Analysis of real-world driver’s frustration
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Abstract—This study investigates a method for estimating a face or gestures. Consistent with current approachesj@msot
driver’'s spontaneous frustration in the real world. In line with  gre caused by a person evaluating an event or encounter based
a specific definition of emotion, the proposed method integtas o hig/her personal goals. This notion that emotional bienav

information about the environment, the driver's emotional state, . . . . ) )
and the driver's responses in a single model. Driving data results from an interaction with an event implies that, ie th

are recorded using an instrumented vehicle on which multipg  driving context, emotions may arise frequently.

sensors are mounted. While driving, drivers also interact \ith Studies on the emotional state of a driver have been con-
an automatic speech recognition (ASR) system to retrieve @& ducted from different perspectives. From a traffic-psyobwl
play music. Using a Bayesian network, we combine knowledge y;ewpoint, researchers have focused on the determinants an

on the driving environment, assessed through data annotain, consequences of emotions in traffic [6]. In addition, autbena
speech recognition errors, driver’'s emotional state (frugration), 4 ; ’

and driver’s responses measured through facial expressim detect'on Of the emOtlona| state Of a dr|Ver haS been adEﬂeSS
physiological condition, and gas- and brake-pedal actuatin. using physiological signals [8], [9], speech [10], [11]ddvoth
Experiments are performed with data from 20 drivers. We disaiss  visual and acoustic cues [12].

the relevance of the proposed model and features of frustréin Although most automatic detection methods focus on the six

estimation. When all of the available information is used, he . . . . .
overall estimation achieves a true positive rate of 80% and a basic emotions (i.e., happiness, sadness, fear, angpriseyr

false positive rate of 9% (i.e., the system correctly estintas 80% anq disgust [13]) in _the dri\_/ing_ context, frustrati(_)n plags
of the frustration and, when drivers are not frustrated, makes unique role. Frustration, which is defined as an interfezenc

mistakes 9% of the time). with goal-directed behavior, generates aggressive iatitins
Index Terms— toward another person or object primarily perceived as its

cause, as stated in the classical frustration-aggresgiootin-

|. INTRODUCTION esis [14]. When applied to the driving context, the frustnat

A. The Role of Emotions in Traffic aggr_e_ssion mo_d(_al impl_ies that _the driver’s gpal is to aahiev
& . | saf q ; b mobility with minimum interruption (and possibly some plea
In efforts to improve overall safety and comfort, a num E‘§ure). Negative emotions caused by impeded progress can the

of vehicular technologies have been developed and deplo)ées(?:alate in sequence from frustration to hostility to rthtre

n th_e market over the Ias_t fe.W decades. Nowadays, it The situational sources of frustration are the same thatecau
possible to buy an automobile with such systems as pem}s”&%ngestion: red-light signals, slow moving vehicles, ltet

detection [1],t$ruhise cg.ntrol [2], anéj col:!isfion mitidganigrage path of travel by other cars or pedestrians, and so on. One
system [3], which predicts rear-end collisions and assistke of the most relevant studies recently published in this field

operation to reduce the impact to occupants. A major drakwbag . .onducted by Shinar [15], which through a series of

.Of available ve_zh|cu_lar systems, howe_v_er, IS th_at they do n8>t(periments examined the effect of frustrating environtalen
include the driver in the loop of decision-making Processes .tors on driver's aggression

F_or example, even.if_the driver is heavily cognitively lodae As the number of in-vechicle devices increases, the need
distracted, the decision threshold of safety systems asasel ¢ ntelligent interfaces also calls attention to the impace
the human-computer interface’s information exchangeqeat ¢ stration in driving. Together with interest, puzzlent,

remain the same. In the interest of implementing Necessalyy poredom, frustration plays an important role in human-

changes, a number of studies have been conducted focu%ﬂﬂwputer interaction, and recently it has been consideyed b

on the internal state (physical and emotional) of a drivér [4many research works in this field [16]. Kapoet al. [17]

[5]: proposed a method for automatic prediction of frustration

Car Qriving s a compl_ex cognitive process in which even & 54 middle-school students who interacted with a learn-
small disruption of attention can have disastrous consazps: ing companion. An overall accuracy of 79% was reported.

EmOt.'O”. is a key factor thgt is likely to affect COgn't'\_/ePotentiaI disadvantages of systems devoted to the automati
functioning .and therefore to Increase the demand on ,d”"%r ection of frustration and other emotions in generakidel

[6]. Accord|ﬂg to Lazarus [Zj]’ em_otlons (r:]an be_ consider conduction of experiments under controlled environteen

a process that promotes a aPta“O’? to the e_nwronment k of generality); (2) use of acted or carefully elicitédta
prepares the person for adaptive action. Emotions are Iysu_ ther than spontaneous emotions; and (3) disregard for the

accompanied by an altered phy5|olog|cal state, such.as d8ntext in which emotions were elicited, as will be explaine
creased heart rate, and by behavioral changes, such ax# VAl the following section
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_ 1 492 drivers, recorded from 2000 to 2002 [18]. The Center for

Environment * Integrated Acoustic Information Research (CIAIR) dat@bas

l is composed of image, driving behavior, and location signal
recorded synchronously with speech. Each driver drove for
Driver's internal state > about 15 minutes on city streets in Nagoya, Japan, and inter-
(physical or emotional) acted with a human operator, an automatic speech recognitio

(ASR) system, and a Wizard of Oz system.
Six graduate students, who served as annotators, pre-

Driver's responses  © |-+ selected 259 possible frustration scenes from the database
to the environment using audio and video footage. The pre-selected scenes were
then analyzed by professional annotators who found coacret
Fig. 1. Simple model of driver-environment interaction. evidence of frustration in only 16 of them. Although the final

number of scenes was insufficient for training a classifier,

since most of them were only a few seconds long, two
designed model is based on the assumption that emotigmportant lessons were learned: (1) The ASR system, which
are the result of an interaction with the environment arig particularly error-prone in a noisy traffic environmenmida
are usually accompanied by physiological changes, facialies on a synthesized voice that is sometimes difficult to
expressions or actions, as described in the schematicgof kinderstand, was a frequent cause of discomfort to drivers;
1. Methods designed for the estimation of the internal sta(2) Except for a few situations when the driver was highly
of a driver tend to oversimplify this model by disregardingrustrated, manual annotation of spontaneous frustraition
one of its boxes, usually box 1. Ignoring box 1 may lead teal traffic was extremely difficult, due to its high ambiguit
inconsistent internal state inference based solely ororesgs individuality, and context-dependency.
measured through, for example, facial expressions, speeciThe lack of physiological information on drivers was an-
or physiological signals [8], [17]. Responses in this cassther drawback of the CIAIR database that led to our decision
are erroneously assumed to be absolute and independentootollect new multimodal data in an environment where
the environment. For example, a smile can be a reactigifivers would have a greater tendency to get frustratedeMor
to different emotional states—even of different valences-ever, in order to avoid having to again annotate frustratios
depending on the context. decided to rely on a self-reported assessment.

Emotion recognition could greatly benefit from a more
comprehensive strategy that takes into account a persog’s
emotional state, his/her responses, and the environment-in
a single model. In the present study, we investigate such & data collection vehicle was designed for synchronously
model while focusing on the following questions: (1) Howecording audio with other multimedia data. Various exa¢rn
can knowledge of different types be acquired and meanilygfusensors were mounted on a Toyota Hybrid Estima with 2,360-
represented considering the driving context? (2) How cian tiec displacement and automatic transmission. Figure 2 shows
knowledge be combined efficiently? (3) What are the mo#ie data collection vehicle. All of the sensors used for réco
relevant cues for estimating spontaneous frustration ai réng are commercially available.
driving?

ane frustration is detectgd it can be used as a fe?db@kParticipants
to in-vehicle systems, allowing them to adapt accordingly. . .
Possible targets for this adaptation are the thresholdafefys In 3”' 30 participants (20 male, 10 female) took part in the
systems that can be made more sensitive, type of music p|§§per|ment. They were, on av?rqge, 31years old (range_ 20-58
ing, color of the dashboard, and both speaking style anahg'miyears) and had held a driver’s license for a mean period of
of ASR systems. The same information can be presented to
the drivers as well. When drivers are aware of their ow
emotional state it becomes easier for them to adopt opti
strategies to cope with it in a safe manner. In addition, aime
level of frustration experienced by fleet drivers over a lon
period could be used by fleet owners. Targeting and treati
employees who might need a psychological interventionctoul
help in saving costs, providing, at the same time, more plgas
working conditions for drivers.

Data Collection Vehicle

[I. MATERIALS AND METHODS
A. Real-World Driving Database Annotation

Our first attempt to collect data on spontaneous frustration
in real driving was a manual annotation of a large databaseFd. 2. Data collection vehicle.



11.4 years (range 1.4-39 years). They received 5,000 Jspane 2) Electrodermal Activity: Electrodermal activity (EDA)
yen as compensation for their participation. was obtained with a skin potential sensor (SkinosSK-SPA)
placed on the driver's left hand. The signals were originall
acquired at a sample frequency of 16 kHz and further down-
sampled at 10 Hz. Electrodermal activity is one of the most

When the participant arrived at the university, the exwidely used response systems in the literature. It is cabged
perimenter took him/her to a meeting room to explain thactivation of the sympathetic nervous system, which change
procedure of the experiment, as well as the sensors used #ralevel of sweat in the eccrine sweat glands and has been
the measurement method. Then, the participant was broughbwn to be linked to psychological concepts of arousal and
to the instrumented vehicle. After settling into the veljthe attention [20]. High levels of arousal tend to indicate new,
participant left the parking area. The experimenter meoado significant, or attention-getting events.
the experiment from the rear seat and indicated the routeeto t 3) Speech Recognition ErrorsSpeech was recorded using
driver. The first few minutes were used to let the participaat headset microphone. ASR systems, which are particularly
get used to the car and the sensors. Signals recorded dugn@r-prone in a noisy traffic environment, may present estve
this initial period were not used in the study. All experirtgen effects such as taxing a driver's short-term memory. In orde
were performed on the city streets of Nagoya, Japan. Ttwe identify speech recognition errors that may have led to
data collection vehicle, experimental route, equipment] afrustration, speech recognition results, i.e., the mazhireal-
operational conditions were the same for all participants. time transcription of the driver's utterances, were reedrd

The experimental route and time of day were pre-selected4) Video RecordingsVideos were captured by three cam-
in order to increase the number of frustrating environmentaras with set focal points: the driver's face (x2) and thedroa
factors. Throughout the drive, participants encountesrtbus view ahead of the vehicle.
events that interrupted their driving journey and createg-s  5) Self-Reported FrustrationAfter the experiment, which
and-slow traffic conditions in which vehicles were unablisted for around 15 minutes, participants were asked to
to regain full speed before reaching the next obstructioassess their subjective level of frustration by referrioghe
These events included pedestrians (especially students) &ont-view and facial videos as well as the corresponding
bicycles crossing the road, oncoming vehicles moving ineudio. A user interface, shown in Fig. 3, was designed for
the driver’s lane, red-light signals, and slow moving vé#sc such assessment. The strength of experienced frustraisn w
blocking the driver's path. Furthermore, using an automatindicated using a continuous intensity scale ranging from
speech recognition (ASR) system [19], drivers retrieved ameutral to extremely frustrated. Participant were inggddo
played songs while driving from a list of 635 titles fromkeep the button over “0” if no frustration was experienced,
248 artists. Music could be retrieved by artist name or somy indicate by how much they got frustrated by sliding this
titte. The experimenter instructed the participant toiest button. In case participants were in a certain mood already
as many songs as possible; accordingly, within around 80m the beginning of the experiment, they were asked not to
seconds of successfully retrieving each song, the paatitip incorporate such feelings in their rating. This was reqlibe
had to retrieve another song. This secondary task furtrersure that authentic emotions related to traffic eventoor t
increased the likelihood of frustration, since due to emwir human-machine interactions were reported instead of géner
mental noise, speech recognition errors were a frequersecamoods [6]. The level of frustration was recorded at fixed
of impeded progress. After the experiment, the participaimtervals. Figure 4 shows the assessments of three differen
and experimenter returned to the university. The partidipa
was then left alone in a room to complete his/her assessment
of the experienced frustration. Finally, compensationtfair
participation was paid.

D. Procedure

I 0b

E. Measures

1) Pedal Actuation:Force sensors (Kyowa Electronics In-
struments Co., LPR-A-03KNS1 and LPR-R-05KNS1) were
mounted on the gas and brake pedals, respectively, so as to
record the pedal actuation through force signals. The Egna
were originally acquired at a sample frequency of 16 kHz
and further down-sampled to 10 Hz. The effects of different
emotional states on the way we drive remains an open and
very interesting question. This study tackled this problgm
trying to show that gas- and brake-pedal actuation is aftect
by frustration. A controlled area network (CAN-Bus) was not 0 10 20 30
used for our recordings because we decided to adopt sensors (neutral) (slightly) ~ (moderately) (gytremely)

as similar as possible to those used during the CIAIR databas
recordings, Fig. 3. Interface designed for frustration assessment.




30 .
was also used as a feature. As shown in (3), for example,

é 2 {— ’ the time derivative of a discrete-time signal can be catedla
§ 10 by using linear regression coefficients for sigpéh) with a
- l f window of length2K:
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g 20 2) Electrodermal Activity:The skin potential signal, repre-
£ 10 ﬂ - sented asS, was first low-pass filtered using a second-order
£, ﬂ ﬂ_! Savitzky-Golay smoothing filter with a length of 40.1 secend
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forming a smoothed skin potenti&l. Filter characteristics
satisfactorily removed high-frequency noise from the raw
g. 4. Frustration levels assessed by three differenedsiv signal. TheG signal was normalized by subtracting its long-
term mean and dividing the result by its maximu@i.was
then further divided into frames of length points. LetG/(n)

Fi

participants. represent the value of the'” sample of a given data frame,
wheren = 1, ...., L. We calculated the following two statistical
F. Feature Extraction features:

Recorded data were processed so that relevant informatiod) Local mean of normalized signal (mean skin potential):
could be extracted from raw signals. In this section we dlescr
the extracted features and related methods. 1< -

1) Pedal Actuation:Gas- and brake-pedal signals were first fr= L Z G(n) )
divided into frames having a length 8f points. Features were =t
then extracted through cepstral analysis of the gas- arldtbra 2) Absolute value of the first-order difference of the nor-

pedal signals. Ceptrum (cepstral coefficients) is a widskdu malized signal f skin potential):

spectral feature for speech and speaker recognition, amig m L

recently, it has proven to be effective in driver modeling][2 fo = Z ‘é(n +1) - é(n)‘ _ (5)
Ceptrum is defined as the inverse Fourier transform of the —

short-term log-power spectrum and is obtained as follows: _ . :
ap P f1 was further uniformly quantized into four levels arfd

into two. The threshold used to quantizg was defined
M-1 . . .
1 ok experimentally, being the one that provided the best olveral
e(m) = 47 > log| X (k)|e?>mEm/M, estimation.
k=0 3) Speech Recognition ErrorsThe failure of the ASR
m=0,1,....M—1, (1) system to correctly recognize the name of artists or songs wa

where X (k) denotes thel/-point discrete Fourier transform the most common type of recognition error. Participantsewer

of the windowed signak(n). Cepstral analysis is a sourceinstructed to sajNo when reacting to such errors so that they

filter separation process [22]. By keeping only the first save could repe_gt th_e desired m_put u_nt|l the machine got it right

coefficients in the lower “quefrency” and setting othersgez S €xemplified in the following dialogue:

we can obtain a spectral envelope as a filter that representBriver:  Bee Gees.

the process of acceleration or braking. On the other hand, dachine: Do you want to search for Britney Spears?

fine structure of the spectrum, the source, which works asDriver:  No...

the command signal for hitting a pedal, can be obtained byMachine: | am sorry. One more time, please.

maintaining a higher “quefrency” range and setting the lowe Driver:  Bee Gees.

“guefrency” coefficients to zero. It is important to note ttha As a possible indicator of speech recognition errors, we use

information on the spectral envelop is lost when all coedfits the instances when the ASR system recognized a participant’

but ¢(0) are set to zero. Furthermore, before calculating thaterance asNo. This indicator was selected due to its con-

cepstrum, gas and brake were combined by setting the pegistency across different drivers and required calcuidiime,

actuation signal to which is negligible. Since this is a very short event thatsas
#(n) = Fa(n) — Fg(n), @) around 1 second, an enlargement of its boundaries was neces-

sary. Based on a preliminary analysis of frustration vigees

where Fz(n) and Fg(n) denote the gas and brake force sigadded 5 seconds before and 15 seconds after each utterance

nals, respectively. In order to take into account the dycami recognized as\No, as shown in Fig. 5. Here, 20 seconds is

pedal actuation, the time derivative of the cepstral caefiils the time span in which significant verbal or gestural reatio



No Traffic densit
STt Iig%:o >
: H medium OR high = 1
| > Overall face >
. tral = 0
<5—AFH—15 ——> Time [sec] non-neral = 1
Fig. 5. Enlargement of boundaries of an utterance recodraaio. Curve |_| |_|
not a curve = 0 >
curve =1
still occurred; accordingly, we encoded speech recognitio Obstruction H H H
errors as a binary signal, in which errors were indicated by non-opstructed =9 Time>

a 20-second window of “1s.” The enlargement of boundaries
partially solved the problem of different timings betweeBR\ Fig. 6. Example of annotation.
errors and other reactions, such as facial expressions.

4) Self-Reported Frustration:The frustration level was
quantized into two levels: frustrated (frustrationthreshold) Bayesian network (BN) was the natural choice to deal with
and not-frustrated (frustratiori threshold). The optimal quan-such a task. One of the important characteristics of a BN is
tization threshold was determined experimentally, being tthe capability to infer the state of an unobserved variable,
one that provided the best overall estimation. This quatitin  given the state of observed ones. In our case, we wanted to
generated a more consistent signal than the original 088)0- infer a participant’s frustration given the driving enviraent,

speech recognition errors (communication environmemi), a

G. Data Annotation the participant’s responses measured through his/herigghys

We designed a data annotation protocol that covers a numg)%cal state, overall face, and pedal actuation.
9 b he graph structure proposed to integrate all of the aviailab

of environmental factors that might impede a driver's pmrdnformation is shown in Fig. 7. This model was based on

and cause frustration. Facial expression was also inclirde . S .
. ) o ; the following assumptions: (1) environmental factors tiaty
the annotation, since it is one of the possible responses, t0 : . . : .
. have an impact on goal-directed behavior (traffic densibps
frustrating events. Currently, there seems to be no consens, 1 laht sianals. obstructions. turn or curve. and shee
on the best way of annotating driving data, and thus differen 9 9 ' ' '

. recognition errors) may also have a direct effect on frtistna
protocols hgve been adopted [‘.1']’ [6]. In this study, pased ?5 a frustrated driver is likely to present changes in tds/h
scenes of high levels of frustration, selected annotatbels

and possible states were facial expression, physiological state, and gas- and bpakial

) o ) L actuation. In Fig. 7, squares represent discrete (tabntates
1) Traffic density (light/medium OR high); and the circle represents a continuous (Gaussian) node. The

2) Obstructions caused by pedestrians, bicycles, and @ari® mper inside each node represents the number of mutually
vehicles (non-obstructed/obstructed);

3) Stops at red-light signals (non-stopped/stopped);

4) Turn (not turning/turning); Ep Eg Eyq
5) Curve (not a curve/curve); _ _ Tum OR Stops at red-
6) Overall face (neutral/non-neutral). Traffic Zde"S'tY curve light signal
Labels 1-5 provide us with a simple description of the driv- 2 2
ing environment that may affect drivers’ internal statetdda Es
annotation from all 30 participants was manually carrieti ou E, reiggsi‘ii*(‘m
by seven annotators who were allowed to utilize only frontal Oheractions v erTors
video. No audio was provided to avoid bias when labeling Caus‘;d'by . Nzo
overall face data from the video. Annotators, who volurgeer | pedestrians, | Frustration
for the task, coded the time span of_ each_ state, so that sesu b")zyrﬁ':;' > 2
could be seen as a multi-stream of binary information, ag/sho| vehicles T~ Pedal
in Fig. 6. Annotation results were checked individually hg t 2 F actuation
authors to ensure a high reliability. On average, ten mswute
of data took 50 minutes to annotate. To speed up the process,
we are now developing a dedicated annotation interface. We v
focused on designing simple yet informative annotatioelgb Overall face Me‘;‘” f,kiln A Skin potential
making it easier for a real application to automatically and 2 pe in “ 2
effectively annotate them in the future. Ry Ry Rg
H. Analysis Fig. 7. Proposed Bayesian network structure. Squares seqraliscrete

. . étabular) nodes and the circle represents a continuouss&em) node. The
A method for combining all of the different features an@umber inside each node represents the number of mutuallysive states

annotation results in an efficient language was needed, antiaithe node can assume. Labels outside nodes identifpmandriables.



exclusive states that the node can assume. Random variables bt
were identified by a label outside each node: “F” for frustra- P
tion, “E” for environment, and “R” for responses. A (1 [

Traffic density

In addition to the graph structure, it is necessary to specif . ~
the parameters of the model, obtained here using a training P
set. During parameterization, we calculate the Conditiona T?_l [ 1 -
Probability Distribution (CPD) at each node. If the varidbl oM
are discrete, this can be represented as a table (CPT), which ;*"""
lists the probability that the child node takes on each of its MANAAS NN M M N .
different values for each combination of values of its pt&gen P vV _ .
On the other hand, if the variable is continuous, the CPD-is as ok

sumed as a Gaussian distribution. For example, the contguo W
>

nodePedal actuationwhich has only one binary parent, was .

represented by two different multivariate Gaussians, ame f 05 ¢~ (frame length)
each emotional state: frustrated and not frustrated. Fohn ea

observed environment (driving and communication) and tfé- 8- Scheme for entering data into the Bayesian networame shift
Corresponding driver responses, we can use Bayes’ rule's kept to 0.5 seconds. Two consecutive time stepmdt + 1, are shown.

: - " ) MOand L denote the frame length for pedal actuation and skin patenti
compute the posterior probability of frustration, as ddmd respectively.

Time

in (6):
P(F|Ey,FE2,E5,Ey, E5, R1, Ro, R3, Ry) = period of 10.4 years (range 1.4-27 years). The frustration o
P(F|E;, Ey, E3, Ey, Ex) - 10 from the original 30 participants was very short (total
5 duration of frustration scenes less than 20 seconds), $o the
P(Ry|F) - P(Ry|F) - P(Rs|F) - P(Ra|F) [] P(E;),  data were not used. Since possible causes and consequences
P(E1, B2, E3, By, E5, Ry, Ra, Rz, R4) =1 of frustration depend on personal characteristics, wanechi

(6) one network for each participant.

The denominator in (6) was calculated by summing ut T_he optimal _conﬂguratlon (_)f estlmatl_on parameters was
f the ioint bability of P(F. E. R). In addition. in thi achieved experimentally by, first, selecting possible emsng
rtorg € Jo'r; pro .:‘ ”yD(')' h(l ’t . >.t na ||do_n, mt IS OIWe then changed one parameter at a time—keeping the others
study we set a uniform Linchiet prior to every CISCTete NOGk .y i he following order: skin potential signal frame

in the network. This was done in order to avoid over-fitte ..
results due to the Maximum Likelihood approach used fo ngth Z, (16, 32, 64, 128, 160), threshold for quantizing the

A skin potential () into two steps (0.1, 0.2, 0.3, 0.4, 0.5
calculating the conditional probability tables. Withoupaor, iriSCrI]Tef grfgrlﬁygé)r;gr(;mvgt)ef (elpss( 10’ 15’ 20 ’25 1,30 ZO
patt_erns that were no'g _observed n _th_e training _set WOUId 8), and threshold for quantizing the frustration signabin
assigned zero probability, compromising the estimatia3j.[2

Further details on Bayesian networks can be found elsewhtgvr\/(%) steps (0, 1, 2,3, 4, 5,6, 7, 8, 9, 10). At each step, we
[24], [23]. In experiments, we used the Bayes Net Toolbox f elected the optimal value for the parameter being changed.

vi I ini 0, 0
Matlab, freely available [25]. Yata frames were divided into training (60%) and test (40%)

. . I sets.
The network data input scheme is shown in Fig. 8. All of the In order to determine the usefulness of different types of

available data—pedal actuation, skin potential and othrery information as indicators of frustration, we compared the

signals—were entered concurrently. At a given time step results of five distinct variations of the network shown ig.Fi

. . . . . . The direction of arrows was kept fixed and the number of
skin potential and pedal actuation signals, respectiRegults - . o

: X nodes was modified, depending on the network variation—
served as network inputs. The value of each binary labeleat {]

. . ) ... all other parameters were kept fixed at their optimal value.
current time step was directly entered in the network witho P b P

: . : '('jf'able | summarizes the network variations. Besicnetwork
further processing. Frame shift was kept fixed at 0.5 seconds . sed to verify the role of physiological state featuras a
As described in Fig. 8 for two consecutive frames, the vafue phy 9

i . W€ Qacial expressions on frustration estimation; fhaving env
for example, current traffic density has an effect on futkia s . . o .
) ) . . etwork added information on the driving environment to the
potential and pedal actuation signals in order to account

. . . . " Basic network; theCommunication enwetwork focused on
delayed physiological and behavioral reactions. In adudljti . . o .
: . . . : evaluating the importance of speech recognition errors; th
frustration was estimated continuously, i.e., we did na-pr

. . " Pedalsnetwork focused on evaluating the importance of pedal
select segments where we were certain about frustration_or

neutrality and then ianore ambiauous regions actuation; and thé&ull network (Fig. 7) had all nodes.
y 9 9 9 ' In order to achieve the optimal parameters for the Pedal

actuation node, we conducted experiments usingFRbéals
1. EXPERIMENTAL SETUP AND EVALUATION network. Tested parameters were driving behavior sigaahé
Experiments were performed with data from 13 male ardngth M (8, 16, 32, 64, 128) and number of cepstral coef-
7 female participants. They were, on average, 29 years dicients (0, 1, 2, 4). When calculating the time derivative of
(range 20-46 years) and had held a driver’s license for a mgagdal actuation2 K = 800 ms was used.



TABLE |
NETWORK VARIATIONS

Network variations
Nodes Basic Driving env | Communication Pedals Full (Fig. 7)
env

frustration v v vV vV vV
mean skin potential V4 V4 VA VA VA
Askin potential V4 V4 VA VA VA
overall face V4 V4 VA VA VA
traffic density V4 VA VA VA
turn or curve V4 VA VA VA
stops at red-light signal V4 VA VA VA
obstructions caused by pedestriarjs,

bicycles, and parked vehicles v v v v
speech recognition errors V4 V4
pedal actuation V4 V4

We evaluated the capacity of the proposed system to detdet better. Circles centered at (0,1) are plotted so thdrdifit
frustration. After calculating the estimation signal fomclh results can be easily compared. TBasic network, which
participant, i.e., the posterior probability of the fradton relied on physiological state and facial expressions, algtu
node, it was quantized into two steps: frustrated (proiigh#  achieved the worst overall result. The best overall resals w
0.5) and not frustrated (probability 0.5). The result was then achieved by thé&-ull network: a true positive (TP) rate of 80%
filtered using a median filter of 12 seconds so that spikesdcownd a false positive (FP) rate of 9% (i.e., the system cdyrect
be removed. In order to estimate the overall effectivenéss estimated 80% of the frustration and, when drivers were not
detection, we summed true (T)/false (F) positives (P)/tiega frustrated, made mistakes 9% of the time). Furthermore, the
(N) from all drivers so that we could calculate overall trueesults suggest that information on the driving and communi
and false positive rates, represented by a single pointen ttation environment, as well as pedal actuation, was effecti
receiver operating characteristic (ROC) space. Overadl &and in improving the model accuracy, adding new information to
false positive rates were calculated as follows: the Basic network.

Figure 12 shows the above influence in the results of

I
TP, i i i ;
overall TP rate — > _and @) different threshplds for quantlzmg the_frustratlon leivetd tvvp
Zf(TPi + FN;) steps. Automatic selection of the optimal threshold preuid
s better estimation than simply setting values above zerbén t
overall FP rate — —2i L Fs (8) original scale as “frustrated” (threshold = 0).

Zf(TNi +FP)’ Figure 13 shows the results of tfRedalsnetwork trained

where/ is the total number of participants. The ROC spa With different numt_Jers of cepstral coefﬂments_. The woret-p
: o , - ormance was achieved when the network relied only:@n,
provides a ratio indicating the system'’s ability to corhgct .

estimate frustration versus its transparency, i.e., tistesys i.e., when no spectral information was provided. This figdin

ability to suppress false alarms and avoid driver annoyanceguggeStS.that not only the intensity of_the_pedal actqatg:llfds
ut also its spectral envelope contains important infoiomat

on the driver's emotional state.
Optimal estimation parameters, which provided the best
Within the data used in experiments, 129 scenes of frustigerall estimation results, were skin potential signaifea
tion (segments with original scale above 0) were found. Qength L. of 128 points, threshold of 0.3 for quantizing the
average, participants got frustrated 6.5 times while dgvi A skin potential () into two steps, Dirichlet prior hy-
The mean strength of frustration scenes was 10.5, and H’@parameter of 30, and threshold of 5 for quantizing the
mean duration was 11.8 seconds. frustration signal into two steps. The optimal driving beba

Figure 9 shows estimation results for individual drivergignal frame length\/ was 16 points, and the best cepstral
arranged side by side: actual frustration from all 20 particcoefficients were:(0) + ¢(1).

pants (top); the posterior probability of the frustratioode
calculated using théasic network (center); and quantized V. DISCUSSION
posterior probability using a threshold of 0.5 (bottom).eTh The results of this study suggest that the estimation of a
guantized probability of each driver was further mediardriver’s emotional state would gain from a more meaningful
filtered to remove spikes. Figure 10 shows the same dat®deling strategy that combines information on the environ
calculated using th&ull network. These results suggest thanent, the driver’'s internal state, and his/her responses in
the estimation benefited from the introduction of additionaingle system. We believe that the same type of modeling
information. discussed here could be applied to a number of driver-
Overall quantitative results for all five network variattoare monitoring problems other than frustration estimationchsu
shown in Fig. 11. In the ROC space, the point (0,1) represemss stress, attention and drowsiness detection. In thisosect
the perfect estimation. The closer the result gets to thistpo we discuss the results and their implications.

IV. RESULTS
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False positive rate

) ) ] ) Fig. 12. Overall results achieved using different thredhdor quantizing
Experiments were performed with five different networltustration level into two steps.

variations. TheBasic network presented the worst perfor-

mance, being unable to satisfactorily identify frustratimased

solely on facial expressions and physiological conditi®ne increasing the overall estimation accuracy, as expectbis T

of the reasons for such poor results is that drivers may mesult, together with the lessons learned during the CIAIR

spond similarly to both frustrating and certain non-frastrg database annotation, indicates the relevance of consgleri

situations. When the driving environment was introduced, @mmmunication quality as an indicator of emotions. Althbug

more accurate estimation was obtained. The newly addeda more realistic scenario the driver could simply refrain

information provided a context to drivers’ responses,vailhg from using speech commands, interaction with ASR systems

a meaningful interpretation of events. The driving enviremt are becoming part of everyday life as such systems become

in the present study was represented as a series of binabyquitous. Therefore, the effects of this interaction trioes

signals manually coded; however, we believe that the samerefully studied.

knowledge could be obtained automatically by integrating Results from thePedalsnetwork also allowed us to draw

information from the infrastructure, navigation systemd &- important conclusions: (1) the way gas and brake pedals are

car cameras. used might be affected by frustration; and (2) the effect of
Experiments with th€ommunication enaetwork indicated frustration can be observed not just in the intensity of thegb

that information on speech recognition errors was effedtiv. actuation signal but also in its spectral envelope. Theegfo



reporting of self-perceived negative information, sutjenay

be more economical with the truth with humans than with

S computer interrogators [26]. Moreover, self-assessmesy m

0.9 have allowed each participant to have his/her own standards
= In an effort to cope with this issue, we only trained indivédiu

e models tailored to each driver. The personalization of sleki

§ 0.8 (O40:77) + is a current tendency [21]; thus the adoption of individual
= _-¥87(0.18,0.78) models was not an unreasonable choice. Moreover, the raw
g el frustration signal (0-30) was automatically quantizea itvwo

E 0.7 levels, generating more consistent information.

Other limitations were related to the experimental design.
Previous studies on the occurrence of emotions [15] sugdest

06 C(O)+EE$;; that the inclusion of a sense of time pressure in the scenario
c(0) + ¢(1) + ¢(2) ¥ resulted in higher levels of aroused anger and stress. Time
c(0) + c(1) + ¢(2) + c(3) + c(4) OO urgency could have been used in this study to further provoke
05 ; ; frustration. Nevertheless, although the only form of puess
0 0.1 0.2 0.3 0.4 0.5 considered here had to do with the number of songs that should
False positive rate be retrieved using the ASR system, the results indicatethieat

Fig. 13.  Overall results achieved using a network traineth wiifferent Scenarl-o e)-(pe”enced by the participants was sufficientida e
nurﬁber.s of cepstral coefficients. Dashed lines are partrolesi centered at frustration in most of them.
(0,2). It is impossible to simultaneously consider more than a
small part of the available information when modeling the
driver. Our selection of features inevitably constrainad o

cepstral coefficients of the pedal actuation signal and teé interpretation of frustration in ways difficult to predi@radley
derivative ought to be considered in future research in @mot and Lang [27] summarized emotional cues into three cat-
recognition. Current studies that investigate pedal d@icha egories: behavioral sequences, physiological reactians,
tend to use only such features as mean and standard deviaigfiotional language. In this study, although behavioral and

The threshold for quantizing the frustration level into tw@hysiological clues were combined, language was analyzed
steps was the same for all drivers, and it was selected expsiity to identify speech recognition errors. Other cues ftbe
imentally. Results show that, compared to a simple selectigpeech signal and speech recognition results, such asdyroso
of values above zero as “frustrated,” automatic search fior and semantics, should be investigated in future work. infor
optimal threshold provides a better overall estimatiorst®8 mation on the vehicle (e.g., velocity or lane deviation)Idou
for other values close to the optimal threshold of five werglso be included, depending on the goal of the applicatibe. T
similar. We believe that selecting this threshold indidlly developed system is very scalable; therefore, new feataes
may further improve the estimation. This topic will be sedli be easily combined. Finally, we intend to assess the getyeral
as a future work. of our method regarding both individual and overall tendesc

In this study, frustration was reported quite often. Onefter collecting a larger dataset.
possible explanation is that the unfamiliarity of expennia
conditions, instrumented car, experimenter, and ASR syste
may have had an impact on drivers, making them more
sensitive. The higher frequency can also be explained byThis study showed that a more comprehensive modeling
the assessment method. Usually, driving-log or questiogna method, which takes the environment into account, provides
based assessment leads to an under-registration of mild emdetter estimation of frustration and, possibly, of oth@ioe
tions. People tend to remember only more extreme cases #inds. The inclusion of speech recognition errors was &ffec
forget about mild ones. The fact that in the present studytmas increasing the overall accuracy of results, suggestireg t
of the reported emotions were mild (average strength of)10ASR systems have an impact on the driver's emotional state
supports this hypothesis, which is also in line with the worind, thus, should be considered in future studies on emotion
done by Mesken [6]. recognition and interface design. Information on gas- and

The present study had some limitations, the first being rerake-pedal actuation positively contributed to the olera
lated to the frustration assessment method. Data repoeted hresults, which gives further indication that the way we driv
were based solely on self-assessment, thus social déisjrabmight be affected by our emotional state. Not just the energy
might have biased the data. It is possible that some paatitsp of the pedal actuation signal but also its spectral envelope
may have embellished their answers. Nevertheless, peatits played a role in improving estimation. In addition, autoimat
could not gain any benefit by disguising their behavior singuantization of frustration levels proved to be more satisiry
confidentiality of their personal data was assured to thedh athan a simple manual selection.
the assessment was conducted in a separate room, withouurther research may be directed at the inclusion of a model
interference from the experimenter. In fact, classicalistsi of speech prosody or semantics-related features. In addliti
on human-computer interaction suggest that, concerniag the evaluation of a dynamical structure that considers the

VI. CONCLUSION
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temporal relationship between nodes is an interestingctof#3] C. M. Bishop, Pattern recognition and machine learning/l. Jordan,

and ought to be investigated. More insights could be gaine4
as well by further analyzing the ASR system and how differehzt ]

drivers react to different types of errors.
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