumptions: ITwy, — Iw, =7 x P, 9)

Assumption 1: During the impact of the rebound, the
type of the contact between the ball and table is a point
contact. This means that any moment does not effect on the [Retwnd) I Reng)
ball during the impact. / W g N
Assumption 2: The differences between the translational o, ’
and angular momentums before and after the rebound equal [>
the impulses at the rebound. Therefore, the impulse of the v ,
rotation is given byr x P, where P € R? is the impulse in Q‘f f’, v, L Vot
the translational direction. !

/)

(a) Case where the contact is sliding during the impact
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_ (b) Case where the contact is changed from sliding to rolling during the impact

Fig. 6. Deference ob; whencwy, is the top or back spin. Fig. 7. Sliding and rolling during the impact.
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wherem andI = %m7'2 are the mass and moment of inertia.
Combining (5) and (8) yields the relation in thedirection:

P, = —m(1+ et)vps. (20)

For deriving the relation in the andy directions, the tangent
velocity v; after the rebound is calculated by the definition
of (4) with (8), (9) and Assumption 4:

1 7‘2 UpT —25 Z , ,
! — _)\ — o . 11 t=25 =30 =35 t=4.0
Upp m + T ) Towrl] + vpr (11)

. . Fig. 8. Rebound of the ball from the racket rubber.
The tangent velocity after the rebound,,., has to satisfy

(7) of Assumption 5. Substituting (11) into (7) yields
A ( 1 2> B. Rebound between the ball and racket rubber
+ 1.

T
m + T (12) Figure 8 shows an example of the rebound of the ball

from the racket rubber. The green circles represent the same
point on the ball. It is confirmed that the rotational velocity
Hbout the axis normal to the image plane changes to the
inverse direction after the rebound. This implies that the
contact velocities between the ball and the rubber before and
after the rebound are opposite to each other. This can not be
expressed by considering only the friction and is the specific
phenomenon in the case of the rubber due to the storage of
R its elastic energy. In order to achieve desired ball trajector
th.at_ (i) if Vs > 0, v =wv, and A = p|P| (the case of the after the rebou% from the racket, it is necessary to ci)nsidgr
sliding); (i) if v, <0, v = 0 (the case of the rolling). this phenomenon.

Let us consider th_e sliding case of (i). Substituting (6)_ with Figure 9 (a) shows the rebound of the ball from the racket
A= “'le. and (10) into (8) and (9), we get the tr/anslatlonambber, where the meanings of the variables are the same as
and r.otat|onal velocities after the reboung,andw,, as the in Section 3.1 with respect to the racket fraiig attached
functions of those before the rebound: to the racket as the-axis normal to the surface. In order

v = A,v, + Byw, (14) to express the effect of the elasticity parallel to the surface,
we model the tangent motion of the racket rubber as the

o]

It is sufficient to check whether of (12) is positive or not
when the contact during the impact is supposed to be slidin
that is, A = p|P.|. Combining\ = x|P.|, (10),I = Zmr?
and (12) leads to

‘sz|
|vpr”

which is defined a® in the case of the sliding. It follows

ve:i=1-— gu(l + et) (13)

/
wp = Awvp + Buws, (15) " motion of the virtual massn, with the springk, and the
where distances(t) € R® as shown in Fig. 9 (b). Note that,, is
1 — o 0 0 0 ar 0 the equivalent mass consisting of the mass of the ball and
A, = | 0 l—a 0| .By=|-ar 0 0 the deformed area of the rubber. _ _
0 0 e, ’ 0 0 0 For the model, we make the following assumptions:
- - 30 Assumption 6: The rebound in the direction does not
3% —2 0 L= 03a 0 cause any effect in the andy directions.
Au= |5 0 0],By=| 0 =50 Assumption 7: The impulse in thex and y directions
L 0 0 0 0 0 1 P,, € R? is related to the tangent velocity, by
L |7)bz|
a:=pu(l+ep) loorll (16) P, = —k,vyr. (29)

Next consider the rolling case of (ii). From = 0 and

(12), X is given by Racket Racket
2
A= gm||fubT||. a7 » bs
By the similar calculation of the case (i) with (17), we get
the coefficient matrices of (14) and (15) as follows: E> M
- m Vir
350 0 0 Z 0 Vot
Ay=0 2 0 |,Bs=[-% 0 0 ys
10 0 —e 0 0 0
[0 -2 0 200
5r 5 2 (a) Rebound between the ball and the rubber (b) Virtual spring model parallel to the surface
Ay=|2 0 0|,By=[0 2 0 (18)
L 0 0 0 0 0 1 Fig. 9. The rebound between the ball and the rubber.




Assumptions 1-4 are also assumed to hold here. Fro
Assumption 1-3 and 6, the equations of (8), (9) and (1C. =
also hold here. Combining (19), (8), (9) and (10), we ge§ 4
the translational and rotational velocities after the reboun(=

wby v bz
200

100

w

0
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-100

Mode [ Value “[rad/s]
Mode! Value [m/s]

(v},w}), are given by the same functional relationships a £

-200

(14) and (15) with the coefficient matrices as follows: B S 5w o S
Exp. Value [m/s] Exp. Value [rad/s] Exp. Value [m/s]
1 —kpy 0 0 0 r 0
A, = 0 1-— k;pv 0 ’Bv::kpv —-r 0 0 Fig. 11. \Verification of the top and side spins.
0 0 —e, 0 00
0O —r 0 1—kpw’l“2 0 0 Vi Yy Ve,
A, =kp, |7 0 0|,Bg,= 0 1—/4:pr2 0 - 2 4
0 0 0 0 0 1 _ o2 S B -
2 21 23
kp kp £ -3.4 £ E
= = — 2 E R El 3
kpv m7 kpw I ’ ( O) f 3.6 f o f 2 d
. - . g -8 g g
wheree, is the coefficient of restitution of the rubber. = = 2 =
4 35 PR 0 1 2 Y 2 3 4
IV M ODEL VERIFICATION Exp. Value [m/s] Exp. Value [m/s] Exp. Value [m/s]
The parameters of the ball are = 2.7 x 10~?[kg] and @, o, @,
r = 2.0 x 10~2[m]. The coefficient of restitution of the table ) 0
e; can be calculated as 5 2 5 % 10
o I E
ha 2 3 P
€t =1/7> (21) e = 00 S -100
h1 ] ] s
ER E R
where h; and h? are thg first and second height_s of the e W - E—
dropped ball.e; is identified ase; = 0.93 by averaging 25 Bip. Value [rad/s) Bp. Value [rad/s) B, Value [rad/s)

data points. The dynamical friction coefficiemts estimated
as i = 0.25 by measuring the drastic change in the value
of the spring balance instrument at the sliding where the

weighted ball on the table with the weigl2tO[kg] was ) ]
pulled. wyy [rad/s] are only shown. The horizontal and vertical axes

are the experimental values and the calculated values from
A. The case of the rebound on the table the model of the translational and rotational velocities after

The rebound model on the table is verified by the 4 casdg€ rebound. The solid lines represent the cases where these
of (a) Top spin, (b) Back spin, (c) Side-top spin and (dyalues are the same. The general situations are represented
Side-back spin as illustrated in Fig. 10. Figure 11 show®Y Fig. 12, which shows the cases with the multi rotational
the verifications of the cases of the top and back spindxes where the circles and squares represent the side-top
where the circles and squares represent the top and ba¥kd side-back spins. Note that the side spinvis > 0,
spins. Since the experimental data of (a) and (b) is tH&€ top spin iswy, < 0 and the back spin isy, > 0. It

cases of the pure top spinyf, < 0) and pure back spin is confirmed th_at .the almost data in Figs. 11 and 12 are
(why > 0) With vy, wWhe, woz ~ 0, (Vpe,vpe) [M/S] and close to the solid lines. It may be caused by the quantization
errors of the image data that a few data is a little far from
the solid lines. The image coordinatés, v) is related to
the cartesian onegc.,y., z.) asu = - 2= andv = L ¥
where the parameterg, (ov,,a,) are shown in Section 2.
z. = 1.2[m] is in the optic axis and the distance between the
ball and the camera. The bigger errors of the translational and
5 o) Side-top spin rotational velocities are about5[m/s] and 20[rad/s]. The
Gr . corresponding distances (., y.) of the errors in a frame
or are calculated as;, = 0.5 x At andeg, = r x 20 x At.
From the relationshipa = - 2= andv = L%, the errors

[e3% z

P
) &% ) in (u, ) are calculated as, — 0.81 ande®. = 0.64 [pixel].
)@ s ,,g s Sincee}, andey, are smaller than 1 [pixel], the errors of
z 25 (b) Side-back spin 0.5 [m/s] and 20 [rad/s] may be caused by the quantization
errors. Because all the errors in Figs. 11 and 12 are smaller
than these errors, the experimental data shows the validation

Fig. 12. Verification of the side-top and side-back spins.
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Y
Zy (a) Top spin

B (b) Back spin

Fig. 10. Situations of the verification of the table.
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of the rebound model on the table. 50 0 50 100 150 0 50

Exp. Value [rad/s] Exp. Value [rad/s] Exp. Value [rad/s]
B. The case of the rebound on the racket ) o . )
) . Fig. 15. Verification of the side-top spins of, > 0 andwv, < 0.
The rebound model on the racket is verified by the 4 cases

of (a) Top spin, (b) Back spin, (c) Side-top spin,( > 0) TABLE |

and (d) Side-back spinvf, < 0) as illustrated in Fig. 13. VERIFICATION OF THE TANGENT VELOCITY

The parameters in the rebound model are indentified.as ~ [NO- Before the reboungAfter the rebound Calculated by Model
0.81, k, = 1.9 x 1073 [1/kg]. Figures 14 and 15 show the |1 —3.79 2.35 2.21

case of the pure top and back spins and the case of the sidg- —3.87 519 596

top spin ofv,, > 0 and vy, < 0. The red data is used for

the identification of the parameters and the blue data is use?j el 204 220
for the verification. The circles and squares represent the taﬁ —3:92 2.03 2.29
and back spin in Fig. 14 and the side-top spinvgf >0 | ° —3.68 2.02 2.15
and the one ofy, < 0 in Fig. 15. It is confirmed that the [ 6 —3.74 2.37 2.18

red and blue data are close to the solid lines with the errors
due to the quantization errors of the image data.

Table | shows some of the experimental data of thgat the kinetic energy of the tangent velocity was stored

contact velocities before and after the rebound and the ongs ihe potential energy due to the elasticity of the rubber.
after the rebound which are calculated by the model. It ighis assumption led to that the impulse in the horizontal

confirmed that the calculated velocities are in the oppositection is proportional to the tangent velocity. The models
directions of the velocities before the rebound and closgere verified by experimental data.

to the velocities after the rebqu_nd. Therefore, the proposed pg fyture work, it is necessary to reduce the quantization
model can represent the specified effect of the rubber.  gryors and verify the model in additional rebound situations.

Furthermore, we would try to make a method to detect the

) _ ball state in real-time.
We derived analytical models of the rebound phenomenon
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V. CONCLUSIONS
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Fig. 14. \Verification of the top spin and back spin.



