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Analysis of real-world driver’s frustration
Lucas Malta, Chiyomi Miyajima, Norihide Kitaoka, and Kazuya Takeda

Abstract—This study investigates a method for estimating a
driver’s spontaneous frustration in the real world. In line with
a specific definition of emotion, the proposed method integrates
information about the environment, the driver’s emotional state,
and the driver’s responses in a single model. Driving data
are recorded using an instrumented vehicle on which multiple
sensors are mounted. While driving, drivers also interact with
an automatic speech recognition (ASR) system to retrieve and
play music. Using a Bayesian network, we combine knowledge
on the driving environment, assessed through data annotation,
speech recognition errors, driver’s emotional state (frustration),
and driver’s responses measured through facial expressions,
physiological condition, and gas- and brake-pedal actuation.
Experiments are performed with data from 20 drivers. We discuss
the relevance of the proposed model and features of frustration
estimation. When all of the available information is used, the
overall estimation achieves a true positive rate of 80% and a
false positive rate of 9% (i.e., the system correctly estimates 80%
of the frustration and, when drivers are not frustrated, makes
mistakes 9% of the time).

Index Terms—

I. I NTRODUCTION

A. The Role of Emotions in Traffic

In efforts to improve overall safety and comfort, a number
of vehicular technologies have been developed and deployed
in the market over the last few decades. Nowadays, it is
possible to buy an automobile with such systems as pedestrian
detection [1], cruise control [2], and collision mitigation brake
system [3], which predicts rear-end collisions and assistsbrake
operation to reduce the impact to occupants. A major drawback
of available vehicular systems, however, is that they do not
include the driver in the loop of decision-making processes.
For example, even if the driver is heavily cognitively loaded or
distracted, the decision threshold of safety systems as well as
the human-computer interface’s information exchange protocol
remain the same. In the interest of implementing necessary
changes, a number of studies have been conducted focusing
on the internal state (physical and emotional) of a driver [4],
[5].

Car driving is a complex cognitive process in which even a
small disruption of attention can have disastrous consequences.
Emotion is a key factor that is likely to affect cognitive
functioning and therefore to increase the demand on drivers
[6]. According to Lazarus [7], emotions can be considered
a process that promotes adaptation to the environment and
prepares the person for adaptive action. Emotions are usually
accompanied by an altered physiological state, such as in-
creased heart rate, and by behavioral changes, such as in voice,

L. Malta, C. Miyajima, N. Kitaoka, and K. Takeda are with the Grad. School
of Information Science, Nagoya University, Japan. Furo-cho, Chikusa-ku,
Nagoya, 464-8603. This research was supported by Toyota Motor Corporation
and the Strategic Information and Communications R&D Promotion Program
of MIC Japan.

face or gestures. Consistent with current approaches, emotions
are caused by a person evaluating an event or encounter based
on his/her personal goals. This notion that emotional behavior
results from an interaction with an event implies that, in the
driving context, emotions may arise frequently.

Studies on the emotional state of a driver have been con-
ducted from different perspectives. From a traffic-psychology
viewpoint, researchers have focused on the determinants and
consequences of emotions in traffic [6]. In addition, automatic
detection of the emotional state of a driver has been addressed
using physiological signals [8], [9], speech [10], [11], and both
visual and acoustic cues [12].

Although most automatic detection methods focus on the six
basic emotions (i.e., happiness, sadness, fear, anger, surprise,
and disgust [13]) in the driving context, frustration playsa
unique role. Frustration, which is defined as an interference
with goal-directed behavior, generates aggressive inclinations
toward another person or object primarily perceived as its
cause, as stated in the classical frustration-aggression hypoth-
esis [14]. When applied to the driving context, the frustration-
aggression model implies that the driver’s goal is to achieve
mobility with minimum interruption (and possibly some plea-
sure). Negative emotions caused by impeded progress can then
escalate in sequence from frustration to hostility to hatred.
The situational sources of frustration are the same that cause
congestion: red-light signals, slow moving vehicles, blocked
path of travel by other cars or pedestrians, and so on. One
of the most relevant studies recently published in this field
was conducted by Shinar [15], which through a series of
experiments examined the effect of frustrating environmental
factors on driver’s aggression.

As the number of in-vechicle devices increases, the need
for intelligent interfaces also calls attention to the importance
of frustration in driving. Together with interest, puzzlement,
and boredom, frustration plays an important role in human-
computer interaction, and recently it has been considered by
many research works in this field [16]. Kapooret al. [17]
proposed a method for automatic prediction of frustration
of 24 middle-school students who interacted with a learn-
ing companion. An overall accuracy of 79% was reported.
Potential disadvantages of systems devoted to the automatic
detection of frustration and other emotions in general include:
(1) conduction of experiments under controlled environments
(lack of generality); (2) use of acted or carefully eliciteddata
rather than spontaneous emotions; and (3) disregard for the
context in which emotions were elicited, as will be explained
in the following section.

B. Proposed Approach

In this study, we propose a method for estimating a driver’s
frustration that integrates features of a different nature. The
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Fig. 1. Simple model of driver-environment interaction.

designed model is based on the assumption that emotions
are the result of an interaction with the environment and
are usually accompanied by physiological changes, facial
expressions or actions, as described in the schematics of Fig.
1. Methods designed for the estimation of the internal state
of a driver tend to oversimplify this model by disregarding
one of its boxes, usually box 1. Ignoring box 1 may lead to
inconsistent internal state inference based solely on responses
measured through, for example, facial expressions, speech
or physiological signals [8], [17]. Responses in this case
are erroneously assumed to be absolute and independent of
the environment. For example, a smile can be a reaction
to different emotional states—even of different valences—
depending on the context.

Emotion recognition could greatly benefit from a more
comprehensive strategy that takes into account a person’s
emotional state, his/her responses, and the environment in
a single model. In the present study, we investigate such a
model while focusing on the following questions: (1) How
can knowledge of different types be acquired and meaningfully
represented considering the driving context? (2) How can this
knowledge be combined efficiently? (3) What are the most
relevant cues for estimating spontaneous frustration in real
driving?

Once frustration is detected it can be used as a feedback
to in-vehicle systems, allowing them to adapt accordingly.
Possible targets for this adaptation are the thresholds of safety
systems that can be made more sensitive, type of music play-
ing, color of the dashboard, and both speaking style and timing
of ASR systems. The same information can be presented to
the drivers as well. When drivers are aware of their own
emotional state it becomes easier for them to adopt optimal
strategies to cope with it in a safe manner. In addition, a mean
level of frustration experienced by fleet drivers over a long
period could be used by fleet owners. Targeting and treating
employees who might need a psychological intervention could
help in saving costs, providing, at the same time, more pleasant
working conditions for drivers.

II. M ATERIALS AND METHODS

A. Real-World Driving Database Annotation

Our first attempt to collect data on spontaneous frustration
in real driving was a manual annotation of a large database of

492 drivers, recorded from 2000 to 2002 [18]. The Center for
Integrated Acoustic Information Research (CIAIR) database
is composed of image, driving behavior, and location signals
recorded synchronously with speech. Each driver drove for
about 15 minutes on city streets in Nagoya, Japan, and inter-
acted with a human operator, an automatic speech recognition
(ASR) system, and a Wizard of Oz system.

Six graduate students, who served as annotators, pre-
selected 259 possible frustration scenes from the database
using audio and video footage. The pre-selected scenes were
then analyzed by professional annotators who found concrete
evidence of frustration in only 16 of them. Although the final
number of scenes was insufficient for training a classifier,
since most of them were only a few seconds long, two
important lessons were learned: (1) The ASR system, which
is particularly error-prone in a noisy traffic environment and
relies on a synthesized voice that is sometimes difficult to
understand, was a frequent cause of discomfort to drivers;
(2) Except for a few situations when the driver was highly
frustrated, manual annotation of spontaneous frustrationin
real traffic was extremely difficult, due to its high ambiguity,
individuality, and context-dependency.

The lack of physiological information on drivers was an-
other drawback of the CIAIR database that led to our decision
to collect new multimodal data in an environment where
drivers would have a greater tendency to get frustrated. More-
over, in order to avoid having to again annotate frustration, we
decided to rely on a self-reported assessment.

B. Data Collection Vehicle

A data collection vehicle was designed for synchronously
recording audio with other multimedia data. Various external
sensors were mounted on a Toyota Hybrid Estima with 2,360-
cc displacement and automatic transmission. Figure 2 shows
the data collection vehicle. All of the sensors used for record-
ing are commercially available.

C. Participants

In all, 30 participants (20 male, 10 female) took part in the
experiment. They were, on average, 31 years old (range 20-58
years) and had held a driver’s license for a mean period of

Fig. 2. Data collection vehicle.
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11.4 years (range 1.4-39 years). They received 5,000 Japanese
yen as compensation for their participation.

D. Procedure

When the participant arrived at the university, the ex-
perimenter took him/her to a meeting room to explain the
procedure of the experiment, as well as the sensors used and
the measurement method. Then, the participant was brought
to the instrumented vehicle. After settling into the vehicle, the
participant left the parking area. The experimenter monitored
the experiment from the rear seat and indicated the route to the
driver. The first few minutes were used to let the participant
get used to the car and the sensors. Signals recorded during
this initial period were not used in the study. All experiments
were performed on the city streets of Nagoya, Japan. The
data collection vehicle, experimental route, equipment, and
operational conditions were the same for all participants.

The experimental route and time of day were pre-selected
in order to increase the number of frustrating environmental
factors. Throughout the drive, participants encountered various
events that interrupted their driving journey and created stop-
and-slow traffic conditions in which vehicles were unable
to regain full speed before reaching the next obstruction.
These events included pedestrians (especially students) and
bicycles crossing the road, oncoming vehicles moving into
the driver’s lane, red-light signals, and slow moving vehicles
blocking the driver’s path. Furthermore, using an automatic
speech recognition (ASR) system [19], drivers retrieved and
played songs while driving from a list of 635 titles from
248 artists. Music could be retrieved by artist name or song
title. The experimenter instructed the participant to retrieve
as many songs as possible; accordingly, within around 30
seconds of successfully retrieving each song, the participant
had to retrieve another song. This secondary task further
increased the likelihood of frustration, since due to environ-
mental noise, speech recognition errors were a frequent cause
of impeded progress. After the experiment, the participant
and experimenter returned to the university. The participant
was then left alone in a room to complete his/her assessment
of the experienced frustration. Finally, compensation fortheir
participation was paid.

E. Measures

1) Pedal Actuation:Force sensors (Kyowa Electronics In-
struments Co., LPR-A-03KNS1 and LPR-R-05KNS1) were
mounted on the gas and brake pedals, respectively, so as to
record the pedal actuation through force signals. The signals
were originally acquired at a sample frequency of 16 kHz
and further down-sampled to 10 Hz. The effects of different
emotional states on the way we drive remains an open and
very interesting question. This study tackled this problemby
trying to show that gas- and brake-pedal actuation is affected
by frustration. A controlled area network (CAN-Bus) was not
used for our recordings because we decided to adopt sensors
as similar as possible to those used during the CIAIR database
recordings.

2) Electrodermal Activity: Electrodermal activity (EDA)
was obtained with a skin potential sensor (SkinosSK-SPA)
placed on the driver’s left hand. The signals were originally
acquired at a sample frequency of 16 kHz and further down-
sampled at 10 Hz. Electrodermal activity is one of the most
widely used response systems in the literature. It is causedby
activation of the sympathetic nervous system, which changes
the level of sweat in the eccrine sweat glands and has been
shown to be linked to psychological concepts of arousal and
attention [20]. High levels of arousal tend to indicate new,
significant, or attention-getting events.

3) Speech Recognition Errors:Speech was recorded using
a headset microphone. ASR systems, which are particularly
error-prone in a noisy traffic environment, may present adverse
effects such as taxing a driver’s short-term memory. In order
to identify speech recognition errors that may have led to
frustration, speech recognition results, i.e., the machine’s real-
time transcription of the driver’s utterances, were recorded.

4) Video Recordings:Videos were captured by three cam-
eras with set focal points: the driver’s face (x2) and the road
view ahead of the vehicle.

5) Self-Reported Frustration:After the experiment, which
lasted for around 15 minutes, participants were asked to
assess their subjective level of frustration by referring to the
front-view and facial videos as well as the corresponding
audio. A user interface, shown in Fig. 3, was designed for
such assessment. The strength of experienced frustration was
indicated using a continuous intensity scale ranging from
neutral to extremely frustrated. Participant were instructed to
keep the button over “0” if no frustration was experienced,
or indicate by how much they got frustrated by sliding this
button. In case participants were in a certain mood already
from the beginning of the experiment, they were asked not to
incorporate such feelings in their rating. This was required to
ensure that authentic emotions related to traffic events or to
human-machine interactions were reported instead of general
moods [6]. The level of frustration was recorded at fixed
intervals. Figure 4 shows the assessments of three different

(neutral) (slightly) (moderately) (extremely)

Fig. 3. Interface designed for frustration assessment.
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Fig. 4. Frustration levels assessed by three different drivers.

participants.

F. Feature Extraction

Recorded data were processed so that relevant information
could be extracted from raw signals. In this section we describe
the extracted features and related methods.

1) Pedal Actuation:Gas- and brake-pedal signals were first
divided into frames having a length ofM points. Features were
then extracted through cepstral analysis of the gas- and brake-
pedal signals. Ceptrum (cepstral coefficients) is a widely used
spectral feature for speech and speaker recognition, and, more
recently, it has proven to be effective in driver modeling [21].
Ceptrum is defined as the inverse Fourier transform of the
short-term log-power spectrum and is obtained as follows:

c(m) =
1

M

M−1
∑

k=0

log |X(k)|ej2πkm/M ,

m = 0, 1, ....,M − 1, (1)

whereX(k) denotes theM -point discrete Fourier transform
of the windowed signalx(n). Cepstral analysis is a source-
filter separation process [22]. By keeping only the first several
coefficients in the lower “quefrency” and setting others to zero,
we can obtain a spectral envelope as a filter that represents
the process of acceleration or braking. On the other hand, a
fine structure of the spectrum, the source, which works as
the command signal for hitting a pedal, can be obtained by
maintaining a higher “quefrency” range and setting the lower
“quefrency” coefficients to zero. It is important to note that
information on the spectral envelop is lost when all coefficients
but c(0) are set to zero. Furthermore, before calculating the
cepstrum, gas and brake were combined by setting the pedal
actuation signal to

x(n) = FG(n)− FB(n), (2)

whereFG(n) andFB(n) denote the gas and brake force sig-
nals, respectively. In order to take into account the dynamics of
pedal actuation, the time derivative of the cepstral coefficients

was also used as a feature. As shown in (3), for example,
the time derivative of a discrete-time signal can be calculated
by using linear regression coefficients for signaly(n) with a
window of length2K:

ẏ(n) =

K
∑

k=−K

k · y(n+ k)

K
∑

k=−K

k2

. (3)

2) Electrodermal Activity:The skin potential signal, repre-
sented asS, was first low-pass filtered using a second-order
Savitzky-Golay smoothing filter with a length of 40.1 seconds,
forming a smoothed skin potentialG. Filter characteristics
satisfactorily removed high-frequency noise from the raw
signal. TheG signal was normalized by subtracting its long-
term mean and dividing the result by its maximum.G was
then further divided into frames of lengthL points. LetG̃(n)
represent the value of thenth sample of a given data frame,
wheren = 1, ...., L. We calculated the following two statistical
features:

1) Local mean of normalized signal (mean skin potential):

f1 =
1

L

L
∑

n=1

G̃(n) (4)

2) Absolute value of the first-order difference of the nor-
malized signal (∆ skin potential):

f2 =
L
∑

n=1

∣

∣

∣

G̃(n+ 1)− G̃(n)
∣

∣

∣

. (5)

f1 was further uniformly quantized into four levels andf2
into two. The threshold used to quantizef2 was defined
experimentally, being the one that provided the best overall
estimation.

3) Speech Recognition Errors:The failure of the ASR
system to correctly recognize the name of artists or songs was
the most common type of recognition error. Participants were
instructed to sayNo when reacting to such errors so that they
could repeat the desired input until the machine got it right,
as exemplified in the following dialogue:

Driver: Bee Gees.
Machine: Do you want to search for Britney Spears?
Driver: No...
Machine: I am sorry. One more time, please.
Driver: Bee Gees.

As a possible indicator of speech recognition errors, we used
the instances when the ASR system recognized a participant’s
utterance asNo. This indicator was selected due to its con-
sistency across different drivers and required calculation time,
which is negligible. Since this is a very short event that lasts
around 1 second, an enlargement of its boundaries was neces-
sary. Based on a preliminary analysis of frustration videos, we
added 5 seconds before and 15 seconds after each utterance
recognized asNo, as shown in Fig. 5. Here, 20 seconds is
the time span in which significant verbal or gestural reactions
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Fig. 5. Enlargement of boundaries of an utterance recognized asNo.

still occurred; accordingly, we encoded speech recognition
errors as a binary signal, in which errors were indicated by
a 20-second window of “1s.” The enlargement of boundaries
partially solved the problem of different timings between ASR
errors and other reactions, such as facial expressions.

4) Self-Reported Frustration:The frustration level was
quantized into two levels: frustrated (frustration> threshold)
and not-frustrated (frustration≤ threshold). The optimal quan-
tization threshold was determined experimentally, being the
one that provided the best overall estimation. This quantization
generated a more consistent signal than the original one (0-30).

G. Data Annotation

We designed a data annotation protocol that covers a number
of environmental factors that might impede a driver’s progress
and cause frustration. Facial expression was also includedin
the annotation, since it is one of the possible responses to
frustrating events. Currently, there seems to be no consensus
on the best way of annotating driving data, and thus different
protocols have been adopted [4], [6]. In this study, based on
scenes of high levels of frustration, selected annotation labels
and possible states were

1) Traffic density (light/medium OR high);
2) Obstructions caused by pedestrians, bicycles, and parked

vehicles (non-obstructed/obstructed);
3) Stops at red-light signals (non-stopped/stopped);
4) Turn (not turning/turning);
5) Curve (not a curve/curve);
6) Overall face (neutral/non-neutral).

Labels 1-5 provide us with a simple description of the driv-
ing environment that may affect drivers’ internal state. Data
annotation from all 30 participants was manually carried out
by seven annotators who were allowed to utilize only frontal
video. No audio was provided to avoid bias when labeling
overall face data from the video. Annotators, who volunteered
for the task, coded the time span of each state, so that results
could be seen as a multi-stream of binary information, as show
in Fig. 6. Annotation results were checked individually by the
authors to ensure a high reliability. On average, ten minutes
of data took 50 minutes to annotate. To speed up the process,
we are now developing a dedicated annotation interface. We
focused on designing simple yet informative annotation labels,
making it easier for a real application to automatically and
effectively annotate them in the future.

H. Analysis

A method for combining all of the different features and
annotation results in an efficient language was needed, and a

Obstruction
non-obstructed = 0 

obstructed = 1

Curve
not a curve = 0

curve = 1

Time

Overall face
neutral = 0

non-neutral = 1

Traffic density
light = 0

medium OR high = 1

Fig. 6. Example of annotation.

Bayesian network (BN) was the natural choice to deal with
such a task. One of the important characteristics of a BN is
the capability to infer the state of an unobserved variable,
given the state of observed ones. In our case, we wanted to
infer a participant’s frustration given the driving environment,
speech recognition errors (communication environment), and
the participant’s responses measured through his/her physio-
logical state, overall face, and pedal actuation.

The graph structure proposed to integrate all of the available
information is shown in Fig. 7. This model was based on
the following assumptions: (1) environmental factors thatmay
have an impact on goal-directed behavior (traffic density, stops
at red-light signals, obstructions, turn or curve, and speech
recognition errors) may also have a direct effect on frustration;
(2) a frustrated driver is likely to present changes in his/her
facial expression, physiological state, and gas- and brake-pedal
actuation. In Fig. 7, squares represent discrete (tabular)nodes
and the circle represents a continuous (Gaussian) node. The
number inside each node represents the number of mutually

Obstructions 
caused by 

pedestrians, 
bicycles, 
parked 
vehicles 

2

Turn OR 
curve

2

Traffic density
2

Frustration
2

Overall face
2

Mean skin 
potential

4

∆ Skin potential
2

Pedal
actuation

Speech 
recognition 

errors
"No"

2

Stops at red-
light signal

2
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1

E
2

R
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E
3

E
5

E
4

R
3

R
2

R
4
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Fig. 7. Proposed Bayesian network structure. Squares represent discrete
(tabular) nodes and the circle represents a continuous (Gaussian) node. The
number inside each node represents the number of mutually exclusive states
that the node can assume. Labels outside nodes identify random variables.
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exclusive states that the node can assume. Random variables
were identified by a label outside each node: “F” for frustra-
tion, “E” for environment, and “R” for responses.

In addition to the graph structure, it is necessary to specify
the parameters of the model, obtained here using a training
set. During parameterization, we calculate the Conditional
Probability Distribution (CPD) at each node. If the variables
are discrete, this can be represented as a table (CPT), which
lists the probability that the child node takes on each of its
different values for each combination of values of its parents.
On the other hand, if the variable is continuous, the CPD is as-
sumed as a Gaussian distribution. For example, the continuous
nodePedal actuation, which has only one binary parent, was
represented by two different multivariate Gaussians, one for
each emotional state: frustrated and not frustrated. For each
observed environment (driving and communication) and the
corresponding driver responses, we can use Bayes’ rule to
compute the posterior probability of frustration, as described
in (6):

P (F |E1, E2, E3, E4, E5, R1, R2, R3, R4) =

P (F |E1, E2, E3, E4, E5) ·

P (R1|F ) · P (R2|F ) · P (R3|F ) · P (R4|F )

P (E1, E2, E3, E4, E5, R1, R2, R3, R4)
·

5
∏

j=1

P (Ej),

(6)

The denominator in (6) was calculated by summing outF

from the joint probability ofP (F,E,R). In addition, in this
study we set a uniform Dirichlet prior to every discrete node
in the network. This was done in order to avoid over-fitted
results due to the Maximum Likelihood approach used for
calculating the conditional probability tables. Without aprior,
patterns that were not observed in the training set would be
assigned zero probability, compromising the estimation [23].
Further details on Bayesian networks can be found elsewhere
[24], [23]. In experiments, we used the Bayes Net Toolbox for
Matlab, freely available [25].

The network data input scheme is shown in Fig. 8. All of the
available data—pedal actuation, skin potential and other binary
signals—were entered concurrently. At a given time stept,
frames of sizesL andM were used to extract features from the
skin potential and pedal actuation signals, respectively.Results
served as network inputs. The value of each binary label at the
current time step was directly entered in the network without
further processing. Frame shift was kept fixed at 0.5 seconds.
As described in Fig. 8 for two consecutive frames, the value of,
for example, current traffic density has an effect on future skin
potential and pedal actuation signals in order to account for
delayed physiological and behavioral reactions. In addition,
frustration was estimated continuously, i.e., we did not pre-
select segments where we were certain about frustration or
neutrality and then ignore ambiguous regions.

III. E XPERIMENTAL SETUP AND EVALUATION

Experiments were performed with data from 13 male and
7 female participants. They were, on average, 29 years old
(range 20-46 years) and had held a driver’s license for a mean

pedal actuation

Time

t t+1

(frame length)0.5 s

skin potential

Traffic density

M

L

ASR error

Fig. 8. Scheme for entering data into the Bayesian network. Frame shift
is kept to 0.5 seconds. Two consecutive time steps,t and t + 1, are shown.
M and L denote the frame length for pedal actuation and skin potential,
respectively.

period of 10.4 years (range 1.4-27 years). The frustration of
10 from the original 30 participants was very short (total
duration of frustration scenes less than 20 seconds), so their
data were not used. Since possible causes and consequences
of frustration depend on personal characteristics, we trained
one network for each participant.

The optimal configuration of estimation parameters was
achieved experimentally by, first, selecting possible ranges.
We then changed one parameter at a time—keeping the others
fixed—in the following order: skin potential signal frame
lengthL (16, 32, 64, 128, 160), threshold for quantizing the
∆ skin potential (f2) into two steps (0.1, 0.2, 0.3, 0.4, 0.5),
Dirichlet prior hyperparameter (1, 5, 10, 15, 20, 25, 30, 40,
50), and threshold for quantizing the frustration signal into
two steps (0, 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10). At each step, we
selected the optimal value for the parameter being changed.
Data frames were divided into training (60%) and test (40%)
sets.

In order to determine the usefulness of different types of
information as indicators of frustration, we compared the
results of five distinct variations of the network shown in Fig.
7. The direction of arrows was kept fixed and the number of
nodes was modified, depending on the network variation—
all other parameters were kept fixed at their optimal value.
Table I summarizes the network variations. TheBasicnetwork
was used to verify the role of physiological state features and
facial expressions on frustration estimation; theDriving env
network added information on the driving environment to the
Basic network; theCommunication envnetwork focused on
evaluating the importance of speech recognition errors; the
Pedalsnetwork focused on evaluating the importance of pedal
actuation; and theFull network (Fig. 7) had all nodes.

In order to achieve the optimal parameters for the Pedal
actuation node, we conducted experiments using thePedals
network. Tested parameters were driving behavior signal frame
lengthM (8, 16, 32, 64, 128) and number of cepstral coef-
ficients (0, 1, 2, 4). When calculating the time derivative of
pedal actuation,2K = 800 ms was used.
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TABLE I
NETWORK VARIATIONS

Network variations
Nodes Basic Driving env Communication

env
Pedals Full (Fig. 7)

frustration
√ √ √ √ √

mean skin potential
√ √ √ √ √

∆skin potential
√ √ √ √ √

overall face
√ √ √ √ √

traffic density
√ √ √ √

turn or curve
√ √ √ √

stops at red-light signal
√ √ √ √

obstructions caused by pedestrians,
bicycles, and parked vehicles

√ √ √ √

speech recognition errors
√ √

pedal actuation
√ √

We evaluated the capacity of the proposed system to detect
frustration. After calculating the estimation signal for each
participant, i.e., the posterior probability of the frustration
node, it was quantized into two steps: frustrated (probability >

0.5) and not frustrated (probability≤ 0.5). The result was then
filtered using a median filter of 12 seconds so that spikes could
be removed. In order to estimate the overall effectiveness of
detection, we summed true (T)/false (F) positives (P)/negatives
(N) from all drivers so that we could calculate overall true
and false positive rates, represented by a single point in the
receiver operating characteristic (ROC) space. Overall true and
false positive rates were calculated as follows:

overall TP rate =

∑I
i TPi

∑I
i (TPi + FNi)

, and (7)

overall FP rate =

∑I
i FPi

∑I
i (TNi + FPi)

, (8)

whereI is the total number of participants. The ROC space
provides a ratio indicating the system’s ability to correctly
estimate frustration versus its transparency, i.e., the system’s
ability to suppress false alarms and avoid driver annoyance.

IV. RESULTS

Within the data used in experiments, 129 scenes of frustra-
tion (segments with original scale above 0) were found. On
average, participants got frustrated 6.5 times while driving.
The mean strength of frustration scenes was 10.5, and the
mean duration was 11.8 seconds.

Figure 9 shows estimation results for individual drivers
arranged side by side: actual frustration from all 20 partici-
pants (top); the posterior probability of the frustration node
calculated using theBasic network (center); and quantized
posterior probability using a threshold of 0.5 (bottom). The
quantized probability of each driver was further median-
filtered to remove spikes. Figure 10 shows the same data
calculated using theFull network. These results suggest that
the estimation benefited from the introduction of additional
information.

Overall quantitative results for all five network variations are
shown in Fig. 11. In the ROC space, the point (0,1) represents
the perfect estimation. The closer the result gets to this point,

the better. Circles centered at (0,1) are plotted so that different
results can be easily compared. TheBasic network, which
relied on physiological state and facial expressions, actually
achieved the worst overall result. The best overall result was
achieved by theFull network: a true positive (TP) rate of 80%
and a false positive (FP) rate of 9% (i.e., the system correctly
estimated 80% of the frustration and, when drivers were not
frustrated, made mistakes 9% of the time). Furthermore, the
results suggest that information on the driving and communi-
cation environment, as well as pedal actuation, was effective
in improving the model accuracy, adding new information to
the Basicnetwork.

Figure 12 shows the above influence in the results of
different thresholds for quantizing the frustration levelinto two
steps. Automatic selection of the optimal threshold provided a
better estimation than simply setting values above zero in the
original scale as “frustrated” (threshold = 0).

Figure 13 shows the results of thePedalsnetwork trained
with different numbers of cepstral coefficients. The worst per-
formance was achieved when the network relied only onc(0),
i.e., when no spectral information was provided. This finding
suggests that not only the intensity of the pedal actuation signal
but also its spectral envelope contains important information
on the driver’s emotional state.

Optimal estimation parameters, which provided the best
overall estimation results, were skin potential signal frame
length L of 128 points, threshold of 0.3 for quantizing the
∆ skin potential (f2) into two steps, Dirichlet prior hy-
perparameter of 30, and threshold of 5 for quantizing the
frustration signal into two steps. The optimal driving behavior
signal frame lengthM was 16 points, and the best cepstral
coefficients werec(0) + c(1).

V. D ISCUSSION

The results of this study suggest that the estimation of a
driver’s emotional state would gain from a more meaningful
modeling strategy that combines information on the environ-
ment, the driver’s internal state, and his/her responses ina
single system. We believe that the same type of modeling
discussed here could be applied to a number of driver-
monitoring problems other than frustration estimation, such
as stress, attention and drowsiness detection. In this section
we discuss the results and their implications.
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Fig. 9. Results for individual drivers (arranged side by side) calculated using
the Basic network. Comparison between actual frustration (top), posterior
probability of the frustration node (center), and its quantized version using a
threshold of 0.5 (bottom).
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Fig. 10. Results for individual drivers (arranged side by side) calculated using
theFull network. Comparison between actual frustration from all drivers (top),
posterior probability of the frustration node (center), and its quantized version
using a threshold of 0.5 (bottom).

Experiments were performed with five different network
variations. TheBasic network presented the worst perfor-
mance, being unable to satisfactorily identify frustration based
solely on facial expressions and physiological condition.One
of the reasons for such poor results is that drivers may re-
spond similarly to both frustrating and certain non-frustrating
situations. When the driving environment was introduced, a
more accurate estimation was obtained. The newly added
information provided a context to drivers’ responses, allowing
a meaningful interpretation of events. The driving environment
in the present study was represented as a series of binary
signals manually coded; however, we believe that the same
knowledge could be obtained automatically by integrating
information from the infrastructure, navigation system, and in-
car cameras.

Experiments with theCommunication envnetwork indicated
that information on speech recognition errors was effective in
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Fig. 12. Overall results achieved using different thresholds for quantizing
frustration level into two steps.

increasing the overall estimation accuracy, as expected. This
result, together with the lessons learned during the CIAIR
database annotation, indicates the relevance of considering
communication quality as an indicator of emotions. Although
in a more realistic scenario the driver could simply refrain
from using speech commands, interaction with ASR systems
are becoming part of everyday life as such systems become
ubiquitous. Therefore, the effects of this interaction must be
carefully studied.

Results from thePedalsnetwork also allowed us to draw
important conclusions: (1) the way gas and brake pedals are
used might be affected by frustration; and (2) the effect of
frustration can be observed not just in the intensity of the pedal
actuation signal but also in its spectral envelope. Therefore,
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cepstral coefficients of the pedal actuation signal and their time
derivative ought to be considered in future research in emotion
recognition. Current studies that investigate pedal actuation
tend to use only such features as mean and standard deviation.

The threshold for quantizing the frustration level into two
steps was the same for all drivers, and it was selected exper-
imentally. Results show that, compared to a simple selection
of values above zero as “frustrated,” automatic search for an
optimal threshold provides a better overall estimation. Results
for other values close to the optimal threshold of five were
similar. We believe that selecting this threshold individually
may further improve the estimation. This topic will be studied
as a future work.

In this study, frustration was reported quite often. One
possible explanation is that the unfamiliarity of experimental
conditions, instrumented car, experimenter, and ASR system
may have had an impact on drivers, making them more
sensitive. The higher frequency can also be explained by
the assessment method. Usually, driving-log or questionnaire-
based assessment leads to an under-registration of mild emo-
tions. People tend to remember only more extreme cases and
forget about mild ones. The fact that in the present study most
of the reported emotions were mild (average strength of 10.5)
supports this hypothesis, which is also in line with the work
done by Mesken [6].

The present study had some limitations, the first being re-
lated to the frustration assessment method. Data reported here
were based solely on self-assessment, thus social desirability
might have biased the data. It is possible that some participants
may have embellished their answers. Nevertheless, participants
could not gain any benefit by disguising their behavior since
confidentiality of their personal data was assured to them and
the assessment was conducted in a separate room, without
interference from the experimenter. In fact, classical studies
on human-computer interaction suggest that, concerning the

reporting of self-perceived negative information, subjects may
be more economical with the truth with humans than with
computer interrogators [26]. Moreover, self-assessment may
have allowed each participant to have his/her own standards.
In an effort to cope with this issue, we only trained individual
models tailored to each driver. The personalization of vehicles
is a current tendency [21]; thus the adoption of individual
models was not an unreasonable choice. Moreover, the raw
frustration signal (0-30) was automatically quantized into two
levels, generating more consistent information.

Other limitations were related to the experimental design.
Previous studies on the occurrence of emotions [15] suggested
that the inclusion of a sense of time pressure in the scenario
resulted in higher levels of aroused anger and stress. Time
urgency could have been used in this study to further provoke
frustration. Nevertheless, although the only form of pressure
considered here had to do with the number of songs that should
be retrieved using the ASR system, the results indicate thatthe
scenario experienced by the participants was sufficient to elicit
frustration in most of them.

It is impossible to simultaneously consider more than a
small part of the available information when modeling the
driver. Our selection of features inevitably constrained our
interpretation of frustration in ways difficult to predict.Bradley
and Lang [27] summarized emotional cues into three cat-
egories: behavioral sequences, physiological reactions,and
emotional language. In this study, although behavioral and
physiological clues were combined, language was analyzed
only to identify speech recognition errors. Other cues fromthe
speech signal and speech recognition results, such as prosody
and semantics, should be investigated in future work. Infor-
mation on the vehicle (e.g., velocity or lane deviation) could
also be included, depending on the goal of the application. The
developed system is very scalable; therefore, new featurescan
be easily combined. Finally, we intend to assess the generality
of our method regarding both individual and overall tendencies
after collecting a larger dataset.

VI. CONCLUSION

This study showed that a more comprehensive modeling
method, which takes the environment into account, provides
a better estimation of frustration and, possibly, of other emo-
tions. The inclusion of speech recognition errors was effective
in increasing the overall accuracy of results, suggesting that
ASR systems have an impact on the driver’s emotional state
and, thus, should be considered in future studies on emotion
recognition and interface design. Information on gas- and
brake-pedal actuation positively contributed to the overall
results, which gives further indication that the way we drive
might be affected by our emotional state. Not just the energy
of the pedal actuation signal but also its spectral envelope
played a role in improving estimation. In addition, automatic
quantization of frustration levels proved to be more satisfactory
than a simple manual selection.

Further research may be directed at the inclusion of a model
of speech prosody or semantics-related features. In addition,
the evaluation of a dynamical structure that considers the
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temporal relationship between nodes is an interesting topic
and ought to be investigated. More insights could be gained
as well by further analyzing the ASR system and how different
drivers react to different types of errors.
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