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Abstract— We derive analytical models of the rebound phe-
nomenon between a ping-pong ball and the table/racket rubber.
In the rebound model of the table, the determination of the type
of the contact during the impact is derived as a generalized
condition in the 3-dimensional space. In the model between the
ball and racket rubber, it is assumed that the kinetic energy
of the tangent velocity is stored as the potential energy due
to the elasticity of the rubber. This assumption leads to that
the impulse in the horizontal direction is proportional to the
tangent velocity. The models are verified by experimental data.

I. I NTRODUCTION

It is a challenging task for a robot to play table tennis
with a human because playing table tennis is a dexterous task
for humans. For simplicity, consider the situation of Fig. 1,
where a robot tries to hit a flying ball. The dexterous can
be implied by the strategy of the robot playing table tennis,
which can be decomposed as the following subtasks: 1) To
detect the states of the flying ball with vision sensors; 2)
To predict the ball trajectory; 3) To determine the trajectory
of the racket attached to the robot for hitting the ball to
achieve desired trajectory. The number 1) means the image
processing algorithm to obtain the position, the translational
and rotational velocities of the ball. The number 2) means
the prediction of the position and translational/rotational
velocities of the ball for the next task of the determination.
The number 3) means the determination of the trajectories of
the position and orientation of the racket attached to the robot
for the ball to follow desired trajectory. In the subtasks 2) and
3), the ballreboundsfrom the table and the racket rubber.
It is therefore necessary to model the rebound phenomenon
between the ball and the table/rubber in order to achieve the
subtasks 2) and 3).

Fig. 1. A robot tries to hit a flying ball.
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The rebound phenomenon between a ball and a surface
has been studied by many researchers. Garwin [1] proposed
the coefficient of restitution (COR) in the directionparallel
to the surface. He determined from experimental data which
the contact is the rolling, sliding or both together during the
impact and whether the kinetic energy is stored aselastic
one or not. Brody [2] considered the effect offriction of
the surface with the assumption of no compression of the
ball. He derived the condition of the rolling contact which
is related to the translational and rotational velocities just
before the rebound. Shibukawa [3] derived the condition
which determines whether the rolling contact happens or not
during the impact. As specified situations of the rebound,
Cross [4] considered the effect of friction between the
ball and strings of a racket in tennis. He also considered
other situations, e.g., the horizontal COR between balls of
various properties and a solid surface [5]. Furthermore, he
investigated the bounce of a spinning ball being incident near
the normal to the surface as an example of situations of
hitting a ball by a racket [6]. For the normal COR, Cross [7]
investigated the relation between the normal COR and the
dynamics hysteresis of the impact force.

From the reviewed studies, the friction and elastic effects
are very important facts in the rebound phenomenon. It is
here assumed that a table tennis ball does not deform when
rebounding. The friction effect is dominative in the case of
the rebound on the table and determines the type of the
contact (sliding/rolling) during the impact, while the elastic
effect is dominative in the case of the rebound on the racket.
As mentioned in the above reviews, these effects are not
considered analytically in the rebound. The friction effect
was considered in only the 2-dimensional case in [3] and
the elastic effect was considered only experimentally in the
some previous mentioned studies.

We derive analytical models of the rebound phenomenon
between a ping-pong ball and the table/racket rubber. In the
rebound model of the table, the determination of the type
of the contact during the impact is derived as a generalized
condition in the 3-dimensional space. In the model between
the ball and racket rubber, it is assumed that the kinetic
energy of the tangent velocity is stored as the potential
energy due to the elasticity of the rubber. This assumption
leads to that the impulse in the horizontal direction is
proportional to the tangent velocity. The models are verified
by experimental data.

II. EXPERIMENTAL SYSTEM AND BALL DETECTION

Fig. 2 shows the experimental system for detecting the
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Fig. 2. Experimental system.

ball states. The table is an international standard one with
the size of 1525(W)×760(H)×2740(D) [mm]. The ball is
shot out from the automatical ball catapult ROBO-PONG
2040 (SAN-EI Co.) which is set at the end of the table.
The flying ball is measured by the high-speed vision sensors
with 900 [fps] (Hamamatsu Photonics K.K.). The array and
pixel sizes per meter are 232×232 andαu, αv = 2.0×10−5

[pixel/m]. The sampled data are quantized as 2D image data
with the monochrome brightness of 8bit (0–255). The focal
length of the lens isf = 35 [mm] and the chip size is
13.0 × 14.3 [mm]. ΣB is the reference frame. The racket is
a standard one (Butterfly K.K.) which is fixed with respect
to ΣB and is mounted such that its contact surface is normal
to thex-axis. The cameras are calibrated with respect toΣB .

The translational and rotational velocities are calculated
as the constant by assuming that there is no effect of the
air resistance. Figure 3 shows an example of the image
processing. The figure (a) is the image data where the there
are the racket and the ball with the black feature points. The
figure (b) is the binarized one with an appropriate threshold.
The white circle represents the ball. In the figure (c), the
green closed line is the boundary of the ball. The four yellow
points on the boundary of the ball are detected by the simple
scannings as in the figures (c-1)–(c-4). In the scanning of
(c-1), the arrows are scanned in turn from the left and top
until the brightness of the scanned image is larger than a
specified threshold. The scanning of (c-2)–(c-4) are similar
to the scanning of (c-1). The positions of the detected data are
recorded asξi := (ui, vi) ∈ R2 (i = 1, · · · , 4). Consider the
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Fig. 3. Image data and detection of the center of the ball.
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Fig. 4. Image data and calculation of the rotational velocity.

mediators of the lines betweenξi+1 andξi (i = 1, · · · , 4),
ξ5 := ξ1 as shown in Fig. 3 (d). Defineξc as the center
of the ball. The centerξc is obtained by the least squares
method with the performance function, which is the sum of
the squares of the distances ofξ from the mediators. The
center of the ballpb is calculated byξc in the left and right
images [8]. The translational velocities of the ball by the
mean of all the velocities between the(i + 1)th and ith
position as

vb =
∑N−2

i=0 vb[i]
N − 1

, vb[i] :=
pb[i + 1] − pb[i]

∆t
, (1)

where∆t = 1/900 [s] is the sampling time andN is the
number of the frames. Note that[i] denotes theith frame.

Next, consider the detection of the rotational velocity of
the ball. Figure 4 (a) shows the feature points which are
marked on the ball as the black prints. This image can
be obtained by the appropriate gray scale transformation,
sharpening and binarization. Figure 4 (b) shows the ball in
the ith frame, whereω ∈ R3 is the rotation axis,pblj :=
plj − pb and plj ∈ R3 is the feature point on the ball
(j = 1, · · · , Nl). For thejthe feature point, the following
rotational relationship holds [9]:

pblj [i + 1] = ebω∆tpblj [i], ebω∆t ≈ I3 + ω̂∆t, (2)

where ω̂ ∈ R3×3 is the skew-symmetric matrix which
corresponds to the cross product ofω. Note that the terms
of the higher order with respect to∆t are approximated to
0 because of the small∆t. Substituting the 2nd eq. into the
1st eq. of (2) leads to

pblj [i + 1] = pblj [i] + ∆tω̂pblj [i],

whereω̂pblj [i] is calculated as

ω̂pblj [i] = ω × pblj [i] = −pblj [i] × ω = −p̂blj [i] × ω.

Then, we get

p̂blj [i]ω = −vblj [i], vblj [i] :=
pblj [i + 1] − pblj [i]

∆t
. (3)

III. M ODELING OF REBOUND

A. Rebound between the ball and table

Figure 5 shows the rebound of the ball from the table,
where (vb,ωb) and (v′

b, ω
′
b) are the translational and rota-

tional velocities of the ball just before and after the rebound
and ΣB is the reference frame with thez-axis normal to
the table. The simplest model of the rebound phenomenon
is described by the equations ofv′

bz = −etvbz, v′
bx = vbx
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Fig. 5. Ball velocities just before and after the rebound.

and v′by = vby, whereet is the coefficient of restitution of
the table in thez direction. In this model, it is assumed that
there is no friction on the table. Therefore, the components
x and y of the velocityvb do not change. However, since
there actuallyexists the friction, the velocityv′

b just after
the rebound changes due to the friction and the rotational
velocity ωb as shown in Fig. 6. The red and blue circles
represent the cases of the top and back spins respectively and
the ball velocities just before the rebound are the same. It is
easily confirmed that the velocityv′

bz in the case of the back
spin is greater than in the case of the top spin. In addition,
the rotational velocityω′

b also changes due to the friction.
In order to predict the ball trajectory after the rebound from
the table, it is necessary to consider the friction.

For integrating the effect of the friction in the rebound
model, it is very important to consider thetype of the contact
during the impact, i.e., the sliding and rolling contact. This
can be determined by using the tangent velocity given by

vbT := [vbx vby 0]T + ω × r =

vbx − rωby

vby + rωbx

0

 , (4)

where r := [0 0 − r]T ∈ R3 is the contact point of the
ball from its center andr ∈ R+ is the ball radius. For the
modeling, we make the following assumptions:

Assumption 1: During the impact of the rebound, the
type of the contact between the ball and table is a point
contact. This means that any moment does not effect on the
ball during the impact.

Assumption 2: The differences between the translational
and angular momentums before and after the rebound equal
the impulses at the rebound. Therefore, the impulse of the
rotation is given byr×P , whereP ∈ R3 is the impulse in
the translational direction.

Fig. 6. Deference ofv′
b when!b is the top or back spin.

Assumption 3: The following simple bounce relationship
in the z direction holds:

v′bz = −etvbz (5)

Assumption 4: The impulse in thex and y directions
Pxy := [Px Py 0]T ∈ R3 is given by

Pxy = −λ
vbT

‖vbT ‖
, 0 ≤ λ ≤ µ|Pz|, (6)

whereµ is the dynamical coefficient of friction between the
ball and table.

Assumption 5: The contact velocitiesvb and v′
b just

before and after the rebound are in the same direction. That
is, the following relation holds:

v′
bT = νvbT , ν ≥ 0. (7)

If ν 6= 0, λ = µ|Pz|.
Assumptions 4 and 5 are necessary to express the sliding

and rolling contacts during the impact. Assumption 4 means
that the impulse in thex and y directions is related to the
one in thez direction as shown in Fig. 7 (a), where the
friction force in thex andy directions is proportional tofz

with µ and its direction is the opposite ofvbT . λ in (6) is
the magnitude ofPxy and is equal to or smaller thanµ|Pz|
because the contact can be changed from sliding to rolling
during the impact as shown in Fig. 7 (b). Note that the static
friction force does not work on the ball when the contact
is rolling. Assumption 5 means that the tangent velocity
v′

bT after the rebound does not become negative because
the rolling starts just afterv′

bT = 0. The condition ofν 6= 0
means that the contact is sliding during the impact.

From Assumptions 1, 2, the following equations hold:

mv′
b − mvb = P (8)

Iω′
b − Iωb = r × P , (9)
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wherem andI = 2
3mr2 are the mass and moment of inertia.

Combining (5) and (8) yields the relation in thez direction:

Pz = −m(1 + et)vbz. (10)

For deriving the relation in thex andy directions, the tangent
velocity v′

b after the rebound is calculated by the definition
of (4) with (8), (9) and Assumption 4:

v′
bT = −λ

(
1
m

+
r2

I

)
vbT

‖vbT ‖
+ vbT . (11)

The tangent velocity after the rebound,v′
bT , has to satisfy

(7) of Assumption 5. Substituting (11) into (7) yields

ν = − λ

‖vbT ‖

(
1
m

+
r2

I

)
+ 1. (12)

It is sufficient to check whetherν of (12) is positive or not
when the contact during the impact is supposed to be sliding,
that is,λ = µ|Pz|. Combiningλ = µ|Pz|, (10), I = 2

3mr2

and (12) leads to

νs := 1 − 5
2
µ(1 + et)

|vbz|
‖vbT ‖

, (13)

which is defined asν in the case of the sliding. It follows
that (i) if νs > 0, ν = νs and λ = µ|Pz| (the case of the
sliding); (ii) if νs ≤ 0, ν = 0 (the case of the rolling).

Let us consider the sliding case of (i). Substituting (6) with
λ = µ|Pz| and (10) into (8) and (9), we get the translational
and rotational velocities after the rebound,v′

b andω′
b, as the

functions of those before the rebound:

v′
b = Avvb + Bvωb (14)

ω′
b = Aωvb + Bωωb, (15)

where

Av :=

1 − α 0 0
0 1 − α 0
0 0 −et

 ,Bv:=

 0 αr 0
−αr 0 0

0 0 0


Aω :=

 0 − 3α
2r 0

3α
2r 0 0
0 0 0

 , Bω:=

1 − 3α
2 0 0

0 1 − 3α
2 0

0 0 1


α := µ(1 + et)

|vbz|
‖vbT ‖

. (16)

Next consider the rolling case of (ii). Fromν = 0 and
(12), λ is given by

λ =
2
5
m‖vbT ‖. (17)

By the similar calculation of the case (i) with (17), we get
the coefficient matrices of (14) and (15) as follows:

Av:=

 3
5 0 0
0 3

5 0
0 0 −et

 , Bv:=

 0 2r
5 0

− 2r
5 0 0

0 0 0


Aω:=

 0 − 3
5r 0

3
5r 0 0
0 0 0

 , Bω:=

2
5 0 0
0 2

5 0
0 0 1

 . (18)

t = 0.5t = 1.0t = 1.5t = 2.0

t = 4.0t = 3.5t = 3.0t = 2.5

R
e
b
o
u
n
d

Fig. 8. Rebound of the ball from the racket rubber.

B. Rebound between the ball and racket rubber

Figure 8 shows an example of the rebound of the ball
from the racket rubber. The green circles represent the same
point on the ball. It is confirmed that the rotational velocity
about the axis normal to the image plane changes to the
inverse direction after the rebound. This implies that the
contact velocities between the ball and the rubber before and
after the rebound are opposite to each other. This can not be
expressed by considering only the friction and is the specific
phenomenon in the case of the rubber due to the storage of
its elastic energy. In order to achieve desired ball trajectory
after the rebound from the racket, it is necessary to consider
this phenomenon.

Figure 9 (a) shows the rebound of the ball from the racket
rubber, where the meanings of the variables are the same as
in Section 3.1 with respect to the racket frameΣR attached
to the racket as thez-axis normal to the surface. In order
to express the effect of the elasticity parallel to the surface,
we model the tangent motion of the racket rubber as the
motion of the virtual massmα with the springks and the
distances(t) ∈ R3 as shown in Fig. 9 (b). Note thatmα is
the equivalent mass consisting of the mass of the ball and
the deformed area of the rubber.

For the model, we make the following assumptions:
Assumption 6: The rebound in thez direction does not

cause any effect in thex andy directions.
Assumption 7: The impulse in thex and y directions

Pxy ∈ R3 is related to the tangent velocityvbT by

Pxy = −kpvbT . (19)
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Assumptions 1–4 are also assumed to hold here. From
Assumption 1–3 and 6, the equations of (8), (9) and (10)
also hold here. Combining (19), (8), (9) and (10), we get
the translational and rotational velocities after the rebound,
(v′

b, ω
′
b), are given by the same functional relationships as

(14) and (15) with the coefficient matrices as follows:

Av:=

1 − kpv 0 0
0 1 − kpv 0
0 0 −er

, Bv:=kpv

 0 r 0
−r 0 0
0 0 0


Aω:=kpω

0 −r 0
r 0 0
0 0 0

, Bω:=

1−kpωr2 0 0
0 1−kpωr2 0
0 0 1


kpv:=

kp

m
, kpω :=

kp

I
, (20)

whereer is the coefficient of restitution of the rubber.

IV. M ODEL VERIFICATION

The parameters of the ball arem = 2.7 × 10−3[kg] and
r = 2.0×10−2[m]. The coefficient of restitution of the table
et can be calculated as

et =
√

h2

h1
, (21)

where h1 and h2 are the first and second heights of the
dropped ball.et is identified aset = 0.93 by averaging 25
data points. The dynamical friction coefficientµ is estimated
as µ = 0.25 by measuring the drastic change in the value
of the spring balance instrument at the sliding where the
weighted ball on the table with the weight2.0[kg] was
pulled.

A. The case of the rebound on the table

The rebound model on the table is verified by the 4 cases
of (a) Top spin, (b) Back spin, (c) Side-top spin and (d)
Side-back spin as illustrated in Fig. 10. Figure 11 shows
the verifications of the cases of the top and back spins,
where the circles and squares represent the top and back
spins. Since the experimental data of (a) and (b) is the
cases of the pure top spin (ωby < 0) and pure back spin
(ωby > 0) with vby, ωbx, ωbz ' 0, (vbx, vbz) [m/s] and
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Fig. 10. Situations of the verification of the table.
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Fig. 12. Verification of the side-top and side-back spins.

ωby [rad/s] are only shown. The horizontal and vertical axes
are the experimental values and the calculated values from
the model of the translational and rotational velocities after
the rebound. The solid lines represent the cases where these
values are the same. The general situations are represented
by Fig. 12, which shows the cases with the multi rotational
axes where the circles and squares represent the side-top
and side-back spins. Note that the side spin isωbz > 0,
the top spin isωby < 0 and the back spin isωby > 0. It
is confirmed that the almost data in Figs. 11 and 12 are
close to the solid lines. It may be caused by the quantization
errors of the image data that a few data is a little far from
the solid lines. The image coordinates(u, v) is related to
the cartesian ones(xc, yc, zc) asu = f

αu

xc

zc
and v = f

αv

yc

zc
,

where the parametersf , (αu, αv) are shown in Section 2.
zc = 1.2[m] is in the optic axis and the distance between the
ball and the camera. The bigger errors of the translational and
rotational velocities are about0.5[m/s] and 20[rad/s]. The
corresponding distances in(xc, yc) of the errors in a frame
are calculated asev

xy = 0.5 × ∆t and eω
xy = r × 20 × ∆t.

From the relationshipsu = f
αu

xc

zc
andv = f

αv

yc

zc
, the errors

in (u, v) are calculated asev
uv = 0.81 andeω

uv = 0.64 [pixel].
Sinceev

uv and eω
uv are smaller than 1 [pixel], the errors of

0.5 [m/s] and 20 [rad/s] may be caused by the quantization
errors. Because all the errors in Figs. 11 and 12 are smaller
than these errors, the experimental data shows the validation
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of the rebound model on the table.

B. The case of the rebound on the racket

The rebound model on the racket is verified by the 4 cases
of (a) Top spin, (b) Back spin, (c) Side-top spin (vby > 0)
and (d) Side-back spin (vby < 0) as illustrated in Fig. 13.
The parameters in the rebound model are indentified aser =
0.81, kp = 1.9 × 10−3 [1/kg]. Figures 14 and 15 show the
case of the pure top and back spins and the case of the side-
top spin ofvby > 0 and vby < 0. The red data is used for
the identification of the parameters and the blue data is used
for the verification. The circles and squares represent the top
and back spin in Fig. 14 and the side-top spin ofvby > 0
and the one ofvby < 0 in Fig. 15. It is confirmed that the
red and blue data are close to the solid lines with the errors
due to the quantization errors of the image data.

Table I shows some of the experimental data of the
contact velocities before and after the rebound and the ones
after the rebound which are calculated by the model. It is
confirmed that the calculated velocities are in the opposite
directions of the velocities before the rebound and close
to the velocities after the rebound. Therefore, the proposed
model can represent the specified effect of the rubber.

V. CONCLUSIONS

We derived analytical models of the rebound phenomenon
between a ping-pong ball and the table/racket rubber. In
the rebound model of the table, the determination of the
type of the contact during the impact was derived as a
generalized condition in the 3-dimensional space. In the
model between the ball and racket rubber, it was assumed
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Fig. 14. Verification of the top spin and back spin.

-2 -1 0
-2

-1.5

-1

-0.5

0

Exp. Value [m/s]

M
o
d
e
l
 
V
a
l
u
e
 
[
m
/
s
]

v
bx

′

-50 0 50

-40

-20

0

20

40

60

Exp. Value [rad/s]

M
o
d
e
l
 
V
a
l
u
e
 
[
r
a
d
/
s
]

ω
bx

′

1 2 3 4
1

2

3

4

Exp. Value [m/s]

M
o
d
e
l
 
V
a
l
u
e
 
[
m
/
s
]

v
by

′

100 150
100

120

140

160

180

Exp. Value [rad/s]

M
o
d
e
l
 
V
a
l
u
e
 
[
r
a
d
/
s
]

ω
by

′

2 2.5 3
2

2.2

2.4

2.6

2.8

3

Exp. Value [m/s]

M
o
d
e
l
 
V
a
l
u
e
 
[
m
/
s
]

v
bz

′

0 50
0

20

40

60

80

Exp. Value [rad/s]

M
o
d
e
l
 
V
a
l
u
e
 
[
r
a
d
/
s
]

ω
bz

′

Fig. 15. Verification of the side-top spins ofvby > 0 andvby < 0.

TABLE I

VERIFICATION OF THE TANGENT VELOCITY

No. Before the reboundAfter the reboundCalculated by Model

1 −3.79 2.35 2.21

2 −3.87 2.12 2.26

3 −3.77 2.04 2.20

4 −3.92 2.03 2.29

5 −3.68 2.02 2.15

6 −3.74 2.37 2.18

that the kinetic energy of the tangent velocity was stored
as the potential energy due to the elasticity of the rubber.
This assumption led to that the impulse in the horizontal
direction is proportional to the tangent velocity. The models
were verified by experimental data.

As future work, it is necessary to reduce the quantization
errors and verify the model in additional rebound situations.
Furthermore, we would try to make a method to detect the
ball state in real-time.
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