
Discovery of Cross-Similarity in Data Streams
Machiko Toyoda †, Yasushi Sakurai ‡

†NTT Information Sharing Platform laboratories
†Graduate School of Information Science, Nagoya University

†toyoda.machiko@lab.ntt.co.jp
‡NTT Communication Science laboratories

‡yasushi.sakurai@acm.org

Abstract— In this paper, we focus on the problem of finding
partial similarity between data streams. Our solution relies on
dynamic time warping (DTW) as a similarity measure, which
computes the distance between sequences whose lengths and/or
sampling rates are different. Instead of straightforwardly using
DTW that requires a high computation cost, we propose a stream-
ing method that efficiently detects partial similarity between
sequences. Our experiments demonstrate that our method detects
pairs of optimal subsequences correctly and that it significantly
reduces resources in terms of time and space.

I. INTRODUCTION

The challenge of processing and analyzing data streams
is now a major topic in several communities (e.g., financial
data analysis [1], sensor network monitoring [2], moving
object search [3], web click-stream analysis [4], and net-
work traffic analysis [5]). Many applications require detecting
hidden patterns that may exist in co-evolving data streams
and subsequence matching is one of important technique.
We assume two similarities for subsequence matching over
data streams. One is the similarity between a query sequence
and data stream and the other is the similarity between data
streams. Existing techniques on online subsequence matching
mainly focus on the former [6][7]. In contrast, we address
the partial similarity between data streams for frequent pat-
tern discovery, rule mining, and outlier detection. Unlike the
traditional settings in which the length of query is fixed, the
problem is more challenging since the starting position and the
length of the subsequence changes dynamically. Additionally,
since the sampling rates of streams are frequently different
and their time period varies in practical situation, a similarity
measure for subsequence matching should be robust against
misalignments between the sequences. We use the dynamic
time warping (DTW) distance to solve the problem. DTW
is a robust and widely used measure, and is suitable for
subsequence matching since it provides time scaling (such as
stretching or shrinking a portion of a sequence along the time
axis).

In this paper, we present an efficient method to auto-
matically detect all similar subsequence pairs between data
streams. Our method works continuously in a streaming fash-
ion and is based on DTW. Our experiments demonstrate that
our method correctly detects the optimal subsequence pairs
and improves the performance and the memory space as we
expected.

II. PROBLEM DEFINITION

A. Background – Dynamic Time Warping

Intuitively, a DTW distance of two sequences is the sum of
tick-to-tick distances after two sequences have been optimally
warped to match each other. The alignment between sequences
is called for the warping path and is represented as a set
of cells give the DTW distance. Let us formally consider
two sequences: X = (x1, x2, ..., xn) of length n and Y =
(y1, y2, ..., ym) of length m. Their DTW distance D(X, Y) is
defined as:

D(X, Y) = d(n, m)

d(i, j) = ||xi − yj || + min

⎧⎪⎨
⎪⎩

d(i, j − 1)
d(i − 1, j)
d(i − 1, j − 1)

d(0, 0) = 0, d(i, 0) = d(0, j) = ∞
(i = 1, ..., n; j = 1, ..., m),

(1)

where ||xi − yj || = (xi − yj)2 is the distance between two
numerical values. Notice that any other choice would be fine;
our algorithms are completely independent of such choices.
Specifically, DTW requires O(mn) time since the time warp-
ing matrix consists of mn elements. Note that the space
complexity is O(m) per time-tick since the algorithm needs
only two columns (i.e., the current and previous columns) of
the time warping matrix to compute the DTW distance.

B. Cross-similarity

A data stream X is a discrete, semi-infinite sequence of
numbers x1, x2, . . ., xn, . . ., where xn is the most recent
value. Note that n increases with every new time-tick. Let
X [is : ie] be the subsequence of X starting from time-tick
is and ending at ie, and let Y [js : je] be the subsequence
of Y starting from time-tick js and ending at je. The lengths
of X [is : ie] and Y [js : je] are lx = ie − is + 1 and ly =
je − js + 1, respectively. Our goal is to find partial similarity
between multiple sequences, based on DTW, in data stream
processing. More concretely, we want to detect subsequence
pairs that satisfy

D(X [is : ie], Y [js : je]) ≤ εL(lx, ly), (2)

where D(X [is : ie], Y [js : je]) is the DTW distance be-
tween X [is : ie] and Y [js : je], and L is a function that

provides the length of the subsequence pair. In this paper,
we use L(lx, ly) = (lx + ly)/2, the average length of the
two subsequences, but we can use any other choice (e.g.,
L(lx, ly) = max(lx, ly) or L(lx, ly) = min(lx, ly)). The
DTW distance increases as the subsequence length grows since
it is the sum of distances between elements. Therefore, the
distance threshold should be proportional to the subsequence
length, thus we set it to εL(lx, ly).

We formally define the ‘cross-similarity’ between X and Y .

Definition 1 (Cross-similarity): Given two sequences X
and Y , a distance threshold ε, and a threshold of subsequence
length lmin, cross-similarity of the subsequences X [is : ie]
and Y [js : je] satisfies:

D(X [is : ie], Y [js : je]) ≤ ε(L(lx, ly) − lmin). (3)

The minimum length lmin of subsequence matches should be
given by users. To satisfy cross-similarity, the length L of
the subsequence pair should be greater than lmin since the
DTW distance gives the value greater than zero. That is, cross-
similarity includes the concept of subsequence length and we
detect subsequence pairs whose lengths are longer than lmin.
Without this concept, the algorithm might detect shorter and
meaningless matching pairs. We discard them and detect the
optimal pairs that satisfy ‘real’ user requirements.

Additionally, we should mention the following point: when-
ever subsequences of X and Y (X [is : ie] and Y [js : je])
match, there will be several other matches by subsequences,
which heavily overlap with the ‘local minimum’ best match.
An overlap means that the warping paths of subsequence pairs
cross and corresponds to the following case. The warping
paths, which have the common starting position, separate on
the way. These matches would be doubly detrimental: (a) they
could potentially confuse the user with redundant information
and (b) they would slow down the algorithm to keep track of
and report all the useless ‘solutions’. We detect the local best
subsequence pairs among a set of overlapping subsequence
pairs. Thus, the main issue we want to accomplish is to find
the best match of cross-similarity.

Problem 1: Given two sequences X and Y , thresholds ε
and lmin, we want to find subsequence pairs, X [is : ie] and
Y [js : je], satisfying the following conditions:

1) X [is : ie] and Y [js : je] have the property of cross-
similarity.

2) D(X [is : ie], Y [js : je])−ε(L(lx, ly)−lmin) is the min-
imum value in each group of overlapping subsequence
pairs that satisfy the first condition.

Our previous algorithm [8] to find pairs of similar subse-
quences over data streams uses an original similarity measure
and outputs all overlapping subsequences. Our upcoming
algorithm gets rid of them and provides the best results.

We use a ‘qualifying’ subsequence pair hereafter, to specif-
ically denote the subsequence pair that satisfies the first con-
dition, and use an ‘optimal’ subsequence pair to specifically
denote the subsequence pair that satisfies both of conditions.

III. DISCOVERY OF CROSS-SIMILARITY

A. Naive solution

For this problem, the most straightforward solution would
be to consider all possible subsequences of X [is : ie] (1 ≤
is < ie ≤ n) and all possible subsequences of Y [js :
je] (1 ≤ js < je ≤ m) and apply the standard DTW dynamic
programming algorithm. We refer to this method as Naive.

Let di,j(p, q) be the distance of the element (p, q) in the
time warping matrix that starts from i on the x-axis and j on
the y-axis. The distance of the subsequence matching between
X and Y can be obtained as follows.

D(X [is : ie], Y [js : je]) = dis,js(lx, ly)
di,j(p, q) = ||xi+p−1 − yj+q−1|| + dbest

dbest =

⎧⎪⎨
⎪⎩

di,j(p, q − 1)
di,j(p − 1, q)
di,j(p − 1, q − 1)

di,j(0, 0) = 0, di,j(p, 0) = di,j(0, q) = ∞
(i = 1, ..., n; p = 1, ..., n− i + 1;

j = 1, ..., m; q = 1, ..., m − j + 1)

(4)

The processing of the naive solution updates the distance
arrays of incoming xi at time-tick i and that of incoming
yj at time-tick j about all possible subsequences, and then
determines the one in which D(X [is : ie], Y [js : je]) −
ε(L(lx, ly)− lmin) is the minimum value in each overlapping
group.

The naive solution updates O(m + n) DTW distances for
incremental computation on each time warping matrix when
an element of the sequence arrives since we need only two
columns, i.e., the current and previous columns, per single
matrix. The naive solution requires O(mn) matrices to com-
pute the DTW distance because it has to create a new matrix
for every time-tick. Therefore, the naive solution requires
O(m2n+mn2) time and space for incremental computation.

B. Proposed solution

Our solution is based on the following ideas.

1) Scoring function: To compute the distance of every
possible subsequence pair, the naive solution creates a new
time warping matrix for every time-tick. Instead of using the
DTW function, we compute the DTW distance indirectly using
a scoring function. The scoring function is essentially based on
a dynamic programming approach, and optimally warps given
sequences to match each other. Our function differs in that we
compute the maximum cumulative score corresponding to the
DTW distance.

Given two sequences X = (x1, ..., xi, ..., xn) and Y =
(y1, ..., yj , ..., ym), we can then derive the score V (X [is :
ie], Y [js : je]) of X [is : ie] and Y [js : je] as follows.

V (X [is : ie], Y [js : je]) = v(ie, je)

v(i, j) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
wvε + v(i, j − 1) − ||xi − yj||
whε + v(i − 1, j) − ||xi − yj ||
wdε + v(i − 1, j − 1) − ||xi − yj ||

v(0, 0) = v(i, 0) = v(0, j) = 0.

(5)

To keep track of the optimal subsequence pair, we reset
the score and restart the score computation from the current
element if the cumulative score is a negative value. This means
Definition 1 is no longer satisfied for the subsequence pair of
X and Y ending at (i, j). The scoring function identifies the
qualifying subsequence pairs with a single matrix and updates
only O(m + n) scores for incremental computation.

The symbols wv , wh, and wd in Eq. (5) indicate the weight
of each direction, determined by L. For example, for L(lx, ly),
the current L value increases by 1/2 if the score of a vertical
or horizontal element is inherited, and it increases by 1 if
the score of a diagonal element is inherited. Thus, we obtain
wv =wh =1/2 and wd =1. The scoring function is designed
so that the sum of the weight on the warping path (i.e., wv , wh,
and wd) is equal to L(lx, ly). With this property, we can easily
transform the score into the DTW distance. Problem 1 for the
scoring function is equivalent to the following conditions:

1) V (X [is : ie], Y [js : je]) ≥ εlmin

2) V (X [is : ie], Y [js : je]) − εlmin is the maximum value
in each group of subsequence pairs that warping path
crosses.

2) Position matrix: The scoring function tells us the sub-
sequence match ends and the score. However, we lose the
information about the starting position of the subsequence
pair. We introduce a position matrix. The element (i, j)
of the position matrix contains the starting position s(i, j)
(i = 1, ..., n; j = 1, ..., m). The starting position s(i, j) is
computed as follows:

s(i, j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(i, j−1) (v(i,j−1) �=0 ∧ v(i,j)

=wvε+v(i,j−1)−||xi−yj ||)
s(i−1, j) (v(i−1,j) �=0 ∧ v(i,j)

=whε+v(i−1,j)−||xi−yj ||)
s(i−1, j−1) (v(i−1,j−1) �=0 ∧ v(i,j)

=wdε+v(i−1,j−1)−||xi−yj ||)
(i, j) (otherwise).

(6)

We choose the same element in the position matrix and
inherit the starting position stored in the element if we choose
a vertical, horizontal, or diagonal element. We choose (i, j)
as the starting position in the position matrix if all scores of
neighboring elements are zero, or the score v(i, j) is zero in
the score matrix. The score computation and the update of the
starting position keep exactly the same warping path. Thus,
we can obtain the starting position of the optimal subsequence
pair, whose score is the maximum value in a streaming fashion.

IV. EXPERIMENTS

We performed experiments on synthetic datasets to evaluate
the effectiveness of our method. Our experiments were con-
ducted on a 2-GHz Intel Xeon E5335 with 4 GB of memory,
running Linux.

A. Detecting cross-similarity

We present case studies for discovering the optimal subse-
quences i.e., the best match of cross-similarity, of CrosMatch.
We set lmin to 500 and ε to 1.0e-4 for the RandomSines ,and
set lmin to 15% of the sequence length and ε to 5.0e-6 for
the Spikes. In Fig. 1, the left and center figures represent the
datasets, and the right figure represents the optimal warping
paths of cross-similarity detected from these datasets.

1) RandomSines: RandomSines consists of discontinuous
sine waves with white noise (see Fig. 1 (a)) and includes
different-length intervals between sine waves. The sine waves
were generated using a random walk function. We varied
the period of each sine wave in the sequence. The intervals
between these sine waves are also different. As shown in the
right figure of Fig. 1 (a), our method perfectly identifies all
sine waves and time-varying periodicity. In this figure, the
difference in the period of each sine wave appears as the
difference in the slope.

2) Spikes: Spikes consists of large and small spikes. The
data of different-length intervals between spikes were gener-
ated using a random walk function. The period of each spike
is also different. As seen in the right figure of Fig. 1 (b),
we confirm that our method detects large spikes and small
spikes. The difference in the period of each spike appears as
the difference in plot length; wide spikes indicate long plot
lengths and narrow spikes indicate short plot lengths.

B. Performance

We compared our method with the naive solution, and
SPRING to evaluate the efficiency and to verify the com-
plexity of our method. SPRING is an algorithm based on
DTW for finding similar subsequences to a fixed-length query
sequence from data streams [7]. SPRING updates O(m2)
values if we receive xi at time-tick i, and O(mn) values if
we receive yj at time-tick j to identify optimal subsequence
pairs. Therefore, an algorithm with SPRING for finding cross-
similarity requires O(m2+mn) time and space for incremental
computation since SPRING requires O(m) matrices.

Our method, the naive and the SPRING implementations
are compared in terms of computation time and memory space
for varying sequence lengths. We used RandomSines for this
experiment.

Fig. 2 shows the experimental results for computation
time. Time is the average processing time to compute the
score and the starting position in each matrix against each
sequence length. As we expected, our method identifies the
optimal subsequence pairs much faster than naive and SPRING
implementations. We can confirm that our method significantly
reduces computation time.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000 25000

V
al

ue

Time (RandomSines #1)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000 25000

V
al

ue

Time (RandomSines #2)

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

T
im

e
(R

an
do

m
S

in
es

 #
2)

Time (RandomSines #1)

(a) RandomSines

 0

 0.5

 1

 1.5

 2

 2.5

 0 7000 14000 21000 28000

V
al

ue

Time (Spikes #1)

 0

 0.5

 1

 1.5

 2

 2.5

 0 7000 14000 21000 28000

V
al

ue

Time (Spikes #2)

 0

 7000

 14000

 21000

 28000

 0 7000 14000 21000 28000

T
im

e
(S

pi
ke

s
#2

)

Time (Spikes #1)

(b) Spikes

Fig. 1. Discovery of cross-similarity using RandomSines and Spikes.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

1e+02 1e+03 1e+04 1e+05 1e+06

T
im

e
(s

ec
)

Sequence length

Naive
SPRING

Proposed method

Fig. 2. Wall clock time for cross-similarity as a function of a sequence length.

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

1e+02 1e+03 1e+04 1e+05 1e+06

M
em

or
y

sp
ac

e
(b

yt
es

)

Sequence length

Naive
SPRING

Proposed method (Path)
Proposed method

Fig. 3. Memory space consumption for cross-similarity as a function of a
sequence length.

Fig. 3 compares each matrix of Naive, SPRING, and our
method in terms of memory space. We performed two mea-
surements for evaluating our method: (a) the algorithm keeps
the distance and the position of the optimal subsequence pair
and (b) it provides information about the warping path of the
subsequence pair. The abscissa axis in Fig. 3 represents two
data stream lengths. The space requirement of our method
depends on the existence of the cross-similarity and increases
when the algorithm keeps track of the optimal warping path.
However, our method is clearly lower than that of the Naive
and SPRING implementations, as shown Fig. 3.

V. CONCLUSIONS

We introduced the problem of cross-similarity and proposed
a streaming method to address this problem. Our method is
based on DTW and detects similar subsequence pairs between
data streams. Our experiments demonstrated that our method
works as expected, detecting the optimal subsequence pairs
effectively and efficiently.

REFERENCES

[1] H. Wu, B. Salzberg, and D. Zhang, “Online event-driven subsequence
matching over financial data streams,” in Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD
2004), June 2004, pp. 23–34.

[2] Y. Zhu and D. Shasha, “Efficient elastic burst detection in data streams,”
in Proceedings of the ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2003), August 2003, pp.
336–345.

[3] L. C. 0002, M. T. Özsu, and V. Oria, “Robust and fast similarity search
for moving object trajectories,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD 2005), June
2005, pp. 491–502.

[4] O. Nasraoui, C. Rojas, and C. Cardona, “A framework for mining evolving
trends in web data streams using dynamic learning and retrospective
validation,” Computer Networks, vol. 50, no. 10, pp. 1488–1512, July
2006.

[5] F. Korn, S. Muthukrishnan, and Y. Wu, “Modeling skew in data streams,”
in Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2006), June 2006, pp. 181–192.

[6] M. Zhou and M. H. Wong, “Efficient online subsequence searching in
data streams under dynamic time warping distance,” in Proceedings of the
IEEE 24th International Conference on Data Engineering (ICDE 2008),
April 2008, pp. 686–695.

[7] Y. Sakurai, C. Faloutsos, and M. Yamamuro, “Stream monitoring under
the time warping distance,” in Proceedings of the IEEE 23th International
Conference on Data Engineering (ICDE 2007), April 2007, pp. 1046–
1055.

[8] M. Toyoda, Y. Sakurai, and T. Ichikawa, “Identifying similar subse-
quences in data streams,” in Proceedings of the 19th International
Conference on Database and Expert Systems Applications (DEXA2008),
ser. Lecture Notes in Computer Science, vol. 5181, September 2008, pp.
210–224.

