
A Study on
Knowledge Discovery among

Multiple Evolving Data Streams

Wei FAN

February 2011

ABSTRACT

Recently, data stream mining techniques become more and more important in many applications.

For example, intrusion detection on the network flow data, outlier detection of sensor network

data, and usage analysis on telecommunication data. In these applications, we utilize data stream

mining algorithms to discover up-to-date patterns or associations hidden inside the continuous

data. Beside the researches on single data source, in the era of information overload, it is also

meaningful to mine correlations among cross-domain data sources in order to support people’s

decision making. For example, automatic analysis of news articles concerning to the financial

market is helpful to generate profitable action signals (buy or sell stocks) accurately.

In this dissertation, we aim to discover interesting correlations among multiple evolving data

streams. In terms of different streaming data sources, firstly, we categorize the correlations in

the streaming data into two basic correlations: discrete correlation and continuous correlation.

The discrete correlation corresponds to the applications assuming that the data samples are in-

dependent with each other. For example, in the market basket data, we assume that the records

of customers’ purchase are independent, thus the correlations among attributes (products) are

discrete. Existing techniques of frequent itemset mining regard the frequently co-occurred sets

of attributes as highly correlated attributes. However, in some cases, we may miss important

patterns. For example, we may be interested in the knowledge of “what are the symptoms of

the new and rare illness?” from medical records data, although the occurrence of the illness is

rare. Correlation based association rules mining provides good solution to this kind of problem.

However, corresponding algorithms of mining correlated patterns in static datasets exist, but no

work has been done so as to complete the same task for data streams.

On the other hand, in some applications (i.e., sensor network, stock market), data samples

in the whole collection of time series are correlated with each other in the alignment of time.

i

In this case, we define the cross-relationship among the multiple continuous time-series data

streams as continuous correlation. Existing researches calculated the correlations between streams,

and reported highly correlated pairs of streams. However, none of these algorithms manages to

compactly and adaptively describe the key trends among the whole collection of streaming time

series, although streams often are inherent correlated. The key trends are useful to reduce the

massive numerical streams into just a handful of variables. Besides, several works are reported

on applying clustering techniques to multiple data streams for discovering cross-relationships.

However, the existence of data evolution in data streams leads to another important issue of

supporting various clustering requirements at the same time, instead of the existing works on

periodical way of checking cluster evolutions.

Consequently, this dissertation extends the study to mine complex correlations in cross-domain

data sources by combining the investigations of these two kinds of basic correlations. Hence, in

this dissertation, we do further explorations of correlation discovery in different applications of

data streams. The key research challenges that arise in this dissertation include:

(I) correlated patterns mining in streaming transaction data;

(II) adaptive and flexible correlation mining among massive continuous time series; and

(III) cross-domain correlation analysis among multiple sources of data streams.

This dissertation makes a number of contributions toward the solutions of these tasks, including

the following algorithms:

• Quantifiable Correlated Patterns Mining: This method achieves to mine correlated attributes

from streaming transaction data. Additionally, in the applications of quantitative data, we

also discover frequent ratio associations among the highly correlated attributes. To the best

of our knowledge, this work is the first study achieving to mine both of correlations and

ratio associations in streaming quantitative transaction data with only single scan of data

and limited memory.

• Correlated-Clusters Mining: This algorithm reduces massive evolving streaming time-series

data into just a handful of hidden variables, which summarize the key trends of massive

ii

evolving time-series data streams automatically, incrementally and adaptively. We prove

that the discovered hidden variables can be used to detect concept drifts immediately, and

do efficient forecasting in sensor network.

• Flexible Timeline Clustering: A framework is proposed to support various clustering require-

ments at any time during the whole collection of streaming time-series data. In the requests

of clustering, the user specifies arbitrary interested time periods. An incremental time-series

approximation method and statistic maintenance hierarchical structures are proposed to

satisfy the demands of efficient retrieval with high accuracy.

• Dynamic Prediction of Stock Prices Based on Analysis of News Articles: As an example

of correlation analysis among cross-domain data sources, we realize automatic analysis of

the correlation between online news articles and stock prices. This work classifies the news

articles into good news which are followed by a moving up trend in the company’s stock

market or bad news, reversely. In this problem, classification is the process of mining we

defined discrete correlation, for the reason that we treat the collection of news articles

as transaction data consisting of words, and the news articles are independent with each

other. In order to improve the accuracy of prediction, we also take account of continuous

correlations in this problem. On one hand, in the generation of news articles for learning, we

abstract trends of stock prices, and then label the news articles according to corresponding

trends in stock prices; on the other hand, we propose dynamic mechanism of choosing

sliding windows to identify trends of stock prices according to the contents of consecutive

news articles, taking account of the case that significant topics in consecutive news articles

may influence the stock market sensitively.

Extensive experiments on both synthetic and real-life data demonstrate that our work is ef-

fective and practical. Furthermore, as the trial of investigating correlations between news articles

and stock prices, the proposed correlation mining techniques can be used as the bases of another

intelligent data analysis goal, information integration.

iii

ACKNOWLEDGMENTS

I would like to express my thanks to my adviser, Prof. Toyohide Watanabe, Dr. Engg. for his

academic supervision during my Ph.D. study at Nagoya University. I am very fortunate to be his

student during the past four years. He has given me courage and confidence to do the research.

Without his help, it would have been difficult to achieve my academic goal. More importantly, he

gave me many invaluable advices to improve myself.

My sincerely thanks are extended to Prof. Yoshiharu Ishikawa, Dr. Engg., Prof. Shuichiro

Yamamoto, Dr. Engg., and Associate Prof. Yusuke Hayashi, Dr. Engg. for serving as my super-

visory committee. I greatly appreciate for their feedback, suggestions, and insightful perspective

on my research.

I am also grateful to Associate Prof. Koichi Asakura, Dr. Engg. (School of Informatics, Daido

University), Assistant Prof. Tomoko Kojiri, Dr. Engg. (Graduate School of Information Science,

Nagoya University) for giving me significant advices and guidances on research and life.

Thanks also go to our team members in the Data Mining group and members in Watanabe

lab, especially: Mr. Yusuke Koyanagi and Ms. Jie Zhang, for their assistance.

I am very thankful to my parents in China for their love, support and encouragement over

these years.

v

Contents

ABSTRACT i

ACKNOWLEDGMENTS v

1 INTRODUCTION 1

1.1 Research Background . 2

1.1.1 Mining of Single Data Source . 2

1.1.2 Mining of Cross-domain Data Sources . 3

1.2 Research Objective and Contributions . 5

1.2.1 Discrete Correlation Mining in Streaming Quantitative Transaction Data . 8

1.2.2 Continuous Correlation Mining among Massive Time-series Data Streams . 9

1.2.3 Cross-domain Correlation Investigation over Multiple Data Sources 13

1.2.4 Contributions . 13

1.3 Organization . 19

2 Related Work and Research Horizon 23

2.1 Data Processing Model . 23

2.2 Correlated Patterns Mining in Streaming Transaction Data 26

2.2.1 Knowledge Discovery in Static Transaction Data 26

2.2.2 Correlation Mining in Streaming Transaction Data 30

2.3 Correlation Discovery over Time-series Data Streams 32

2.3.1 Correlated-clusters Mining . 32

2.3.2 Flexible Timeline Clustering . 33

2.4 Stock Price Prediction Based on Textual Information 34

vii

3 Quantifiable Correlated Patterns Mining 37

3.1 Introduction . 37

3.2 Problem Statement . 38

3.3 Generation of Highly Correlated Attributes . 40

3.3.1 Candidate Generation Rule . 40

3.3.2 Candidate Generation Method . 42

3.3.3 Discussion of False Negatives . 45

3.3.4 Algorithm for Finding Highly Correlated Attributes 46

3.4 Mining Frequent Ratios among Attributes . 46

3.4.1 Ratio Range for Pruning . 46

3.4.2 Property for Candidate Pruning . 47

3.4.3 Candidate Enumeration . 47

3.5 Experimental Results . 48

3.5.1 Efficiency of Generating Correlated Sets 49

3.5.2 Efficiency of Mining Frequent Ratios . 49

3.5.3 Quantifiable Correlated Patterns vs. Frequent Ratio Rules 50

3.5.4 Experiments on US Census Data . 50

3.6 Summary . 51

4 Underlying Correlated-clusters Mining 61

4.1 Introduction . 61

4.2 Problem Definition . 63

4.2.1 Identification of a Correlated-cluster . 63

4.3 Proposed Correlated-clusters Mining Process . 66

4.3.1 Assignment of Correlated-cluster . 66

4.3.2 Update of Local Correlations . 68

4.4 Experiments . 69

4.4.1 Experimental Methodology . 70

4.4.2 Experiments on Synthetic Data . 70

4.4.3 Experiments on Real Data . 72

viii

4.5 Summary . 73

5 Flexible Timeline Clustering over Data Streams 79

5.1 Introduction . 79

5.2 Framework . 80

5.3 Online Statistics Maintenance Phase . 81

5.3.1 Online Statistics Collection . 81

5.3.2 Multi-level Summary Statistics Hierarchy 85

5.4 Offline Clustering Phase . 88

5.5 Complexity Analysis . 90

5.6 Empirical Results . 93

5.6.1 Test Environment and Data Sets . 93

5.6.2 Sensitivity Analysis . 95

5.6.3 Clustering Quality . 95

5.6.4 Scalability Analysis . 95

5.7 Summary . 96

6 Cross-domain Correlation Mining among Multiple Data Sources 101

6.1 Introduction . 102

6.2 Generation of Labeled News Articles . 105

6.2.1 Representing Trends of Price Series . 105

6.2.2 Aligning Trends with News Articles . 110

6.3 Preprocess of News Articles . 110

6.3.1 Feature Selection . 111

6.3.2 Filtering and Weighting Scheme . 112

6.4 SVM-based Classification of News Articles . 114

6.5 Regression-based Stock Price Prediction . 114

6.6 Extension to Dynamic Prediction of Stock Data 115

6.7 Experiment Results . 115

6.7.1 Experimental Setup . 115

ix

6.7.2 Experiments on Representation of Movement in Price Series 116

6.7.3 Experiments on Preprocessing News Articles 119

6.8 Summary . 119

7 CONCLUSIONS 123

BIBLIOGRAPHY 129

PUBLICATION 139

x

List of Figures

1.1 Approximate results of data stream mining. 3

1.2 Multi-dimensional correlations among multiple streaming cross-domain data sources

of social activities. 4

1.3 Examples of temporal correlations between two streaming variables. 5

1.4 An example of quantifiable correlated pattern mined from network flow data. . . . 8

1.5 An example of mining hidden variable for immediate detection of outlier. 10

1.6 Principal Component Analysis and correlated-clusters (a) PCA on currently corre-

lated data reduces 2-dimensional to 1-dimensional (b) PCA on continuous changing

correlated data (c) PCA on correlated-clusters in the same data as in (b) 11

1.7 An example of supporting flexible timeline clustering of two time series of stock

prices. 12

1.8 An example of bad news article which cause a sudden drop in the stock market. . 13

1.9 Studies on knowledge discovery in transaction data 15

1.10 Combination of investigations of discrete correlation and continuous correlation in

the application of stock price prediction based on analysis of online news articles . 18

1.11 Organization of this dissertation . 20

2.1 Landmark Window Model. 24

2.2 Damped Window Model. 24

2.3 Sliding Window Model. 25

2.4 An example of multiple ratio rules . 31

3.1 A running example of quantitative transactional data. 39

3.2 Shape of function f(x) = 1− (1− xk)t. 44

xi

3.3 Algorithm for generating highly correlated attributes 52

3.4 A sliding window . 53

3.5 Whole dynamic data streams . 53

3.6 Pruning power comparison . 54

3.7 Scalability for generating correlated sets . 54

3.8 A sliding window vs. support s . 55

3.9 Whole dynamic data vs. support s . 55

3.10 A sliding window vs. ratio tolerance d . 56

3.11 Whole dynamic data vs. ratio tolerance d . 56

3.12 Pruned ratio vs. support s . 57

3.13 Pruned ratio vs. ratio tolerance d . 57

3.14 Scalability of mining frequent ratios . 58

3.15 Cumulative probability distribution of correlation coefficient 58

3.16 Cumulative probability distribution of support . 59

3.17 Quantifiable correlation between number of private wage and salary workers and

number of people with some college eduction . 59

3.18 Quantifiable correlation between number of houses owning 2 vehicles and number

of people with some college eduction . 59

4.1 Overview of the proposed incremental process . 62

4.2 An example of correlated-cluster . 64

4.3 Reconstruction error . 74

4.4 Incremental update of local correlations . 74

4.5 Accuracy vs. the number of hidden variables k . 75

4.6 Execution time vs. the number of hidden variables k 75

4.7 Accuracy vs. degree of correlation p . 76

4.8 Execution time vs. total number of data samples N 76

4.9 Example of real sequences of images . 77

4.10 Comparison of accuracy . 77

4.11 Detail of forecasts with blanked values. 78

xii

5.1 An overview of the proposed framework for clustering multiple evolving data streams. 80

5.2 An example of tolerance slope interval. 82

5.3 Illustration of tolerance slope interval of L(a1, a4). 83

5.4 A proposed approximation algorithm. 84

5.5 An example of integration of two segments. 85

5.6 Geometric interpretation of segment integration criterion. 86

5.7 Procedure for constructing summarized statistics hierarchy. 88

5.8 Procedure for integrating segments. 89

5.9 The outline of the adaptive subsequences abstraction algorithm 90

5.10 The illustration of summary hierarchy, where BW1 0 : T : k1 represents the 0-th

basic window at level 1 of time horizon Bt = T , k1 is the number of segments in

this basic window, t[1,1,k1] records the end time point of the last segments of the first

basic window at level 1, Entry1 is the generated entry for the most recent sliding

window from t1 and Bh = 2. 91

5.11 The worst case of our approximation method . 92

5.12 Fast/Slow Synthetic Dataset . 93

5.13 Sensitivity Analysis . 97

5.14 Experimental results on Real Data . 98

5.15 Scalability Analysis . 99

6.1 Overview of our proposed procedures for prediction of forthcoming trend in stock

market based on analysis of news articles. 105

6.2 Stock price series at time instant t. 106

6.3 Example to identify trends of prices data. 109

6.4 Alignment of news articles. 110

6.5 An example of terms. 111

6.6 Effect of sliding window size on accuracy. 116

6.7 Real stock price of company E in 2006 and the prediction price with respect to

ht = 20. 117

6.8 Big news released on March 14, 2007, which trigger sudden drop in stock market. 118

xiii

6.9 Prediction price after dynamic adjustment of sliding window for observing stock

market. 119

6.10 Comparison of RMSE of prediction after dynamic adjustment of sliding window. . 120

6.11 Comparison of prediction accuracy. 121

6.12 Comparison of RMSE ratio exhibited by companies. 121

xiv

List of Tables

1.1 An example of network flow data. 6

1.2 Research themes. 19

2.1 Contingency table of the purchase of Tea and Coffee [?] 27

3.1 An example of min-hashing. 43

3.2 An example of k-min-hashing. 44

3.3 Real datasets description. 48

4.1 Input parameters of synthetic data generator. 71

6.1 Experiment on different preprocessing method of news articles 120

7.1 Main contribution, future works and possible applications. 125

xv

Chapter 1

INTRODUCTION

In recent years, with the advances in processing and communication techniques for facilitating

the collection of data continuously, there are many emerging applications to deal with the rapid

growth of data sets which are referred to as data streams: for example, network flow analysis [?],

sensor network monitoring [?], telecommunication data management [?], financial data analysis [?]

and scientific data processing [?]. Traditional systems for data analysis store the arriving data for

later analysis, and allow developers to create algorithms that make multiple passes through the

data. However, in the applications of data streams, the fact that massive amounts of data arrive

at high rates, makes the traditional systems prohibitively slow, and challenges the traditional

storage, computation and communication techniques.

Over the past few years, a considerable number of studies have been made on the topic of

data streams [?,?,?,?]. We can categorize the literature into two big research directions. Data

Stream Management System (DSMS) techniques, which provide SQL-like supports for continuous

query have been studied in many data stream systems [?,?,?]. On the other hand, data stream

mining techniques extended from the traditional data mining techniques to the mining of complex

models (e.g., decision trees, sets of rules) in data streams have also provoked a great deal of

controversy [?, ?, ?, ?]. Belonging to the field of data stream mining, we aim at contributing to

further explorations of correlations that may exist in various applications of data streams.

Our research background, objective and approach features are firstly introduced in this chapter.

Then the contributions of this work are briefly summarized. Lastly the organization of this

dissertation is depicted.

1

1.1 Research Background

1.1.1 Mining of Single Data Source

As mentioned in the above section, recently, data stream mining techniques become more and

more important in many applications. For example, intrusion detection on the network flow data,

monitoring and outlier detection of sensor network data, and usage analysis on telecommunication

data. In these applications, we utilize data stream mining algorithms to discover up-to-date

patterns or associations hidden inside of the continuous data.

A data stream refers to a continuous flow of data generated at high-speed in dynamic, time-

changing environments. The traditional data mining approaches cannot cope with this streaming

setting. Hence, it is required to propose new data stream mining techniques for discovering

interesting patterns or anomalies in real time. Several crucial challenges have to be taken into

account in all applications when we develop data stream mining techniques. Such challenges are:

• High data generation rate results in one pass requirement. The volume of data

streams is often far beyond our cognition. For example, in a single day Wal-Mart records

20 million sales transactions, Google handles 150 million searches, and AT&T produces 270

million call records. Scientific data collection (e.g., by earth sensing satellites or astronomical

observations) routinely produces gigabytes of data per day. In this context, traditional data

mining algorithms which make multiple passes over the data set cannot mine even a fraction

of the streaming data in useful time. Therefore, it is important to design data stream mining

algorithms which require only one pass of the arriving data and work with limited memory.

• Evolving nature requires dynamic data handing. The data samples in data streams

may show concept shifts over time because of fundamental changes in the underlying phe-

nomena. For effective decision making, stream mining must be adaptive to concept shifts.

For example, when customer purchasing patterns change, marketing strategies based on

out-dated transaction data must be modified in order to reflect current customer needs.

Therefore, a straightforward adaption of one-pass mining algorithms may not be an effective

solution to the task. Stream mining algorithms need to be carefully designed with a clear

focus on the evolution of the underlying data.

2

Datawarehouse

New data

Synopsis

Mining requestApproximate results
Data streammining engineering

Figure 1.1: Approximate results of data stream mining.

• Unboundedness entails approximate mining results. Because data streams are un-

bounded, they have to be processed while new data arrives. A stream mining algorithm

cannot wait until the end of a stream is reached before returning any data mining results.

However, obtaining accurate and optimal results requires storing the entire history of the

stream. As this requirement cannot be fulfilled in a streaming environment, stream mining

algorithms aim to approximate results, as illustrated in Figure ??. According to the single

scan of streaming data, the algorithms store a summary of a data stream, often referred

to as synopsis, which consumes less space than the stream itself. The tasks of data stream

mining are executed on the synopsis. Some algorithms provide guaranteed error bounds for

the quality of the approximate mining results.

A considerable number of studies have been made on proposing incremental and adaptive

algorithms as the extension of traditional data mining algorithms to be applied to data stream

environments [?,?,?].

1.1.2 Mining of Cross-domain Data Sources

Besides the needs for knowledge discovery from single data sources, in the era of information

overload, it becomes more and more important to mine interesting correlations in streaming cross-

domain data sources to support people’s decision making.

For example, people read the news to understand what is happening and what might happen in

the future, and may be interested in the stories which suggest why current economic performance

is poor or predict an upturn in the economy in the coming months specially. Thus news releases

influence human behavior, and so may indirectly affect the fluctuations in the time series of

3

Streaming data generation Internet
Multi-dimensional correlation

Time

News articles Stock prices

up…

Blogs Sales
Entity

Figure 1.2: Multi-dimensional correlations among multiple streaming cross-domain data sources
of social activities.

economic performance. Here we can see the automatic analysis of news articles concerning to the

financial market is helpful to generate profitable action signals (buy or sell stocks) accurately.

Moreover, with the rapid proliferation of blogs, wikis and social networking sites, people are

expressing their thoughts more freely, publicly, and frequently than ever before, and the demand of

analyzing mass opinion by corporations, governments, and individuals is increasing dramatically.

By mining user-generated comments, the product manager could quickly “take the pulse” of

consumers in regard to certain products, or get the information why the sales dropped. Political

parties need public opinion information to determine how their candidates are faring. A person

running for president might need to track how she is doing on a state-by-state or even province-by-

province level, while compiling similar numbers for her opponents. In the application of e-market,

individuals may be prefer to accept the recommendations from people having the similar interests

of themselves or belonging to the social network, where people are friends, coworkers, etc.

Therefore, we can see the correlations among social activities are complex and diversified. In

order to investigate the complex correlations, the important issue is how to effectively organize the

4

Discrete correlationA
B time

Continuous correlation

Mining complex correlations by combining the investigations of the two kinds of correlations

Figure 1.3: Examples of temporal correlations between two streaming variables.

massive streaming data. From the above examples, it would be possible to organize cross-domain

data sources in the dimension of time (i.e., investigation of associations between news releases with

time series of economic performance), space (i.e., comparison of the status of election state-by-

state) as well as entity (i.e., providing recommendations based on the analysis of social network)

as shown in Figure ??.

1.2 Research Objective and Contributions

In this dissertation, referring to the Figure ??, we aim at investigating correlations among multiple

streaming cross-domain data sources in the dimension of time. It is also possible to combine the

mining results of correlations in terms of different dimensions to discover high-level knowledge,

but this issue goes beyond the discussion of this dissertation. We are willing to propose efficient

methods to integrate multi-dimensional correlations in our further research work. In this disser-

tation, firstly, we analyze the possible correlations existing in a single data source, and then we

extend the study to mine complex correlations in cross-domain data sources.

In terms of data streams in a single data source, we categorize the correlations into two basic

correlations discrete correlation and continuous correlation. As shown in Figure ??, we give

the example of two streaming variables A and B. The discrete correlation corresponds to the

5

applications assuming that the two dimensional data samples (one dimension is A, and the other

is B) at different time points are independent with each other. For example, in the market basket

data, we assume that the records of customers’ purchase are independent, thus the correlations

among attributes (A and B) are discrete. Existing techniques of frequent itemset mining regard

the frequently co-occurred sets of attributes as highly discretely correlated attributes. Taking

the example as shown in Table ??, the network flow data records the IP addresses of sources

and destinations, duration of sessions, bytes as well as the protocol of transmissions. From these

data, frequent itemset mining techniques can discover the discrete correlations, such as sets of

IP addresses (sources and destinations) involved in more than 1000 sessions. Other techniques

like clustering as well as classification are also applied to mining multi-dimensional streaming

transaction data assuming data samples are independent with each other.

On the other hand, in some applications, as shown in Figure ??, variables A and B are

continuous evolving time-series data (i.e., the daily close price data of every brand in stock market,

observation data from sensor network). In this case, it may be not appropriate to assume the data

samples at different time points of variable A or B to be independent. Take the example of

a coal mine, where thousands of sensors keep reporting the observed data of the temperature,

the humidity, and the concentrations of oxygen and gas in pits. It is important to monitor

the surveillance data streams. Due to the nature of sensors and the detection environment, the

collected data often includes noise. In such a scenario, apparently, existing studies on clustering the

multi-dimensional streaming data objects [?] (i.e., independent records of (temperature, humidity,

oxygen concentration, gas concentration)) does not make good sense. These methods fail to

Table 1.1: An example of network flow data.
Source Destination Duration Bytes Protocol
10.1.0.2 16.2.3.7 12 20K http
18.6.7.1 12.4.0.3 16 24K http
13.9.4.3 11.6.8.2 15 20K http
15.2.2.9 17.1.2.1 19 40K http
12.4.3.8 14.7.8.4 26 58K http
10.5.1.3 13.0.0.1 27 100K ftp
11.1.0.6 10.3.4.5 32 300K ftp
19.7.1.2 16.5.5.8 18 80K ftp
· · · · · · · · · · · · · · ·

6

discover interesting knowledge as well as in high-dimensional applications, because all pairs of

data objects tend to be almost equidistant from one another due to sparsity of data [?]. Instead it

may be helpful to analysis the continuous data distribution of all the sensors. Therefore, in terms

of the applications of time-series data streams, we define the continuous correlation to describe

the cross-relationship between the variables A and B. According to the continuous correlation, if

we know the behavior of variable B in a time period, then we may predict the future fluctuations

of variable A.

In terms of the existing researches on frequent itemset mining, hidden discrete correlation

among rare but important events (i.e., the knowledge of “what kind of transmission may cause

failure in network connection?” in a medical records data) cannot be discovered by existing fre-

quent itemsets mining algorithms. Thus, the definition of frequent co-occurrence in the existing

work is insufficient to represent the discrete correlation among attributes. Those infrequent but

significant patterns are too expensive to be obtained by the existing frequent itemset mining al-

gorithms. Corresponding algorithms of mining correlated patterns in static datasets exist, but

no work has been done so as to complete the same task for streaming transaction data. On the

other hand, existing researches in [?,?,?] calculate the continuous correlation among time-series

data streams, and report highly correlated pairs of streams. However, none of the algorithms can

compactly and adaptively describe the key trends among the whole collection of streaming time

series. Furthermore, several works are reported on applying clustering techniques to multiple data

streams for discovering continuous correlations. However, the existence of data evolution in data

streams leads to another important issue of various clustering requirements at the same time,

instead of the existing works on periodical way of checking cluster evolutions [?,?].

Finally, this dissertation extends the study to mine complex correlations in cross-domain data

sources by combining the investigations of these two kinds of basic correlations. Therefore, the

key research challenges that arise in this dissertation include

(I) Discrete correlated patterns mining in streaming transaction data [?,?];

(II) Adaptive and flexible continuous correlation mining among massive time-series data streams

[?,?,?,?,?,?,?]; and

7

Quantifiable correlated
patterns:
“Total transmitted bytes per
second in a session above
1000Kbytes may cause
failure for connection.”

Network flow data
Figure 1.4: An example of quantifiable correlated pattern mined from network flow data.

(III) Cross-domain correlation analysis among multiple sources of data streams [?,?,?].

In the following subsections, we give summarized explanations of these challenges.

1.2.1 Discrete Correlation Mining in Streaming Quantitative Trans-
action Data

Frequent itemset mining as one of the most important issues of data mining has been applied

to many applications of transaction data. Often, the number of resultant frequent itemsets in

terms of specified statistic threshold is very large. Problems associated with excessively many

meaningless itemsets have been studied in recent years. Mining correlated patterns is one of the

effective solutions to address these problems. Correlated patterns mining is able to filter out

the uncorrelated itemsets, and to identify the rarely occurring but completely correlated ones.

Corresponding algorithms of mining correlated patterns in static datasets exist, but no work has

been done so as to complete the same task for streaming transaction data. Due to the issue of

large volume of data in data streams, mining correlated patterns raises a new challenge to solve

the combinatorial explosion problem for calculation of correlation coefficients. It is impossible to

scan transactions multiple times in terms of time and space constraints in stream environments.

Furthermore, in the applications of quantitative transaction data, we also consider quantitative

associations among highly correlated itemsets. We propose algorithms to mine frequent ratio as-

8

sociations among highly correlated itemsets, called quantifiable correlated patterns, in a streaming

transaction data. This kind of knowledge is more informative and applicable for users’ decision-

making. For example, as shown in Figure ??, from the network flow data, we may detect the

correlation among the failure of connection, duration of session, and the number of bytes trans-

mitted, and the ratio association between the duration of session and the number of bytes is 1000

Kbytes per second. However, this problem cannot be handled easily. For the reason that ratios are

real data; it is necessary to count supports of infinitely different values for mining frequent ratios.

In this dissertation, we propose efficient algorithms to resolve these two combinatorial explosion

problems with only one scan of transaction data.

1.2.2 Continuous Correlation Mining among Massive Time-series
Data Streams

As discussed in the above section, we do further explorations of monitoring and discovering con-

tinuous correlations among massive time-series data streams. To this end, in this dissertation,

we propose two novel approaches: correlated-cluster mining and flexible timeline clustering. Here,

the former method targets to discover hidden variables for summarizing the whole streams collec-

tion taking into account of the data evolution; the later method supports various requirements of

clustering multiple time-series data streams at the same time.

1.2.2.1 Correlated-cluster Mining

In some applications (i.e., sensor network data), time-series data streams are often inherent corre-

lated, therefore, we consider to discover hidden variables for compactly and adaptively describing

the key trends among the whole collection of streaming time series. This process can be used to

reduce the massive numerical streams into just a handful data streams. Therefore, the hidden

variables mining is useful for data compression and outlier detection. For example, in Figure ??,

in the application of sensor network, there are time series of two sensors. Each time series consists

of three partitions along with the time. We can see that both of the two sensors show periodicity

during phase 1 and phase 3, while during the phase 2, the observation data of sensor 1 is “stuck”

due to some failure. The extra second hidden variable was discovered during the phase 2 captures

the presence of the “abnormal” trend of sensor 1.

9

Sensor network data
Sensor 1

Phase 1

Sensor 2
1
2

Phase 2 Phase 3

“Hidden variable 1 captures the global
periodic pattern, while the appearance of
hidden variable 2 represents outlier”

Extracted hidden variable Phase 1 Phase 2 Phase 3Outliers Periodic similarity

Figure 1.5: An example of mining hidden variable for immediate detection of outlier.

In the case of static data, the Karhunen-Loeve transformation (KLT) or Principal Component

Analysis (PCA), is the prominent approach for discovering hidden variables among multiple time

series. PCA projects the data set from the original n to a d-dimensional space, where d ≪ n,

and each new dimension is a linear combination of the original dimensions. While, in terms of

characteristics and crucial challenges of data streams, the traditional PCA technique is no longer

applicable to mine correlations in data stream environment. Firstly, due to the time and space

constraints, it is impossible to store all of the unlimited and continuous data, and re-perform

the eigen-analysis on all of the data including the newly arrived data sample. Therefore, an

incremental process for mining correlations with one single scan of streaming data is required.

Secondly, due to the data evolution in data streams, data distribution and underlying correlations

may be subject to continuous changes. For example, in the case of a 2-dimensional data set as

illustrated in Figure ??, we can use a single dimension (the first principle component (PC)) to

capture the variance of the data. It is possible to represent original data samples by their projection

on the single dimension, eliminating other dimensions (in this case the second PC) with little loss

of information. However, in practice, continuous data within data streams may change at any

time. In such cases, traditional PCA technique is unable to discover new appearing correlation

pattern, but sensitive to the effect of previous ones (see Figure ??). Therefore, it is required to

monitor the change of correlation in data streams, and distinguish the emerging correlation with

stale ones. Here, we focus on local correlations in each correlated-cluster corresponding to the

10

1st PC
2nd PC

(a)

1st PC

(b)

1st PC of correlated-cluster 1
Correlated-cluster 1

1st PC of correlated-cluster 2Correlated-cluster 2

(c)

Figure 1.6: Principal Component Analysis and correlated-clusters (a) PCA on currently correlated
data reduces 2-dimensional to 1-dimensional (b) PCA on continuous changing correlated data (c)
PCA on correlated-clusters in the same data as in (b)

data evolution (e.g., the data in Figure ??). Obviously, both of the data samples and correlated

dimensions are different from one correlated-cluster to another.

Therefore, in this dissertation, we propose an online incremental and scalable method to mine

correlated-clusters in multiple evolving data streams. The resultant relevant subspaces (hidden

variables) summarize the multiple data streams. Additionally, considering the concept drifts,

we guarantee the effectiveness of the proposed algorithms to automate the change detection and

maintenance of underlying correlation in the streaming data.

1.2.2.2 Flexible Timeline Clustering

Several existing works are reported on applying clustering techniques to discovering cross-

relationship among multiple data streams. Consider the application of stock market data analysis.

Assume that the clustering request is unknown when the data is collected and processed. After

the time period of clustering request is given, according to clusters provided, investors are able

to choose a combination of several groups of stocks to reduce the risk of investment. For exam-

ple, some users are interested in the short-term behavior of clusters, such as the daily or hourly

11

Stock pricesof company B
“Stock prices of company
A and B have similar
monthly behaviors”

“How about the
weekly fluctuation?

Stock pricesof company A

Figure 1.7: An example of supporting flexible timeline clustering of two time series of stock prices.

behavior. Therefore, we would like to provide daily clusters for one week or hourly cluster for a

few hours. On the other hand, for users interested in the long-term behavior of clusters, such as

the monthly or annual behavior, we would like to provide monthly clusters for this year or annual

clusters for last five years. This leads to an important application of supporting various clustering

requirements at the same time. In the users’ requests, users specify the interested time periods. To

this end, in the context of data streams, how to summarize the huge number of data resources for

online calculation of similarity, and how to efficiently retrieve abstractions of the streaming data

during a certain period in response to users’ requests are important issues. In this dissertation,

an online time-series approximation method and statistic maintenance hierarchical structures are

proposed to address the computation and space constraints in data stream environments.

For example, in Figure ??, in the application of stock prices data, we satisfy clustering massive

stock series data over arbitrary time period flexibly. For instance, “the monthly stock prices of

company A and company B behavior similarly”. Meanwhile, we also support requests to observing

different time periods, such as the relationship in terms of weekly fluctuation.

12

New articles ``News article includes “売却”, “損失” may cause sudden drop in stock
market.”

------------売却 -
-------------損失

Stock prices
Figure 1.8: An example of bad news article which cause a sudden drop in the stock market.

1.2.3 Cross-domain Correlation Investigation over Multiple Data
Sources

In real applications, data sources from multiple domains may be semantically related with each

other, but has different data type or different data distribution. However, this kind of semantic

relationship is often the critical knowledge for decision-making or explanation of events. Cross-

domain correlation mining studies how to investigate the semantic relationship among the different

data sources. In this dissertation, we investigate the association between stock price fluctuation

and released news articles as an example. Given a news article, we decide whether it is a piece of

good news that is followed by a moving up trend in stock market or a piece of bad news reversely.

Additionally, we predict how much the fluctuation of stock price influenced by the news articles

is. Additionally, we also forecast how much would be the fluctuation of stock prices influenced by

the news article. For example, in Figure ??, we discover the correlations between news articles

and stock prices, like the released news articles which report the information about “売却” and “

損失” may cause a sudden drop in the stock market (i.e., the black dashed part in the stock price

data).

1.2.4 Contributions

In this dissertation, we aim to discover knowledge among multiple evolving data streams. We pro-

pose efficient algorithms to mine interesting patterns or correlations in the collection of streaming

data. Firstly, we address the problem in a single data source. In terms of different applica-

13

tions, we define two kinds of basic correlations existing in the streaming data. One is discrete

correlation, and the other is continuous correlation. For example, in the case of market basket

data, we analyze continuous records of customers’ purchase. This records are independent with

each other. Therefore, when we want to discover the patterns of customers’ purchase, we should

mine the discrete correlations among the attributes in the records. Meanwhile, in terms of the

applications handling time-series data streams, data samples are correlated with previous ones on

the alignment of time. Thus we define the cross-relationship among time series as the continuous

correlation. Secondly, this dissertation extends the study to mine complex correlations in cross-

domain data sources by combining the investigations of these two kinds of basic correlations. We

take the example of investigating the correlation between online news article and stock prices in

order to realize prediction of stock market. Particularly, this dissertation introduces novel and

efficient algorithms as follows:

• Quantifiable Correlated Pattens Mining: This method achieve to mine discrete correlations

from streaming quantitative transaction data and show that this is a more effective approach

than mining associations to discover useful patterns. We propose the novel notion of Quan-

tifiable Correlated Pattern (QCP), which is founded on two formal concepts, correlation and

frequent ratio association. On one hand, we apply the min-hashing technique to the problem

of QCP mining to capture the dependency between the attributes; on the other hand, we

further ensure the dependency between the attributes with specific quantitative ratios.

As shown in Figure ??, we enumerate the related work on knowledge discovery of static

as well as streaming transaction data. The first research work [?, ?] proposed to mine

frequent itemsets in static binary data. For example, it discover the association rule like

“if a customer buys tea, then he would buy coffee together”. However, as pointed out in

the studies of correlated patterns mining [?, ?, ?, ?, ?, ?, ?, ?, ?], the frequent co-occurrence

could not describe correlation sufficiently. On the other hand, some studies discovered

quantitative associations. Compared with the patterns proposed in [?, ?, ?, ?, ?] in the

form of quantitative intervals, the ratio rules in [?] were useful to estimate missing data

and do prediction. While in the case of data streams, some studies detected approximate

frequent patterns in [?, ?, ?, ?, ?]. Unfortunately, there is no study on correlation mining

14

Boolean Data Quantitative DataFrequentco-occurrence Tea ⇒ Coffee [38, 61] Bread[2-5] ⇒ Butter[1-2] [48 -52](IP_1, IP_2) [14, 57 - 60]Correlation Exercise_induced_Angina ⇒Sick_heart [39 - 47] Bread : Butter = 2 : 3 [53]
Quantifiable correlated patterns[20, 21]

stronger expressive power, more complex algorithm

more
meaningful

static data data streams
Figure 1.9: Studies on knowledge discovery in transaction data

or quantitative association mining from streaming transaction data. Our proposed method

in [?,?] firstly achieves to mine both of the correlations and quantitative associations in data

stream environment with only single scan of data and limited memory. Due to the issue

of large volume of data in data streams, mining correlated patterns raises a new challenge

to solve the combinatorial explosion problem for calculation of correlation coefficients. It

is impossible to scan transactions multiple times in terms of time and space constraints

in stream environments. Therefore, existing methods for correlation mining in static data

cannot be extended to data streams environment easily.

In our proposed method we devise an efficient method to address the combinatorial explosion

problem using min-hashing technique proposed in [?] to find possibly correlated attributes

without calculating correlation coefficients. In [?], the min-hashing function was used to

identify association rules with high confidence. Though related, confidence for association

rules and correlation coefficients are two different quantities. In particular, the fact that

the correlation coefficient of a pair is above a certain threshold does not mean that the

confidence of the corresponding association rule is above that threshold. We use the min-

hashing function in a differnet way. We show a strong connection between the Jaccard

distance and the correlation coefficient of the attribute sets. In particular, we observe that,

if the attribute sets has a large correlation coefficient, then its Jaccard distance must be

15

small. We use the min-hashing function to estimate the Jaccard distance and only select

attribute sets with small distance to the candidate sets. Therefore, we can get the candidate

sets of correlated attributes efficiently with single data scan. We remark that our proposed

pruning process may produce false negative, i.e., sets with high correlations might be pruned.

However, the false-negative probability can be controlled according to the parameter of false-

negative tolerance which can be set arbitrarily small.

Furthermore, in order to mine quantitative ratio associations between attributes, for the

reason that ratios are real data; it is necessary to count supports of infinitely different values

for mining frequent ratios. In order to address this problem, we propose the ideas of ratio

range and downward closure property to reduce the search space for discovering frequent

ratio associations between attributes.

• Correlated-Clusters Mining: This algorithm reduces massive evolving streaming time-series

data into just a handful of hidden variables, which summarize the key trends of massive

evolving streaming time-series data automatically, incrementally and adaptively. We prove

that the discovered patterns can be used to detect concept drifts immediately, and to do

efficient forecasting in sensor network.

Several related works in [?,?,?] realized mining of pair-wise correlations. In order to discover

key trends in the whole collection of data streams, as discussed in Section 1.2.2.1, the tradi-

tional batch process of Principal Component Analysis is not appropriate in the environment

of data streams due to the large volume of streaming data as well as the existence of data

evolution. Other related works for incremental Principal Component Analysis elaborated

in Section 2.3.2 are sensitive to data evolution. In our propose method, we propose two

ideas to address this problem. One is a extended multi-variate regression measure which is

used for online detection of data evolution. The other is an incremental process of Principal

Component Analysis motivated from the principal of adaptive filter in [?] used for signal

processing.

• Flexible Timeline Clustering: A framework is proposed to support various clustering require-

ments at any time during the whole collection of streaming time-series data. In the requests

16

of clustering, the user specifies arbitrary interested period of time. An incremental time-

series approximation method and statistic maintenance hierarchical structures are proposed

to satisfy efficient retrieval and high accuracy requirements. Results of clustering can be

analyzed in different ways according to the specific applications.

Only our proposed method and the method proposed in [?] support flexible mining cross-

relations between pairs of stream data. In [?], the authors proposed calculation of pair-wise

correlations based on Discrete Fourier Transformation (DFT) statistics of original data. As

discussed in [?], Piecewise Linear Approximation (PLA) which approximates series data

samples into linear segments is widely used because of its simplicity and is applicable to

online approximation. In our work, we propose a segmentation criterion called tolerant slope

interval for the PLA of time series. Therefore, our proposed method has the advantages of

smooth approximation and low computational complexity. Moreover, the proposed method

gives more accurate solutions to recent data, but coarser solution for older data, realizing

more efficient utilization of space resource.

• Dynamic Prediction of Stock Prices Based on Analysis of News Articles: This method re-

alizes automatic and dynamic classification of news articles for predicting the forthcoming

trends of stock prices. Given a news article referring to one company, we decide whether it

is a piece of good news that is followed by a moving up trend in the company’s stock market

or a piece of bad news reversely. The novelty of our proposed framework is the achievement

of dynamic analysis of the complex correlation between online news articles and stock price

series. Existing research work did not support flexible identification of the trends in stock

price series, or take account of the case that temporal consecutive news articles may influence

the stock market sensitively. In our proposed framework, we combine the investigations of

the discrete correlation as well as the continuous correlation.

In this problem, the process of classification achieves to mine discrete correlation as shown

in the blue part in Figure ??, for the reason that we treat the collection of news articles as

transaction data consisting of words, and the news articles are independent with each other.

While, in order to improve the accuracy of prediction, we also take account of continuous

17

…
“売却”

time
ContinuouscorrelationDaily close price

?

News article

?up

Feature selection
Continuouscorrelation for labeling

Learning Prediction

Discrete correlation

Figure 1.10: Combination of investigations of discrete correlation and continuous correlation in
the application of stock price prediction based on analysis of online news articles

correlations in this problem. As shown in Figure ??, on one hand, in the generation of news

articles for learning, we abstract trends of stock prices, and then label the news articles

according to corresponding trends in stock prices as shown in the red part of Figure ??. On

the other hand, taking account of the evolving social environment, we can see that people

may be more interested in the contents of consecutive news articles which may influence

the stock market sensitively. Therefore, it is prefer to identify the trends in stock market

dynamically. We propose dynamic mechanism of choosing sliding windows to identify trends

of stock prices according to the contents of consecutive news articles as shown in the green

part of this figure. In order to detect the sensitive topic in consecutive news articles, we

observe continuous changes of the words’ occurrences.

18

Table 1.2: Research themes.

Theme Approach Basic Technology
Discrete correlation mining Mining quantifiable correlated pattern Mining false-tolerant correlated attributes;

in streaming transaction data Mining frequent quantitative ratio relationships
among attributes.

Continuous correlation mining

Mining correlated-clusters among Multi-variable regression measure
multiple time-series data streams for change detection;

Incremental update of local hidden variables.
Flexible timeline clustering of Online summarization of time series;
multiple continuous time series Hierarchical structures for maintenance of

summarization statistics.
Correlations mining Combination of the investigation of Dynamic identification of trends in

in cross-domain data sources discrete correlation and that of stock price series;
continuous correlation Classification of news articles.

1.3 Organization

The remaining chapters will give the explanations of our proposed methods in detail. This dis-

sertation consists of three themes discussing discrete correlation mining, continuous correlation

mining, as well as the combination of investigations of these two kinds of correlations among

multiple evolving data streams, respectively. Table ?? lists the themes, approaches and basic

technologies of our work. Figure ?? shows the relationship among these chapters.

The remaining of this dissertation is organized as follows. Chapter 2 overviews the related

work and research horizon. Firstly, models of processing data streams used in this dissertation for

correlation mining are discussed. Then, we review existing work of frequent itemsets mining in data

streams, and then shed the lights on the importance of correlation and new challenges for the task

of quantifiable correlated patterns mining in streaming transaction data. In terms of the second

theme, targeting to mining continuous correlation among time-series data streams, we focus on the

problems of discovering global correlations and cross-relationships based on clustering techniques,

respectively. We review the related work for addressing these two tasks. Finally, existing work on

stock prediction based on news articles is also introduced.

Chapter 3 concerns on the first theme: mining quantifiable correlated pattern in streaming

transaction data. In order to address the key challenges of two combinatorial explosion prob-

lems for mining correlated attributes as well as frequent ratio relations among these correlated

attributes, we devise an efficient method using min-hashing technique to find possible correlated

19

Real World
Generation of data streams

Correlation mining
in single data source

Correlation mining
in cross-domain data

sources

Market
basket
data

Stock
price
series

Sensor
network

data
News
articles

Discrete correlation
Continuous correlation

up… Time

Chapter 3 Chapter 4 and Chapter 5

Chapter 6

Figure 1.11: Organization of this dissertation

attributes without calculating correlation coefficients, and reduct the infinite search space of ra-

tio patterns based on the ideas of ratio range and downward closure property in order to mine

frequent ratio relations.

Chapter 4 and 5 concern on the second theme: mining continuous correlation among multiple

time-series data streams. Chapter 4 elaborates our proposed algorithms for incremental discovery

of hidden variables to summarize the key trends in continuous time-series. Considering the exis-

tence of data evolution, we propose a multi-variable regression measure to cluster data samples.

Additionally, in each cluster of data, an incremental method for Principal Component Analysis is

proposed to update the local correlation or hidden variables. Meanwhile, clustering techniques also

can be used for discovering cross-relationships among time series. Chapter 5 proposes an online

time-series approximation method and statistic maintenance hierarchical structures for achieving

flexible timeline clustering. The framework consists of two phases: the online maintenance which

provides an efficient mechanism to maintain summary hierarchies of data streams; and on the side

of the offline clustering phase retrieves approximations of desired subsequences from summary

20

hierarchies according to clustering requests.

In the first and second theme, we discuss the methods for mining discrete correlation as well

as continuous correlation in different applications of single data source, respectively. In the third

theme, we consider the problem of mining correlation in multiple cross-domain data sources. In

Chapter 6, we take the example of investigating the correlation between online news article and

stock price series. Given a news article referring to one company, we decide whether it is a piece of

good news that is followed by a moving up trend in the company’s stock market or a piece of bad

news reversely. In this problem, the process of classification achieves to mine discrete correlation,

for the reason that we treat the collection of news articles as transaction data consisting of words,

and the news articles are independent with each other. While, in order to improve the accuracy

of prediction, we also take account of continuous correlations in this problem. On one hand, in

the generation of news articles for learning, we abstract trends of stock prices, and then label

the news articles according to corresponding trends in stock prices. On the other hand, taking

account of the evolving social environment, we can see that people may be more interested in

the contents of consecutive news articles which may may influence the stock market sensitively.

Therefore, it is prefer to identify the trends in stock market dynamically. We propose dynamic

mechanism of choosing sliding windows to identify trends of stock prices according to the contents

of consecutive news articles. In order to detect the sensitive topics in consecutive news articles,

we observe continuous changes of the words’ occurrences.

In Chapter 6, we take the individual company as the research objective. The news articles

referring to the company are useful to predict the stock prices of the company itself. In fact, the

proposed methods introduced in Chapter 4 is also appliable to the framework proposed in Chapter

6, and the results are useful to explain the financial market involving multiple companies. For

example, firstly, we can discover the abonormal behaviors of stocks comparing to the key trends

in the whole market according to the method proposed in Chapter 4, and we can explain how it

happened by analysis the corresponding news articles.

Comparing the processes of identifying patterns or trends in time series data discussedn in

Chapter 5 and Chapter 6, we can see that Chapater 5 provides mechanism to store historical data

as well as the flexibility of multi-solution clustering. Nevertheless, in Chapter 6, we foucus on

21

dynamically choosing sliding windows for abstracting trends now and predict future accurately.

Thus, we scan the streaming stock price data samples as them arrive and then drop them imme-

diately, without storing. Certainly, it is also possible to apply the methods proposed in Chapter

5 to discover similar patterns of different stocks and explain why these patterns happened.

Finally, Chapter 7 summarizes the work presented in this dissertation. It contains a brief

description of the new algorithms introduced in this dissertation, and points out a few important

directions for future research.

22

Chapter 2

Related Work and Research Horizon

2.1 Data Processing Model

Because data streams come continuously and unboundedly, the analysis results of data streams

often keep changing as well. The important issue in data processing model, is finding a way to

extract data for knowledge discovery from the overall data streams. According to the research

in [?], there are three stream data processing models:

Landmark Window Model In a landmark window, all stream objects that have been ob-

served up to the current time are contained in the window. All objects contribute with equal

weight to the result, regardless of their time stamp. A landmark window increases over time as a

new stream object arrives. An example is illustrated in Figure ??.

Examples of algorithms for frequent itemset mining and clustering using a landmark window

model are proposed by Manku and Motwani in [?] and Guha et al. in [?], respectively. The benefit

of the landmark window model is that stream objects are simply accumulated over time, as there

is no need to remove objects from the window.

Damped Window Model In a damped window, the influence of stream objects on the stream

mining result fades over time according to a user-defined fading function, which is monotonically

decreasing. Objects in the damped window contribute to the mining result with decreasing weight

as their age. Older data samples contribute less weight toward the pattern emerging in recent

data. An example is illustrated in Figure ??.

Examples of algorithms for frequent itemset mining and clustering using a damped window

model are presented by Chang et al. in [?] and Aggarwal et al. in [?], respectively. The benefit

23

Current
Current

Current
Landmark (System start)Mining frequent itemsets from the transactions between the landmark and the current time

Stream

Figure 2.1: Landmark Window Model.

Current
Current

Current
System startEach transaction is associated with a weight

Stream
………….| 0.11|0.16|0.24|0.34|0.49|0.7|1
………………..| 0.11|0.16|0.24|0.34|0.49|0.7|1…………………….| 0.11|0.16|0.24|0.34|0.49|0.7|1

Figure 2.2: Damped Window Model.

of a damped window is that this model considers different weights for new and old data samples.

This is suitable for application in which data has an effect on the mining results, but the effect

decreases as time goes on.

Sliding Window Model A sliding window has a fixed size, and it slides over the data while

new stream objects arrive in order to contain the most recent objects. The size of sliding window

may be decided according to applications and system resources. The mining result of the sliding

window method totally depends on recently generated data samples in the range of the window;

all the data samples in the window need to be maintained in order to remove their effects on the

current mining results when they are out of range of the sliding window. An example is illustrated

in Figure ??.

Examples of algorithms for frequent itemset mining using a sliding window model are proposed

24

CurrentCurrentCurrent
System startMining frequent itemsets from only the latest W transactions

Stream WW W
Figure 2.3: Sliding Window Model.

in [?,?,?]. The benefit of a sliding window is that because only recent stream objects are considered

when computing a data mining result, changes in the properties of stream objects will be reflected

in the mining results much faster than with a landmark window model.

All these three models have been used in current researches on data stream mining. Choosing

which kind of data process models to use, largely depends on the needs associated with the

specific application. In this dissertation, in Chapter 3, we mine quantifiable correlated patterns

mining over streaming sliding windows, for the reason that we target to applications of mining

transaction records data in a certain period of time, and we assume that the transactions in the

referred period have equal importance to the results, such as analysis of market basket data of

customers’ purchases. In Chapter 4 and Chapter 5, we basically adopt the landmark process

model to monitor and analyze the entire data streams for discovering underlying correlations.

We propose a generalized “goodness” measurement for demanding a better model of correlation

mining as well as for discovering of concept drifts in Chapter 4. On the other hand, in Chapter

5, the proposed summarization maintenance hierarchy is useful to satisfy end-users’ demands

for recent-biased data analysis. We can apply our methods to the online streams such as stock

tickers, sensor data and network measurements. In the finally proposed methods for news articles

analysis-based prediction of stock prices, elaborated in Chapter 6, we utilize the sliding window

models for identifying trends of stock price movement.

25

2.2 Correlated Patterns Mining in Streaming Transaction

Data

2.2.1 Knowledge Discovery in Static Transaction Data

In the 1990s, Aggrawal and Srikant developed association rule mining algorithms from static

transaction databases [?]. An association rule tends to capture a certain type of correlation

among items. Taking the market basket database for example, let I = {i1, i2, . . . , im} be a set of

items (products), and DB be the set of purchase transactions. Each transaction T consists of a

set of items such that T ⊆ I. Let X be a set of items, referred to as an itemset. A transaction

T is said to contain X if and only if X ⊆ T . The support of an itemset X in DB, denoted as

sup(X), is the number of transactions in DB containing X. Then the association rule is often in

the form of

X ⇒ Y, (2.1)

where Y is another itemset, and there is no overlap between X and Y . In [?], the association rule

in expression (??) is significant, if and only if

1. sup(x ⇒ Y) = sup(XY), the number of transactions in DB containing both X and Y , is

larger than a minimum support s;

2. conf(x ⇒ Y) = sup(XY)
sup(X)

, the number of transactions containing X also contain Y , is larger

than a minimum confidence c.

Here, we can see that the bigger the value of support statistic is, the more attentions would be

paid on the association rule. Meanwhile, the confidence statistic specifies the degree of correlation

among the itemset X and Y .

A successful example is that Wal-Mart mined association rules on their market basket data

to reveal that “A customer purchasing nappies often also purchases beer” (i.e., nappies ⇒ beer).

Check of the store loyalty card details highlighted that there were young fathers who were probably

sent out of the house by their partners to purchase the nappies but in the meantime decided to

treat themselves to some beer. Wal-Mart took the obvious action and placed beer at the ends of

the baby section aisles and increased their profits.

26

Table 2.1: Contingency table of the purchase of Tea and Coffee [?]

Tea = Y Tea = N Row Sum
Coffee = Y 20 70 90
Coffee = N 5 5 10
Col. Sum 25 75 100

However, there are some problems with the above support-confidence framework for identifying

the significance of association rules. If the threshold of minimum support s is low, the mining

results may contain too many weakly-related cross-support patterns [?]. Here, the cross-support

patterns denote the spurious patterns involving items with substantially different support levels.

For example, as illustrated in Table ??, the numbers represent percentages of purchases of Tea and

Coffee in market basket data. In this table, columns “Tea = Y ” and “Tea = N” correspond to

the purchases of Tea and non-Tea, respectively. Similarly, rows “Coffee = Y ” and “Coffee = N”

correspond to Coffee and non-Coffee, respectively. According to the support-confidence framework

[?], association rule

Tea⇒ Coffee (2.2)

has a 20% support and an 80% confidence. With fairly high support and confidence, we may

consider it as a valid rule and believe that customers who buy tea will also buy coffee. However,

considering the fact that the support of Tea is much lower than the support of Coffee, and the

priori probability that a customer buys coffee is 90%, then we can see that the association rule is

incomplete information. In fact, this association rule is misleading as pointed in [?]. Because the

ratio
P{[Tea = Y] ∧ [Coffee = Y]}

P{[Tea = Y]} × P{[Coffee = Y]}
=

0.2

0.25× 0.9
= 0.89 < 1, (2.3)

therefore, Tea and Coffee are actually negatively correlated. On the other hand, if the threshold

of minimum support is high, the support-confidence framework may miss many rarely occurring

but important patterns, such as diseases, network intrusions, earthquakes and so on.

In order to address this problem, some other correlation measures are proposed instead of

the support measure. All-confidence is adopted for dependency measure of association rules in

[?,?,?]. The all-confidence measure of a pattern X is defined as the minimum confidence of all

the association rules that can be derived from X, and also can be calculated according to the

27

following equations:

all-conf(X) =
sup(X)

max-item-sup(X)
, (2.4)

max-item-sup(X) = max
∀ij∈X

sup(ij). (2.5)

Then association rules are extracted from the pattern X whose all-confidence is larger than a

threshold of minimum all-confidence α.

There are many other solutions for defining significance of association rules. H-confidence

proposed in [?] has a slight difference from the all-confidence. H-confidence examines only rules

where there is only one item on the left-hand side of the rule. In [?], the authors also proved that

Coherence measure was also appropriate for measuring correlation, for the reason that it is not

influenced by the co-absence of items pairs in the transactions. Mutual Dependence is proposed

in [?] for definition of significant mutually dependent itemsets X and Y based on the empirical

conditional probability. Then the justification of X and Y which are strongly dependent with each

other is characterized by a minimum dependency probability. Similarly, authors in [?,?] proposed

information-theory-based Normal Mutual Information measure for identifying depended itemsets.

Although it has been shown in many studies [?,?,?] that all-confidence reflects dependency re-

lationships among items more accurately than other measures, but in some cases the all-confidence

measure fails to mine correlated itemsets. For instance, suppose we have a pair of items {A,B},

where sup(A) = sup(B) = 0.8 and sup(AB) = 0.64. Factually, A and B are uncorrelated because

sup(AB) = sup(A) × sup(B). Unfortunately, the all-confidence measure cannot filter out the

uncorrelated items A and B, for the reason that the

all-conf(AB) =
sup(AB)

max (sup(A), sup(B))
= 0.64/0.8 = 0.8 (2.6)

is significantly high. In contrast, another pair of items {Á, B́} with sup(Á) = sup(B́) =

sup(ÁB́) = 0.001 is perfectly correlated despite low supports of Á and B́.

In [?], Brin et al. proposed to measure the significance of association via the chi-squared test for

correlation from classical statistics. However, the approximation of correlation based on chi-square

statistics breaks down when the expected values are small, and the correlation rule is less accurate

if the contingency table data are sparse. However, this work supports negative implications among

28

patterns. For example, fire code inspectors trying to mine useful fire prevention measures may

like to know any negative correlation between certain types of electrical wiring and the occurrence

of fires.

In this dissertation, we agree to discover correlated pattens based on Pearson’s correlation

coefficient [?], and ϕ correlation coefficient is the computation form of Pearson’s correlation co-

efficient for binary items. We can derive the support form of the ϕ correlation coefficient of two

items A and B as:

ϕ =
sup(AB)− sup(A)× sup(B)√

sup(A)sup(B)(1− sup(A))(1− sup(B))
(2.7)

As a result, we can see that the ϕ correlation coefficient is able to filter out the above examples of

uncorrelated pattern {A,B}, and identify the rarely occurring but completely correlated pattern

{Á, B́}. Therefore, correlated patterns discovery based on calculation of ϕ correlation coefficients

are not restricted to frequently co-occurring items. Moreover, those infrequent but significant

patterns that are too expensive to be obtained by association rule mining can also be discovered

by calculation of correlation coefficients.

On the other hand, existing researches on correlation mining are primarily conducted on binary

databases. However, most items in real-life databases are not restricted to taking only Boolean

values. Instead, these items can be quantitative, which are numeric values (e.g., an employ’s

salary). The expressiveness of quantitative items aggravates the complexity of mining quantitative

databases due to the large domain size of the items. We categorize the quantitative association

rules of related works into two classes: one is numeric interval-based association rules [?,?,?,?,?,

?,?], for example,

bread : [2− 5]⇒ butter : [1− 2]; (2.8)

on the other hand, an instance of ratio rules-based association [?,?,?] is shown as

bread : butter = 2 : 3. (2.9)

These examples target to mine association rules from quantitative market basket database, where

the amount of money (dollars) spent on products is recorded in each transaction. The former

numeric interval-based rule indicates that “the amount of money which a customer spent on

bread is within the range from 2 dollars to 5 dollars on bread, then he would spend larger than 1

29

dollar and less than 2 dollars on butter”. However, the later ratio rule between bread and butter

uncovers the ratio of the money spent on bread to that of butter equals 2 : 3. As discussed in [?],

the ratio rules are much more informative than numeric interval-based rules:

• Ratio rules achieve more compact descriptions if the data points are linearly correlated.

In the above two examples, ratio rules could answer the questions like “how much money

would a customer spend on butter, if he had spent 6 dollars on bread”. However, the numeric

interval-based association rules cannot answer.

• Related to the above bullet point, ratio rules can perform extrapolations and predictions.

Additionally, ratio rules among prices of products can also be useful for determining positive and

negative product associations in [?].

In more detail, [?] employed an eigensystem analysis to calculate correlations among items. The

eigensystem analysis regarded the axes of greatest variation as the most important correlations.

However, the eigensystem analysis was susceptible to noise; therefore, in [?], the authors proposed

a robust and adaptive ratio rules mining algorithm for distributed and changing data sources. On

the other hand, similar to the support-confidence framework for association rules mining in [?],

algorithms in [?] are able to discover multiple frequent and confident ratio rules among pairs of

items. For example, in Figure ??, the black solid line represents the only one ratio rule extracted

by eigensystem analysis, while we can see that there are two potential kinds of linear relationships,

called local ratio rules in [?] between variables X and Y .

2.2.2 Correlation Mining in Streaming Transaction Data

In terms of streaming transaction data, due to the technical challenges of data streams environ-

ment, existing studies in [?,?,?,?,?] achieved to approximate frequent itemsets with single scan

of data. As we discussed in the above subsection, the problems of support-based pattern mining

also exist in the streaming transaction data. However, corresponding correlation patterns mining

algorithms for static data exist, but no work has been done so as to complete the same task for

data streams.

30

Figure 2.4: An example of multiple ratio rules

In this dissertation, we contribute to mine Quantifiable Correlated Patterns (QCP) to reveal

the quantitative association among correlated items in streaming transaction data. Unfortunately,

all of the above related techniques for static databases cannot be extended to the data stream

environment easily. Firstly, most of the related techniques need level-wise processes for mining

correlated itemsets, and consequently need to scan databases in multiple times. Although [?,?]

realized correlation mining on FP-tree proposed in [?] in terms of all-confidence measure, trans-

formation of a database into a FP-tree stored in main memory needs 2 times scan of database.

Meanwhile, there is a combinatorial explosion problem for calculating ϕ correlation coefficients.

Given n items, it is necessary to calculate correlation coefficient of all the (2n−1) possible itemsets

(for a data set with a million of items, the total number of possible itemsets is nearly a trillion).

However, it is often the case for real-world data that the total number of highly correlated items

is much smaller than the total number of possible itemsets. Therefore, storing all the itemsets

and computing all the correlation coefficients are wasteful tasks and may be impossible in some

cases. Secondly, there is a more severe combinatorial explosion problem of infinite different po-

tential frequent ratio patterns among items, due to the real values of ratio patterns. These two

combinatorial explosion problems result in high complexity for mining quantitative transaction

data stream, and can severely degrade the mining efficiency.

As shown in Figure ??, our proposed method firstly achieves to mine both of the correlations

31

and quantitative associations in data stream environment with only single scan of data and limited

memory. We devise an efficient method using min-hashing technique to find possibly correlated

itemsets without counting supports, and use ratio ranges to enforce quantitative associations

among itemsets. In Chapter 3, we elaborate our proposed methods for these challenges.

2.3 Correlation Discovery over Time-series Data Streams

2.3.1 Correlated-clusters Mining

Most of the work on stream mining has focused on finding interesting streaming patterns from

multiple data streams. CluStream [?] is a flexible clustering framework with online and offline com-

ponents. The online component extends micro-cluster information by incorporating exponentially-

sized sliding windows while coalescing micro-cluster summaries. Actual clusters are found by the

offline component. However, clustering over high dimensional data streams poses dual challenges

to traditional clustering algorithm: (1) all pairs of data samples tend to be almost equidistant

from one another due to sparsity of data [?]; and (2) continuous changes exist in data distribution

and underlying correlations. Perlman and Java [?] have proposed a two phase approach to mine

astronomical time series streams. The first phase clusters sliding window patterns of each time

series. Using the created clusters, an association rule discovery technique is used to create affinity

analysis among the created clusters of time series.

On the other hand, correlation mining over multiple time-series for knowledge discovery has

also been proposed in many studies. Several studies report highly correlated pairs of data streams.

StatStream [?] used the Discrete Fourier Transforms (DFT) to summarize streams within a finite

window and then compute the highest pairwise correlations among all pairs of streams, at each

time stamp. The system works over an arbitrarily chosen sliding window. BRAID [?] addressed

the problem of discovering lag correlations among multiple data streams. The focus is on time and

space efficient methods for finding the earliest and highest peak in the cross-correlation functions

between all pairs of streams. Yeh et al. [?] proposed online and efficient algorithms to cluster

multiple data streams based on calculation of pair-wise correlation.

Moreover, incremental learning of correlations on the whole collection of streaming data has

attracted much attention in the last few decades. The algorithms for Incremental Principal Com-

32

ponent Analysis (IPCA) [?] have been proposed since 1970s. Most of them are based on the

Singular Value Decomposition (SVD). The main difference among the several SVD-based IPCA

algorithms is how to express the covariance matrix incrementally. However, the incremental al-

gorithms by SVD are not applicable to data streams since the computational complexity is very

high. Guha et al. [?] improves on discovering correlations, by first doing dimensionality reduction

with random projection, and then periodically computing the SVD. However, the method incurs

high overhead because of the SVD re-computation and it cannot easily handle missing values.

Recently, CCIPCA [?] has been proposed as an algorithm for unsupervised incremental feature

selection. It incrementally computes the principal components of data sequences using an esti-

mate. This estimate is efficient for some well-known distribution (e.g., Gaussian). However, in

data streams environment, data distribution is always unknown; therefore, the highest efficiency is

not guaranteed. Authors of [?] proposed an incremental and robust algorithm. In this algorithm,

the square criterion as used in PCA is replaced by Steady Criterion Function (SCF). However,

this algorithm assumes that the correlations among features do not change. This assumption is

in conflict with the characteristic of data evolution in data streams.

In Chapter 4, we propose a new IPCA method to learn correlations incrementally and adap-

tively. This method requires very limited memory and short processing time per time tick.

Additionally, corresponding to the data evolution characteristic of data streams, our proposed

generalized multivariate regression measure is responsible for detecting the change of correlation.

2.3.2 Flexible Timeline Clustering

Besides of summarizing the correlation among multiple streaming time series, some studies report

to apply clustering techniques to multiple steaming data periodically for discovering cross-relations

[?, ?]. In this dissertation, we support clustering data streams at any time during the whole

collection of streaming time-series data. In the users’ requests of clustering, users specify the

interested time periods. Here we call it timeline clustering of data streams. Therefore, unlike

prior studies [?, ?, ?], the objective in this work is to partition data streams (variables), rather

than their data samples, into clusters. Therefore, we can discover groups of streams with similar

behavior. The clustering over evolving streams is also discussed in [?]. However, the objective

33

in [?] is to continuously report clusters satisfying the specified distance threshold. The clusters are

generated according to the values from the beginning of the stream to the current time. Therefore,

it does not have the ability to observe correlations within a period of interest.

In order to realize flexible clustering, in the context of data streams, how to summarize the

huge number of data resources for online calculation of similarity, and how to efficiently retrieve

abstractions of streaming data during a certain period in response to users’ queries are important

issues. Several high-level representations have been proposed for approximation of time series,

including Discrete Fourier Transform [?], Discrete Wavelet Transform [?], Singular Value Decom-

position [?] and Piecewise Linear Approximation (PLA) [?]. Among these representations, PLA

which approximates data samples into linear segments is the one that is widely used because of

its simplicity and is applicable to online approximation. Additionally, for the PLA linear ap-

proximation, due to the advantages of smooth approximation and low computational complexity

discussed in [?], linear interpolation becomes our technical choice for online segmentation algo-

rithm. A classic SW method in [?] is proposed for online segmental approximation of subsequences.

In Chapter 5, we introduce a new segmentation criterion called tolerant slope interval to reduce

the computational complexity of the classic SW method.

In Chapter 5, we devise a framework to dynamically and flexibly cluster multiple evolving

data streams for flexible timeline clustering requests. The proposed framework consists of two

phases: online statistics maintenance phase and offline clustering phase. The online statistics

maintenance phase realizes online collection and maintenance of summary statistics of fast data

streams. Once a clustering request is submitted, the offline clustering phase devises an adaptive

abstraction algorithm to abstract statistics for approximating the user-desired subsequences as

precisely as possible from the summary statistics hierarchies, and outputs the results of correlated

streaming data by clustering over the statistics.

2.4 Stock Price Prediction Based on Textual Information

So far, there have been many studies related to the examination about impacts of different textual

information on the financial markets. Most of the related works treat the analysis of textual data as

a text classification problem. The outputs are used as indicators of forthcoming trends (directions)

34

in price movements. The first systematic method was conducted in [?], which compared the

movements of Dow Jones Industrial Average with general news during the period from 1966 to

1972. Peramunetilleke et al. [?] investigated how the market news headlines can be used to forecast

intra-day currency exchange rate movements; [?] claimed that Internet stock message boards can

help to predict financial market volatility, and that disagreement among the posted messages is

associated with increased treading volume. Choudhury et al. [?] developed a simple model to

analyze communication dynamics in blogosphere and use those dynamics to determine interesting

correlations with stock market movement; in [?] the authors studied a new problem to predict the

risk of stocks by their corresponding news of companies, and so on.

News articles as one of the popular public information resources, potentially contain useful

information which can be used to forecast movements of stock prices. In this dissertation, we focus

on the influence of news articles on the behavior of stock prices data. [?] developed an algorithm

to classify each given news article into the predefined classes (manually labeled 5 classes) in terms

of the referred company’s financial well-being. In order to address the problem of expensively

labeled training data, the authors used a “Self-Confident” sampling method and a vote entropy

based criteria to assign a label to an unlabeled article automatically.

On the other hand, in many studies the labeled training data is related with movements in

numeric stock prices series, [?] targeted to predict the trends (up, down and steady) of closing

values of Hang Seng Index versus that of previous day. Some probabilistic rules were generated

using the approach in [?]. Lavrenko et al. in [?] and [?] concluded that piecewise linear regression

based on t-test criteria is a useful tool for describing trends in time series, and demonstrated

that Bayesian language models represent a good framework for associating news articles with

forthcoming trends. Similar to the preprocessing of time series in [?], [?] used a t-test based

segmentation algorithm consisting of splitting and merging for stock prices series preprocessing

and SVM [?] for impact classification of news articles on the stock prices. [?] aimed to discover

relationship between news and abnormal stock price behavior. This work categorized articles

whose incidence correlates with abnormal forecast errors as interesting, and then discovered that

classifying these interesting news improves the performance more than using all news. Gidofalvi

et al. in [?] defined the window of influence of news articles, and found definite predictive power

35

for the short-term stock price movement in the interval starting 20 minutes before and ending

20 minutes after news articles had become publicly available. Specially, the movements of stock

prices in [?] are defined based on β-value. NewsCATS system proposed in [?] could automatically

analyze and categorize press releases, and also generate stock trading recommendations.

In contrast to the above studies which predict the short-term (from minutes to hours within a

day) financial market, the authors in [?] proposed to do regression analysis using monthly reports

of Bank of Japan as well as monthly price data, and forecast in higher accuracy in terms of both

the magnitude and the direction of long-term market trends.

In Chapter 6, we realize a more flexible and accurate investigation of the influences of online

news articles to stock prices:

1) Identification of trends in stock prices over sliding windows satisfies both short-term and

long-term needs of prediction;

2) Representation of news articles as vectors of terms weighted with class relevance and dis-

crimination improves the accuracy of prediction;

3) Dynamic choice of sliding windows in terms of the consecutive news articles for identifying

trends of stock prices realizes online investigation of the influence of news articles to stock

prices;

4) Prediction of forthcoming stock prices in terms of direction and magnitude is much more

informative and helpful for investors’ decision-making.

36

Chapter 3

Quantifiable Correlated Patterns Mining

We are able to achieve bi-level quality control in mining Quantifiable Correlated Patterns from

streaming transactional data. First, we devise an efficient method using min-hashing technique

to find possibly correlated attributes without counting supports. Second, we use ratio ranges

to enforce quantitative association among attributes. The proposed methods address the key

challenges of two combinatorial explosion problems for mining correlated attributes as well as

frequent ratio relations among these correlated attributes.

3.1 Introduction

In this chapter, we focus on correlation discovery from quantitative streaming transaction data.

For example, the market basket data which record the purchase of customers, where quantitative

values of each attribute may be the amount of money spent on each product. We model the regular

bulks of streaming transaction data as sliding windows, and aim to mine correlation patterns from

each sliding window. We propose the novel notion of Quantifiable Correlated Pattern (QCP) to

describe the frequent ratio relationships among highly correlated attributes. Considering the

computation and space constraints in data streams environment, there are two combinatorial

explosion challenges inherent to the two subtasks: generating highly correlated attributes and

mining frequent ratios among the correlated attributes.

Given a set of m items, it is necessary to calculate correlation coefficients of all the (2m − 1)

possible itemsets. However, it is impossible to scan transactions in multiple times for calculating

correlation coefficients. Furthermore, because the ratios are real data, it is also impossible to

37

count the supports of all the possible ratios which are actually infinitely different values for mining

frequent ones. In order to address these combinatorial explosion problems, we make the following

contributions:

(1) We propose a rule for generating candidates of correlated attributes based on Jaccard dis-

tance.

(2) According to the above rule, we devise an efficient method using min-hashing technique [?]

to estimate Jaccard distance without counting supports of all the possible attributes. This

method is efficient and effective to reduce the number of candidates greatly.

(3) By introducing a concept of ratio range and downward closure property, we can enumerate

and prune candidate ratios patterns efficiently.

(4) Proposed methods of the two subtasks use limited memory space in a single on-line scan of

transactions.

The rest of this chapter is organized as follows: Section 3.2 gives a formal definition of the

problem for mining quantifiable correlated patterns. In Section 3.3 and Section 3.4, we elaborate

the proposed methods for solving the two subtasks, respectively. In Section 3.5 we discuss our

experimental results. Finally, we conclude this chapter in Section 3.6.

3.2 Problem Statement

In this section, we give a formal problem statement of mining quantifiable correlated patterns over

a sliding window of steaming transaction data.

Let Σ = {a1, a2, · · · , am} be a set of quantitative attributes. A set of transactions W of the

recent sliding window wherein each transaction T is a subset of Σ and their values. The value of

attribute ai is a real number, represented by v(ai). Figure ?? is an example of market basket data

with window size |W | = 4. Each transaction has a time stamp, which is used as the tid (transaction

ID) of the transaction. Here, the attributes ai can be the purchased products by customers, and

consequently the number of attributes represents the amount of money spent on the products.

38

tid transactions

T1 {(a1, 1.5), (a2, 4.5), (a3, 1)}

T2 {(a1, 1.0), (a2, 1.0)}

T3 {(a1, 1.0),(a2, 2.2), (a3, , 3.1)}

T4 {(a1, 2.0),(a2, 4.1), (a3, , 5.9)}

T5 {(a1, 1.0),(a3, , 2.0), (a4, 6.0)}

T6 {(a2, 2.4), (a3, , 3.6)}

time
line

Window
#1

Window
#2

Window
#3

Figure 3.1: A running example of quantitative transactional data.

T1 = {(a1, 2.5), (a2, 3), (a3, 1)} is a transaction of purchase, where v(a1) = 2.5, v(a2) = 3 and

v(a3) = 1.

A pattern P consists of a set of attributes and the ratios of the attributes’ values. Attributes

in P are in alphabetic order. Additionally, we require the ratio of form (1 : r2 : · · · : rm), where

the first value is fixed to 1 and ratios of the other attributes are calculated against the value of

the first item. For example, in pattern P = {a1, a2, a3, 1 : 2 : 3}, v(a2) : v(a1) = 2 : 1 and

v(a3) : v(a1) = 3 : 1. The size of a pattern is defined as the number of attributes in the pattern.

Definition 1 (Quantifiable Correlated Patterns) Given a pattern P = {a1, a2, · · · , am, 1 : r2 :

· · · : rm}, it is a quantifiable correlated pattern if it satisfies the following conditions:

• (a1, a2, · · · , am) are highly correlated w.r.t δ.

• (1, r2, · · · , rm) is frequent w.r.t s and d.

Problem Statement The problem is to mine quantifiable correlated patterns in sliding win-

dows consisting of |W | transactions within continuous and streaming transaction data.

Therefore, we do two phases to mine the quantifiable correlated patterns. One is to mine

highly correlated attributes, and the other is the mine frequent ratio associations among attributes.

Additionally, the conduction of the first phase can be synchronized with the second phase. To

this end, we define the following definitions.

Definition 2 (Highly Correlated Attributes) Given a user-specified minimum correlation coef-

ficient δ (δ ∈ (0, 1)), a set of attributes {a1, a2, · · · , am} is highly correlated with each other if all

39

of the pairs’ correlation coefficients are greater than δ.

Definition 3 (Tolerant Support Counting of ratio patterns) Given a tolerance bounding d (0 ≤

d ≤ 1) on ratios, a transaction T supports a ratio pattern P = {a1, a2, · · · , am, 1 : r2 : · · · : rm}

w.r.t d, if

• ∀ai ∈ P (1 ≤ i ≤ m), ai appears in T ; and

• v(ai)/v(a1) ∈ [ri(1− d), ri(1 + d)] for (2 ≤ i ≤ m).

The support of pattern P in W is the fraction of the total number of transactions that supports

pattern P satisfying specified fault tolerance bounding d.

Definition 4 (Frequent Ratios) Given a pattern P = {a1, a2, · · · , am, 1 : r2 : · · · : rm} and a

user specified minimum support s (s ∈ (0, 1)), ratio (1 : r2 : · · · : rm) is a frequent ratio among

the attributes set {a1, a2, · · · , am}, if the support of P with respect to a tolerance bounding d is

greater than s.

3.3 Generation of Highly Correlated Attributes

In the process of generating highly correlated attributes, we treat the attributes in the data as

binary attributes. Normally, the number of highly correlated attributes is quite small in compari-

son with the total number of sets. Therefore, it is wasteful to compute correlation coefficients for

all possible attributes. Here, we propose a candidate generation rule based on Jaccard distance,

and devise an efficient generation method using min-hashing functions [?].

3.3.1 Candidate Generation Rule

For an arbitrary attribute a, we denote U(a) as the set of transactions that contain a, and sup(a) as

the support of a as defined in Section 2.2.1. For a pair of attributes a and b, the Pearson correlation

coefficient (also called the ϕ correlation coefficient for binary attributes) can be expressed in terms

of the supports:

ϕ(a,b) =
sup(ab)− sup(a)sup(b)√

sup(a)sup(b)(1− sup(a))(1− sup(b))
(3.1)

We are looking for pairs (a, b) such that ϕ(a,b) ≥ δ. Intuitively, we know that, if a and b are highly

correlated, the set U(a) ∩ U(b) should not be too small, compared to U(a) or U(b). We now

40

establish this relationship formally. Without loss of generality, we assume that sup(b) ≥ sup(a)

(equivalently |U(b)| ≥ |U(a)|). Assume that a and b are highly correlated:

ϕ(a,b) =
sup(ab)− sup(a)sup(b)√

sup(a)sup(b)(1− sup(a))(1− sup(b))
≥ δ (3.2)

Because sup(a) ≥ sup(ab), replacing sup(ab) with sup(a) in (??), we obtain√
sup(a)(1− sup(b))

sup(b)(1− sup(a))
≥ δ (3.3)

Let S =
√

sup(a)(1−sup(b))
sup(b)(1−sup(a))

. By Inequality (??), S ≥ δ. By the assumption that sup(a) ≤ sup(b),

S ≤ 1. From (??) and the fact that sup(ab) = |U(a)∩U(b)|
|W | , we transform

|U(a) ∩ U(b)|
|U(b)|

=
sup(ab)

sup(b)

≥
δ ·
√

sup(a)sup(b)(1− sup(a))(1− sup(b)) + sup(a)sup(b)

sup(b)

= δ ·

√
sup(a)(1− sup(b))

sup(b)(1− sup(a))
· (1− sup(a)) + sup(a)

Therefore, we have

|U(a) ∩ U(b)|
|U(b)|

≥ δ ·

√
sup(a)(1− sup(b))

sup(b)(1− sup(a))
· (1− sup(a)) + sup(a)

≥ δ · S · (1− sup(a)) + sup(a)

= δ · S + (1− δ · S)sup(a)

≥ δ · S

The last inequality comes from δ ≤ 1, S ≤ 1. Similarly,

|U(a) ∩ U(b)|
|U(a)|

≥ δ ·

√
sup(b)(1− sup(a))

sup(a)(1− sup(b))
· (1− sup(b)) + sup(b)

≥ (δ/S) · (1− sup(b)) + sup(b)

= δ/S + (1− δ/S)sup(b)

≥ δ/S

41

Here the last inequality comes from S ≥ δ. Now consider the ratio |U(a)∩U(b)|
|U(a)∪U(b)| . We have

|U(a) ∩ U(b)|
|U(a) ∪ U(b)|

=
|U(a) ∩ U(b)|

|U(a)|+ |U(b)| − |U(a) ∩ U(b)|

=
1

|U(a)|
|U(a)∩U(b)| + |U(b)|

|U(a)∩U(b)| − 1

≥ 1

S/δ + 1/(δ · S)− 1

=
δ

S + 1/S − δ

Given δ ≤ S ≤ 1, |U(a)∩U(b)|
|U(a)∪U(b)| achieves its minimum value of δ2 when S = δ. Therefore, our rule is

thus to prune when |U(a)∩U(b)|
|U(a)∪U(b)| < δ2.

Candidate-Generation Rule: We put the pair (a, b) into the candidate set only when

|U(a)∩U(b)|
|U(a)∪U(b)| ≥ δ2. That is, (a, b) is selected if the Jaccard distance between U(a) and U(b) is smaller

than 1− δ2.

Note that this bound is tight. That is, if we prune a pair (a, b) when |U(a)∩U(b)|
|U(a)∪U(b)| is slightly

larger than δ2, we may remove a pair whose correlation coefficient is slightly above δ. To see this,

consider two attributes a and b with U(a)∩U(b) = U(a). Also, assume sup(a) and sup(b) are very

small. In this case, (1 − sup(a)) → 1, and (1 − sup(b)) → 1. The correlation coefficient reduces

to
√

sup(a)
sup(b)

, i.e., ϕ(a,b) ≈
√

sup(a)
sup(b)

. Because |U(a)∩U(b)|
|U(a)∪U(b)| = sup(a)

sup(b)
= δ2, ϕ(a,b) ≈ δ. Furthermore, ϕ(a,b)

increases with |U(a)∩U(b)|
|U(a)∪U(b)| . Hence, if we prune a pair when |U(a)∩U(b)|

|U(a)∪U(b)| is above δ2, we may have

removed a pair whose correlation coefficient is above δ.

3.3.2 Candidate Generation Method

We describe a method that can efficiently prune (or generate candidate) according to our rule.

The candidate-generation method uses min hashing, which was introduced in [?]. A min-hashing

function hmin maps an attribute a in the data set to a number:

hmin(a) = minu∈U(a){h(u)}

h(u) is a hashing function of transaction u which contains a.

EXAMPLE 1. Assume that there are 10 transactions in the current sliding window. Table ??

represents the hashing values of these transactions. If we know that item a appears in transactions

42

Table 3.1: An example of min-hashing.

u 0 1 2 3 4 5 6 7 8 9
h(u) 17 21 9 44 5 16 1 20 37 8

2, 5 and 8, then

hmin(a) = min{h(2), h(5), h(8)} = min{9, 16, 37} = 9

The min-hashing function has the following property:

Property 1 The probability for mapping attributes a and b to the same value by min-hashing

can be expressed as

P (hmin(a) = hmin(b)) =
|U(a) ∩ U(b)|
|U(a) ∪ U(b)|

According to the above property, we can see that the larger the ratio |U(a)∩U(b)|
|U(a)∪U(b)| is, the more

likely the fact that the two attributes will be hashed to the same value is. This suggests a simple

candidate-generation method:

Candidate-Generation Method: We put attributes that have the same min-hashing value

in the candidate set.

By the candidate-generation method, the pairs that satisfy our rule (|U(a)∩U(b)|
|U(a)∪U(b)| ≥ δ2) will be

placed into the candidate set with high probability and the pairs that do not satisfy our rule

(|U(a)∩U(b)|
|U(a)∪U(b)| ≤ δ2) will be selected with low probability.

However, the gap between the two probabilities is not wide enough to result in powerful pruning

while maintaining a small false-negative probability. We use another technique from [?] to widen

the gap. We use k independent min-hashing functions and define an equivalence relation “≃”.

For two attributes a and b, a ≃ b if and only if a and b have the same min-hashing values for

all the k hashing functions. The equivalence relation can be used to partition the attributes into

equivalence classes. If, with one min-hashing function P1(a ≃ b) = x, then with k independent

functions, Pk(a ≃ b) = xk ≪ x. We repeat the whole process t times, each time with a different

set of k min-hashing functions (totally k · t independent min-hashing functions are required).

The probability that a and b belong to the same equivalence class in at least one of the trials is

1 − (1− xk)
t
. We put into the candidate set all the pairs whose two items belong to the same

43

Table 3.2: An example of k-min-hashing.

attributes k-min-hashing values
t1 t2 t3

a1 3, 8 12, 7 4, 8
a2 1, 7 9, 20 17, 6
a3 3, 8 10, 22 17, 6
a4 5, 7 7, 12 17, 6

Figure 3.2: Shape of function f(x) = 1− (1− xk)t.

equivalence class.

EXAMPLE 2. In Table ??, we obtain t1, t2 and t3, totally t = 3 trails of 2-min-hashing

(k = 2) values of 4 attributes. i.e., in t1 trail, the min-hash values of item a1 for two different

min-hashing functions are 3 and 8. Then we generate candidates of correlated attributes by finding

sets of attributes which have the same 2 dimensional vector of min-hash values. As a result, we

find the pair (a1, a3) in t1 trail, none in t2 trail, and (a2, a3, a4) in t3 trail. Both of the two sets of

attributes are put into candidate sets.

As illustrated in Example 2, it can be seen that our proposed method is capable of generating

l-length (l ≥ 2) sets of correlated attributes at the same time. In addition, the k-min-hashing of

all attributes can be performed in just one scan of the transactions in a sliding window.

44

3.3.3 Discussion of False Negatives

The probability that attributes a and b are hashed to the same vector of hashing values in at

least one of the trial is 1− (1− xk)t, where x is the probability for one min-hashing function. We

illustrate the function f(x) = 1− (1− xk)t for several values of k and t in Figure ??.

From the figure, we can see that f(x) is an “s” shape and approximates a threshold function,

i.e., a function g(x) that takes the value 1 when x is larger than the threshold and 0 when x is

smaller than the threshold. f(x) is an approximation of such a threshold function. We observe that

k determines the sharpness of the transition from 0 to 1. t works with k to determine where the

transition happens. For an ideal pruning result, we want the transition to be sharp. By choosing

values for k and t properly, we can locate the candidate sets that satisfy our rule (|U(a)∩U(b)|
|U(a)∪U(b)| ≥ δ2)

with probability close to one and pairs that do not satisfy our rule with probability close to zero.

We can see that the parameters k controls the effectiveness of the pruning. By using a large

k, we can prune more sets that do not satisfy our rule. In general, k can be determined by the

limits on the available computational resources. While parameter t controls the probability of

false negatives. The larger t is, the smaller the probability that we drop a set satisfying our rule

is.

Once we have a value for k, we choose t according to the threshold δ and false-negative tolerance

τ . We first discuss the meaning of τ and then describe how we choose its value. Note that, when

we fix the values of both k and t, the stronger a set’s correlation is, the more likely the fact that

this set will be placed in the candidate set is. This is determined by the probability function

in Figure ??. A set (a, b) has the probability 1 − (1− xk)
t

to be in the candidate set, where

x = |U(a)∩U(b)|
|U(a)∪U(b)| . The stronger the set’s correlation is, the larger |U(a)∩U(b)|

|U(a)∪U(b)| is, and therefore the set

is more likely to be in the candidate set. In other words, our candidate generation favors strongly

correlated sets. We choose t such that, for a pair (a, b), |U(a)∩U(b)|
|U(a)∪U(b)| = δ2, the probability of omitting

this pair from the candidate set is below τ (This is why we call τ as the “false-negative tolerance”).

Note that this does not mean that our candidate generator misses every highly correlated set with

a probability τ . Only the pairs (a, b) that are at the border (|U(a)∩U(b)|
|U(a)∪U(b)| = δ2) have probability of

τ being left out. The other sets with stronger correlation have smaller false-negative probability

than τ . The formula for choosing t is then t = log1−δ2k τ .

45

3.3.4 Algorithm for Finding Highly Correlated Attributes

We describe algorithm for generating highly correlated itemsets in Figure ??. For transactions

in a sliding window, we do the process using a hash table. The hash table takes a vector of size

k as a key and hashes the attributes into one of its buckets. The attributes in the same bucket

are correlated. This process is repeated t times. When a new transaction arrives, we calculate

the hashing values of the new transaction, and compare them with the currently stored minimum

value. The current minimum is replaced if necessary.

3.4 Mining Frequent Ratios among Attributes

In fact, the process of mining frequent ratios is proceeded concurrently with the mining of highly

correlated sets of attributes.

3.4.1 Ratio Range for Pruning

Because real numerical ratios can take any values, it is impossible to assign counters to infinite

ratios. The only way is first to find out the ratios occurring in the data, and then to figure out

ratios with enough support.

Firstly, we consider the question that what is the ratio r in a 2-sized pattern P = {a1, a2, 1 : r}

which is supported by all transactions in sliding window W . We denote the minimum value of r

is rmin, and the maximum value is rmax. Suppose all transactions in W support the pattern P ,

then according to Definition 3 of tolerant support, we have

r(1− d) ≤ rmin ≤ r(1 + d),

and

r(1− d) ≤ rmax ≤ r(1 + d).

where d is the ratio tolerance bound. That is

rmax

1 + d
≤ r ≤ rmin

1− d

For r to exist, we must have
rmax

rmin

≤ 1 + d

1− d

46

Therefore, if rmax

rmin
≤ 1+d

1−d
, all of the transactions in S support pattern P , where rmax

1+d
≤ r ≤ rmin

1−d
.

For convenience, we also represent such patterns as {a1, a2, 1 : [rmax

1+d
, rmin

1−d
]}, where [rmax

1+d
, rmin

1−d
]

is called a ratio range.

For the rest of the paper, we also denote the ratio among attributes {a1, a2, · · · , am} as {1 :

[r2min
, r2max] : · · · : [rmmin

, rmmax]}.

Then we consider the value r satisfying that at least N = s · |W | transactions support pattern

P . We sort the values of v(a2)/v(a1) in S in increasing order of array RV . According to the above

analysis, in order to have at least N transactions to support P , we check RV [i + N − 1]/RV [i]

against 1+d
1−d

for each i. If RV [i + N − 1]/RV [i] ≤ 1+d
1−d

, the corresponding transactions support the

pattern {a1, a2, 1 : [RV [i + N − 1]/(1 + d), RV [i]/(1− d)]}.

3.4.2 Property for Candidate Pruning

Similar to the association rules mining in [?], we also utilize the downward closure property to

prune the search space.

Definition 5 (Sub Ratio Patterns) Given two patterns P = {a1, a2, · · · , an, 1 : r2 : · · · : rn},

Q = {á1, á2, · · · , ám, 1 : ŕ2 : · · · : ŕm}, we say Q is a sub-pattern of P , if

• {á1, á2, · · · , ám} ⊆ {a1, a2, · · · , an}; and

• For any pair of i and j, v(ái)/v(áj) is in the ratio tolerance bound d of v(ai)/v(aj) in P .

For example, given P = {a1, a2, a3, 1 : 2 : 3}, Q = {a2, a3, 1 : 1.3}, Q is P ’s sub-pattern w.r.t

d = 0.2.

Property 2 (Downward Closure Property) If pattern Q is one of P ’s sub-patterns, then

support(P) ≤ support(Q).

Therefore, if the ratio of attributes in P is a frequent ratio pattern, the ratio s of attributes in

all P ’s sub-patterns must be frequent as well. This property could be utilized to prune candidate

patterns if some of their sub-patterns are not frequent.

3.4.3 Candidate Enumeration

Suppose Lk is the set of all ratio patterns of size k. Given Lk, we generate Lk+1 with the

following steps. For every pair of patterns P1 = {a1, · · · , ak−1, ak, 1 : · · · , [rkmin
, rkmax]} and

47

Table 3.3: Real datasets description.

Dataset Transactions Quantitative Attributes
image 2310 19
spambase 4601 57
covtype 581012 10

P2 = {a1, · · · , ak−1, ak+1, 1 : · · · , [ŕ(k+1)min
, ŕ(k+1)max]} in Lk, if their first (k− 1) attributes are the

same, we consider a size of (k + 1) candidate pattern of the form P1 = {a1, · · · , ak−1, ak, ak+1, 1 :

· · · : rk−1 : rk : rk+1}, where

r2 = [r2min
, r2max] ∩ [ŕ2min

, ŕ2max];

r3 = [r3min
, r3max] ∩ [ŕ3min

, ŕ3max];

· · ·

rk−1 = [r(k−1)min
, r(k−1)max] ∩ [ŕ(k−1)min

, ŕ(k−1)max];

rk = [rkmin
, rkmax] ∩ [ŕkmin

, ŕkmax];

rk+1 = [r(k+1)min
, r(k+1)max] ∩ [ŕ(k+1)min

, ŕ(k+1)max].

If any of the above ratio ranges {r2, · · · , rk, rk+1} is empty, P is pruned directly. Otherwise, we

intersect the transaction tids associated with P1 with those of P2. If the number of transactions

containing both P1 and P2 is less than s, P is deleted as well.

Finally, we match the results of candidates of correlated attribute sets with the results of

attributes whose ratios are frequent. If a set of attributes occurs in both of the two processes,

then the pattern consisting of the set of attributes and the frequent ratios among the attributes

is output as a quantifiable correlated pattern.

3.5 Experimental Results

In Sections 6.1 and 6.2, experimental results on synthetic data show that our pruning methods for

two subtasks prune the unwanted patterns efficiently in one scan of the transactions in a sliding

window, respectively. In Section 6.3, we show that mining ratio relationships among correlated

attributes is more effective than mining just frequent ratio rules using real data.

48

Synthetic Data We first generate a table of potential ratio values. The size of each ratio is

computed as a Poisson distribution with mean of 6. Attributes and their ratios in a pattern are

selected randomly. In this step, 2500 ratio patterns are generated from 1000 attributes. Next, the

size of transactions is determined by a Poisson distribution whose mean is 6. Then we randomly

choose ratios to generate transaction data.

Real data We use three real datasets from UCI machine learning repository 1 as listed in

Table ??. For each dataset, we choose quantitative attributes for test.

3.5.1 Efficiency of Generating Correlated Sets

We set the false-negative tolerance τ = 0.005, k = 4 and t = log1−δk τ . We compare performances

of our method with that of NMI-based method [?].

In Figure ?? and Figure ??, we plot the running time for a sliding window and for the whole

dynamic data streams, respectively. Our method achieves less overall running time, due to the

very small candidate set generated by our method. In addition, in Figure ??, we can see that

in the favor of incremental pruning process of our method at each new arrival transaction, the

running time for the whole dynamic data streams is significantly less than NMI-based method.

In Figure ??, we measure how small the candidate set is, compared to the possible sets. Then

we can see that candidate set generated by our method is often one order of magnitude smaller than

NMI-based method. Figure ?? plots running time of our method against the number of attributes

in the data streams to examine scalability. It shows that running time increases linearly with the

number of attributes.

3.5.2 Efficiency of Mining Frequent Ratios

In Figure ??, Figure ??, Figure ?? and Figure ??, we plot the running time for a sliding window

and for the whole dynamic data streams, respectively, against different s and different d. For

both of the two types of running time, we see that with a higher s, running time decreases. As

d increases, a pattern is likely to be supported by more transactions. Hence more ratio patterns

are mined, and the increase in the running time is expected.

1http://archive.ics.uci.edu/ml/

49

From Figure ?? and Figure ??, we observe that with increase of s, the pruned ratio increases,

and with increase of d, the pruned ratio decreases. In Figure ?? it can be seen that the running

time scales linearly with the number of attributes.

3.5.3 Quantifiable Correlated Patterns vs. Frequent Ratio Rules

To further justify the feasibility of our methods, we compare the resultant ratio patterns with

frequent ratio rules (FRR). We implement the algorithm proposed in [?] to mine FRRs in this

experiment. We test five settings of s: s = 0.1%, 1%, 10%, 20%, 30%. Figure ?? presents the

cumulative probability distribution of correlation over the attributes in FRRs from image data

set. When s ≤ 10%, around 90% of FRRs have low correlations by less than 10%. When

s = 20%, 60% of the FRRs have correlations limited to 20% only. Although half of the patterns

have correlations greater than 90% when s = 30%, these FRRs are mostly composed of attributes

with trivial correlations, which are unlikely to be considered as useful knowledge.

On the contrary, the support distribution of ratio patterns in Figure ?? shows that most of

the ratio patterns do not have high support. In fact, many of the ratio patterns are rare and

not easy to be discovered, but they are significant, as the attributes in these patterns are highly

correlated. Mining such patterns using FRR requires a small s, while returning a large number of

uncorrelated patterns at the same time.

We do not present the results of FRR for spambase and covtype data, because FRR runs out

of memory for all values of s. The massive number of generated FRRs not only results in high

memory consumption, but also gives rise to difficulties in further analysis of the patterns.

3.5.4 Experiments on US Census Data

We also carry out a case study on the US census data for the year 2000 2. Each record of the census

contains the population information of a city or a state. The information includes social character-

istics such as education level; economic characters such as occupation; and housing characteristics

such as the number of vehicles owned. We downloaded the records for three states; Alabama (588

records), California (1323 records) and New York (2101 records). Quantifiable correlated patterns

2htt://www.census.gov/main/www/cen2000.html

50

are mined from the three states. We discuss some interesting patterns discovered.

Figure ?? shows the quantifiable correlation between private wage and salary workers and the

number of people with some college education in Alabama (AL) and New York (NY). We see

that the ratio of NY is larger than that of AL. The implication is that more people in New York

are private wage and salary workers (other categorizes are government workers, self-employed and

unpaid family workers).

Figure ?? presents the quantifiable correlation between the number of houses with 2 vehicles

owned and the number of people with some college education in Alabama and California. The

patterns show that more families in Alabama have 2 vehicles in contrast to vehicle ownership in

California.

In summary, quantifiable correlated patterns could successfully distinguish the moderate census

differences among states.

3.6 Summary

In this chapter, we consider the problem of correlation mining in streaming quantitative trans-

action data. We propose a novel quantifiable correlated pattern for describing frequent ratio

relationship among highly correlated attributes. In order to address two combinatorial explosion

problems of naive method, we propose efficient and effective methods for generating correlated

sets and mining frequent ratios. Our experiment results show that our pruning methods yield

a candidate set much smaller than that of related work. Additionally, we show that mining ra-

tio relationship among correlated attributes is much more interesting than mining frequent ratio

rules.

51

We use hash functions and a hash table HT, HT uses a hash function that maps a vector of k integers (the key) to one of its buckets.C: The sets of highly correlated attributeH: H[i] is a vector that stores the min-hash values of attribute i.Compute Min-Hash:for each attribute i and u from 0 to doH[i][u]←←←← mend forIn one scan of transactions in a sliding window:for each attribute i in transaction j dofor u from 0 to doif H[i][u] > hu(j) thenH[i][u] ← hu(j) end ifend forend forGenerate Candidate Sets:for i from 0 to t-1 doset all buckets of HT to φfor each attribute j dov← H[j][i*k : (i+1)*k -1]HT[] ← HT[] U jend forfor all bucket HT[u] doif HT[u] has more than one attribute thenfor every set of attributes p in HT[u] doC←C U pend forend ifend forend forIncremental K-Min-Hash Process at New arrival Transaction j:for i from 0 to docalculate for each attribute u docompare with if then
end ifend forend for

Algorithm 1 Generating Highly Correlated Attribute SetsWe use hash functions and a hash table HT, HT uses a hash function that maps a vector of k integers (the key) to one of its buckets.C: The sets of highly correlated attributeH: H[i] is a vector that stores the min-hash values of attribute i.Compute Min-Hash:for each attribute i and u from 0 to doH[i][u]←←←← mend forIn one scan of transactions in a sliding window:for each attribute i in transaction j dofor u from 0 to doif H[i][u] > hu(j) thenH[i][u] ← hu(j) end ifend forend forGenerate Candidate Sets:for i from 0 to t-1 doset all buckets of HT to φfor each attribute j dov← H[j][i*k : (i+1)*k -1]HT[] ← HT[] U jend forfor all bucket HT[u] doif HT[u] has more than one attribute thenfor every set of attributes p in HT[u] doC←C U pend forend ifend forend forIncremental K-Min-Hash Process at New arrival Transaction j:for i from 0 to docalculate for each attribute u docompare with if then
end ifend forend for

Algorithm 1 Generating Highly Correlated Attribute Setsk t⋅ 0 1 1, , k th h h ⋅ −⋯ĥ
k t⋅

1k t⋅ −

1k t⋅ −

ˆ()h v ˆ()h v

1k t⋅ −0 1 1(), (), ()k th j h j h j⋅ −⋯
0 1 1(), (), ()k th j h j h j⋅ −⋯min() ()r rh j h u< 0min 1min 1min(), (), ()k th u h u h u⋅ −⋯

min() ()r rh u h j←

Figure 3.3: Algorithm for generating highly correlated attributes

52

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.3 0.5 0.7 0.9

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

Delta

Our
NMI-based

Figure 3.4: A sliding window

 0

 50

 100

 150

 200

 0.3 0.5 0.7 0.9

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

Delta

Our
NMI-based

Figure 3.5: Whole dynamic data streams

53

Our proposed method

Figure 3.6: Pruning power comparison

 0

 50

 100

 150

 200

 1.5 2 2.5 3 3.5 4 4.5

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

number of attributes (1.0E+03)

Delta=0.3
Delta=0.5
Delta=0.7
Delta=0.9

Figure 3.7: Scalability for generating correlated sets

54

 40

 45

 50

 55

 60

 65

 70

 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

s

Figure 3.8: A sliding window vs. support s

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

s

Figure 3.9: Whole dynamic data vs. support s

55

 40

 45

 50

 55

 60

 0.1 0.14 0.18 0.22 0.26 0.3

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

d

Figure 3.10: A sliding window vs. ratio tolerance d

 140

 145

 150

 155

 160

 165

 170

 175

 180

 0.1 0.14 0.18 0.22 0.26 0.3

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

d

Figure 3.11: Whole dynamic data vs. ratio tolerance d

56

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.05 0.1 0.15

P
ru

ne
d

ra
tio

s

Figure 3.12: Pruned ratio vs. support s

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.14 0.18 0.22 0.26 0.3

P
ru

ne
d

ra
tio

d

Figure 3.13: Pruned ratio vs. ratio tolerance d

57

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1.5 2 2.5 3 3.5 4 4.5

R
u
n
n
in

g
 t

im
e

(m
il

li
se

c)

number of attributes (1.0E+03)

Figure 3.14: Scalability of mining frequent ratios

Figure 3.15: Cumulative probability distribution of correlation coefficient

58

Figure 3.16: Cumulative probability distribution of support

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2
Alabama New York

Figure 3.17: Quantifiable correlation between number of private wage and salary workers and
number of people with some college eduction

0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2 1.25

AlabamaCalifornia

Figure 3.18: Quantifiable correlation between number of houses owning 2 vehicles and number of
people with some college eduction

59

Chapter 4

Underlying Correlated-clusters Mining

High dimensional data streams pose challenges to traditional clustering algorithm, due to their

inherent sparsity. In this chapter, we resolve the problem of mining hidden variables which sum-

marize the key trends of massive evolving streaming time-series data. Moreover, taking data

evolution in data streams into account, we propose methods to mine correlations incrementally

and adaptively. At each time tick t, according to our proposed multiple regression measure, we

cluster the newly arrived data sample to one of correlated-clusters whose local correlations fit

to the data sample, and also update the local correlations adaptively, based on the incremental

Principal Component Analysis technology.

4.1 Introduction

We describe methods to mine correlated-clusters from high dimensional data streams. Our meth-

ods automate the change detection and maintenance of underlying correlations in streaming data.

Notable aspects include:

• A generalized multivariate regression measure (GR2 measure) detects the change of correla-

tions. At each time tick t, according to the GR2 measure we cluster the newly arrived data

sample to one of the correlated-clusters whose local correlations fit to the data sample. The

data sample that does not belong to any cluster is output as the first data sample of a new

correlated-cluster. The GR2 measure allows the user to control the amount of information

loss.

• A new incremental Principal Component Analysis (IPCA) method updates local correlations

61

A new data sample

Storage of local correlations of all correlated-clusters

Assignment ofcorrelated-cluster Update of local correlations

Previous local correlations of correlated-clusters
Previous local correlations of the objective correlated-cluster

Updated local correlations ofthe objective correlated-cluster

Multiple Regression Measurement Incremental update of correlation
Objectivecorrelated-cluster

Figure 4.1: Overview of the proposed incremental process

of the objective correlated-cluster incrementally and adaptively. This process is independent

of the length of data streams. It requires very limited memory and short processing time

per time tick.

• The results of experiments on high dimensional synthetic data and real data demonstrate

that our methods can achieve higher accuracy of query than other related works, and perform

much more efficiently. Additionally, our proposed methods are able to forecast missing values

in streaming data successfully.

Figure ?? illustrates the process of our incremental and adaptive mining of correlated-clusters

at each newly arrived data sample. At time tick t, we cluster the data sample to one of the existing

correlated-clusters whose local correlations fit to the data sample, according to our proposed GR2

measure, and then we adaptively update local correlations of the objective correlated-cluster.

The rest of this chapter is organized as follows. In Section 4.2, we give the problem definition.

In Section 4.3, we elaborate our proposed methods for clustering continuous data samples into

correlated-clusters and updating local correlations adaptively. In Section 4.4, we present the

performance results on synthetic and real data. Section 4.5 offers the final concluding remarks.

62

4.2 Problem Definition

Given n(n ≥ 2) data streams X1, X2, . . ., Xn as
X1

X2
...

Xn

 =


x11 x12 . . . x1t . . .
x21 x22 . . . x2t . . .
...

...
...

... . . .
xn1 xn2 . . . xnt . . .

 ,

we reorganize data samples in the n-dimensional space as:

p1 =


x11

x21
...

xn1

 , p2 =


x12

x22
...

xn2

 , . . . , pt =


x1t

x2t
...

xnt

 , . . .

In our processes of streaming data, it is required to process data sample pt incrementally without

rescanning and recomputing all the previous data samples.

We aim to cluster data samples from data streams into meaningful groups, referred to

correlated-clusters. Based on the local correlations within each correlated-cluster, it is possible

to reduce high-dimensional data samples into just a handful of hidden variables that compactly

describe the key trends and dynamically reduce the complexity of further data analysis.

4.2.1 Identification of a Correlated-cluster

Definition 1 (Correlated-cluster) A correlated-cluster c is a set of locally correlated n-dimensional

data samples Dc. We record the vector (dc,Φc, mc, Oc) to identify the correlated-cluster c, where

• dc is the number of local correlations (number of Principal Components (PCs));

• Φc is the set of local correlations, and Φ
(i)
c denotes the i-th PC (1 ≤ i ≤ dc);

• mc is n-dimensional mean point of data samples in correlated-cluster c;

• Oc = [O
(dc+1)
c · · ·O(n)

c] is centroid, which represents the position of the mean point mc of c

along eliminated (n− dc) dimensions;

For example, in an original 2-dimensional feature space, c is a correlated-cluster as shown in

Figure ??, where the dimensionality of data samples is reduced to 1, that dc = 1: therefore, only

63

correlated-clusterccentroid Oc

mean point mceliminated dimension (1)cΦ

Figure 4.2: An example of correlated-cluster

the local correlation Φ
(1)
c is used to preserve the variant of the data samples. The point mc is

the mean point of c, and correspondently, Oc is the centroid, by projecting the mean point onto

eliminated dimensions.

Next, we discuss how to represent local correlations. We assume the local correlation l existing

in the data set p1, p2, . . . , pt as a linear subspace of the entire dimensions space is expressed as:

l = m + αe,

where m is a point in n-dimensional space, α is an arbitrary scalar, and e is a unit vector in the

direction of l. When we project pi to l, and we have point m + αie corresponding to pi, then the

squared error of pi is:

ui = (m + αie)− pi.

64

Thus, the sum of all the squared-errors is to be:

t∑
i=1

∥ ui ∥2 =
t∑

i=1

∥ (m + αie)− pi ∥2

=
t∑

i=1

∥ αie− (pi −m) ∥2

=
t∑

i=1

α2
i ∥ e ∥2 −2

t∑
i=1

αie
T (pi −m) +

t∑
i=1

∥ pi −m ∥2

=
t∑

i=1

α2
i − 2

t∑
i=1

αie
T (pi −m) +

t∑
i=1

∥ pi −m ∥2 .

The sum of squared errors must be minimized. Note that
∑t

i=1 ∥ ui ∥2 is a function of m, αi

and e. Partially differentiating it with respect to αi and setting the derivative to be zero, we can

obtain:

αi = eT (pi −m). (4.1)

Now, we should determine a vector e to minimize
∑t

i=1 ∥ ui ∥. Substituting (??) to it, we have:

t∑
i=1

∥ ui ∥2 =
t∑

i=1

α2
i − 2

t∑
i=1

αiαi +
t∑

i=1

∥ pi −m ∥2

= −
t∑

i=1

α2
i +

t∑
i=1

∥ pi −m ∥2

= −
t∑

i=1

[eT (pi −m)]2 +
t∑

i=1

∥ pi −m ∥2

= −
t∑

i=1

[eT (pi −m)(pi −m)T e] +
t∑

i=1

∥ pi −m ∥2

= −eT Se +
t∑

i=1

∥ pi −m ∥2, (4.2)

where S =
∑t

i=1(pi −m)(pi −m)T , called scatter matrix.

Obviously, the vector e that minimizes above equation also maximizes eT Se. We can see

Lagrange multipliers to maximize eT Se subject to the constraint ∥ e ∥= 1. Let:

µ = eT Se− λ(eT e− 1).

Differentiating µ with respect to e, we have:

65

∂µ

∂e
= 2Se− 2λe.

Therefore, in order to maximize eT Se, e must be the eigenvector of the scatter matrix S:

Se = λe. (4.3)

Finally, we need m to complete the solution.
∑t

i=1 ∥ pi −m ∥ should be minimized since it

is always non-negative. To minimize it, m must be the average of p1, p2, . . . , pt. With m as the

average data samples and e from (??), the local correlation l is determined: we can define local

correlations in correlated-cluster in a simple form as follows:

Definition 2 (Local Correlations) Assume that there are dc local correlations in a correlated-

cluster c, then we can represent each local correlation at time tick t as follows:

pt(1)− X̄1

e1
(i)

=
pt(2)− X̄2

e2
(i)

= . . . =
pt(n)− X̄n

en
(i)

, (4.4)

where pt(j) is the value of j-th dimensional element of data sample pt (1 ≤ j ≤ n),

[e1
(i), e2

(i), . . . , en
(i)]T is the eigen-vector corresponding to i-th largest eigen-value of the scatter

matrix S (1 ≤ i ≤ dc). X̄j(j = 1, 2, . . . , n) is the average of sequence Xj.

In the next section, we elaborate our proposed methods for mining local correlations incre-

mentally and adaptively in the collection of high dimensional streaming data.

4.3 Proposed Correlated-clusters Mining Process

We resolve the problem of mining correlated-clusters by two-phases process. As illustrated in

Figure ??, for each newly arrived data sample, we run the phases for assigning correlated-cluster

and updating local correlations.

4.3.1 Assignment of Correlated-cluster

In the last section, we discussed about utilizing a linear subspace of the entire feature space to

represent local correlations, and in this subsection we answer the question: how do we measure

fitness of linear local correlations to the newly arrived data sample? We propose a multiple

regression measure to evaluate the goodness-of-fit of a local correlation to the new data sample.

66

We cluster the data sample to the correlated-cluster whose local correlations fit to the data sample

best.

In the following equation (??), the R2 measure is used as a measure for the goodness-of-fit in

2-dimensional linear regression models. In equation (??), ui is reconstruction error by using this

regression model to predict a sequence yi. The value of R2 measure is always between 0 and 1.

The closer the value is to 1, the better the regression line fits to the data samples.

R2 = 1−
∑t

i=1 u2
i∑n

j=1

∑t
i=1(yi − ȳ)2

(4.5)

Similarly, we can extend the measurement for multiple dimensional data, referred to GR2 measure.

It is expressed as:

GR2 = 1−
∑t

i=1 ∥ ui ∥2∑n
j=1

∑t
i=1(xji − X̄j)2

, (4.6)

where ui is reconstruction distance defined as vertical distance of data sample pi to a local corre-

lation.

For example, in the 2-dimensional space as shown in Figure ??, c is an existing correlated-

cluster, and its local correlation is Φ
(1)
c . When a new data sample pt arrived, then upt

is the

reconstruction distance of pt to Φ
(1)
c , supposing that pt is partitioned into c.

From equation (??) we can further derive:

GR2 = 1−
∑t

i=1 ∥ ui ∥2∑n
j=1

∑t
i=1(xji − X̄j)2

= 1−
∑t

i=1 ∥ ui ∥2∑t
i=1 ∥ pi −m ∥2

.

Substitute equation (??), then we get

GR2 =
eT Se∑t

i=1 ∥ pi −m ∥2

=
eT λe∑t

i=1 ∥ pi −m ∥2

=
λ∑t

i=1 ∥ pi −m ∥2
.

We can derive the following important properties of the GR2 measure:

1. 0 ≤ GR2 ≤ 1.

67

2. GR2 = 1 means the n data streams have exact linear correlation with each other.

3. GR2 is invariant to the order of X1, X2, . . . , Xn: i.e., we can arbitrarily change the order of

the n data streams, while the value of GR2 does not change.

Proof.

1. According to equation (??), we have:

t∑
i=1

∥ ui ∥2= −eT Se +
t∑

i=1

∥ pi −m ∥2≥ 0.

Therefore
t∑

i=1

∥ pi −m ∥2≥ eT Se = λ ≥ 0,

so we conclude 0 ≤ GR2 = λ∑t
i=1∥pi−m∥2 ≤ 1.

2. If GR2 = 1, then
∑n

i=1 ∥ ui ∥2= 0, which means the local correlation fits to the t data

samples perfectly. Therefore, the n sequences have exact linear correlation with each other.

3. According to expression (??), this is obvious.

According to equation (??), at each time tick t we can calculate the value of GR2 measure

incrementally to evaluate the goodness-of-fit of local correlations, if the vector e can be estimated

incrementally. In the next subsection, we will introduce a method for estimation. We define a

threshold, then the new arriving data sample is clustered into the correlated-cluster whose value of

GR2 measure is larger than the threshold. If the values of GR2 measure in all existing correlated-

clusters are less than the threshold, then we determine that this data sample is the first data

sample of a new correlated-cluster.

After determining the objective correlated-cluster, in the following subsection we discuss how

to update its local correlations incrementally and adaptively.

4.3.2 Update of Local Correlations

In this section, we discuss how to update local correlations of the objective correlated-cluster c.

We propose a new IPCA algorithm based on Normalized Least mean Squares (NLMS) adaptive

68

filter technique [?] as shown in Figure ??. Line 0 initializes i-th local correlation ei(1 ≤ i ≤ dc)

to a unit vector. gt denotes the energy of data samples when they are projected to the i-th local

correlation. It is initialized to a small positive value. When a new data sample pt arrives, for each

i-th local correlation we do the following process:

• Compute the projection yi by projecting pt onto ei in Line 4;

• Estimate energy gt and reconstruction error ut based on yi in Line 5 and Line 6;

• Update the estimation of ei in Line 7. The larger the reconstruction error ut is, the more

ei is updated. However, the magnitude of this update should also take into account the

past data currently “captured” by ei. Therefore, the update is inversely proportional to the

current energy g; and

• In order to update the remainder local correlations, we remove the projection of original

data sample on ei in Line 8 and Line 9. Then we repeat the above steps with remainder

local correlations.

On the other hand, for the determination of the number of local correlations dc in the objective

correlated-cluster, we can adopt energy-based dynamic determination of dc. That is to say, after

the update of local correlations, we compare the ratio for energy of reconstructed data with that

of original data: if the ratio is less than the user-defined minimum ratio of preservation, then the

number of local correlations increases by 1, and we repeat the above IPCA algorithm to generate

the new local correlation. Otherwise, if the ratio is larger than the user-defined maximum ratio

of preservation, then the number of local correlations decreases by 1, and we delete the last local

correlation.

4.4 Experiments

In this section we present experimental results to show efficiency of our proposed methods and

effectiveness of discovered local correlations used for query in high dimensionality space, and for

forecasting missing data. We compare our incremental process for mining local correlations with

the incremental CCIPCA approach proposed in [?].

69

4.4.1 Experimental Methodology

Range query In our experiments, we compare accuracy of query in the two reduced dimensional

data. We do range query in our experiments. For one of original n-dimensional data P , we aim to

retrieve all objects Q in the dataset which satisfy the distance between the query anchors P and

Q is less than user-defined threshold ρ (D(Q,P) ≤ ρ). We use Euclidean distance as the distance

metric. The accuracy of query is defined as
|Roriginal|
|Rreduced|

, where Roriginal and Rreduced are the sets of

answers returned by query on original space and reduced-dimensional space respectively [?,?]. The

accuracy measures the information-loss incurred by dimension reduction and hence the query cost.

We compare the accuracy of these two approaches with fixed reduced dimensionality: therefore,

the higher the accuracy is, the lower the cost of query is and also the more efficient the technique

is.

Forecasting missing data The principal components give us a much more compact repre-

sentation of the original data streams, with guarantees of high reconstruction accuracy. When our

streams exhibit correlations, the number of principal components is much smaller than the origi-

nal high dimensionality. Therefore, we can apply forecasting algorithm to the vector of principal

components, instead of the original data samples. This reduces the time and space complexity by

orders of magnitude, because typical forecasting methods are quadratic or worse on the number

of dimensionality. In particular, for auto-regression we found that one auto-regression model per

principal component provides results comparable to multivariate auto-regression. In our experi-

ments, we use the forecast based on X t−1 to estimate missing values in X t. We then use these

estimated missing values to update the principal component estimates, as well as the forecasting

models.

4.4.2 Experiments on Synthetic Data

We use the same method to generate synthetic data as done in [?]. We generate different correlated-

clusters with different orientations and dimensionality. Some important input parameters to the

data generator are shown in Table ??. The generator makes up k correlated-clusters with a total

of N · (1 − o) data samples, and the average subspace dimensionality being d. Each correlated-

cluster is generated as follows. For a correlated-cluster with size Ni and subspace dimensionality

70

Table 4.1: Input parameters of synthetic data generator.

Parameter Description Default Value
N Total number of data samples 2000
n Original dimensionality 64
k Number of correlated clusters 5
d Average subspace dimensionality 10
p Maximum displacement of data samples

among each non-subspace dimension 0.2
o Fraction outliers 0.05

di, we randomly choose di dimensions among the n dimensions as the subspace dimensions and

generate Ni data samples in di-dimensional plane. Along each of the remaining (n − di) non-

subspace dimensions, we assign a randomly chosen coordinate to all the ni data samples in the

cluster. Each data sample is displayed by a distance of at most p in either direction along each

non-subspace dimension. The value of p determined the degree of correlation. The lower the value

is, the more closer the correlation is. After all the correlated-clusters are generated, we randomly

generate N · o data samples as the outliers.

We generated 100 range queries randomly and chose the threshold ρ so that the average query

selectivity is about 2%. All of our measurements are averaged over the 100 queries. We carry out a

sensitivity analysis of CCIPCA and our proposed methods with parameters: the number of clusters

k, degree of correlation p, and total number of data samples N . In each experiment, we vary the

parameter of interest while the remaining parameters are fixed at their default values. We fix the

reduced dimensionality of the batch technique to 10, which is the same as the average subspace

dimensionality. Figure ?? compares the accuracy of the two approaches for various values of k. As

expected, for one correlated-cluster, two approaches are identical. As k increases, the number of

data samples in each correlated-cluster becomes fewer. The accuracy of our proposed incremental

approach deteriorates, but it remains similar to that of CCIPCA. Nevertheless, execution time of

CCIPCA increases as illustrated in Figure ??, because it performs more iterations of re-clustering.

Therefore, our incremental approach performs much more efficiently than CCIPCA. Figure ??

compares the two approaches for various values of p. As the degree of correlation decreases (i.e.,

the value of p increases), the accuracy of both techniques drops but the result of our incremental

71

approach is still similar to that of CCIPCA. In Figure ??, we can see that since the total number

of data samples increase, our methods perform much more efficient than CCIPCA, because it

requires very short processing time which is independent of the length of data stream. Therefore,

we can get the conclusion that our incremental approach can achieve similar query accuracy of

CCIPCA but much more efficiently.

4.4.3 Experiments on Real Data

4.4.3.1 Image data

In these experiments, we use sequences of images obtained from Columbia Object Image Library

1 as shown in Figure ??. In this image dataset, there are 20 objects rotated in their vertical

axis, generating 72 images per object. The images are scaled to 80× 80 pixels. We evaluate the

accuracy of query in sequences of images for all of the 20 objects. In each experiment, we learn

7000 images of one object to build a set of view-based local correlations among pixels, and then

do 100 range queries randomly. Therefore, all of our measurements are averaged over the 2000

queries.

From Figure ??, we can see that our proposed approach achieves higher accuracy than

CCIPCA: therefore, our proposed method is superior. Our approach adapts the local correla-

tions with respect to the view change, while CCIPCA corrupted quickly owing to the influence

of intensity. In Figure ??, as the number of reduced dimensionality increases, that is, we adopt

more reduced dimensionality for representation of original image data, the batch approach also

achieves high accuracy, however it is less effective on execution time and memory space basis.

From this result, we can see that our proposed approach is superior and is applicable to solve

the problems in practice, such as modeling face, modeling background and so on.

4.4.3.2 Room temperatures data

The Critter dataset consists of 8 streams. Each stream comes from a small sensor that connects

to the joystick port and measures temperature. The sensors were placed in 5 neighboring rooms.

Each time tick represents the average temperature during one minute. Our proposed methods

are able to deal successfully with missing values in streams. Figure ?? shows the results on the

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

72

blanked version (1.5% of the total values in five blocks of consecutive time ticks, starting at a

different position for each stream) of Critter. In particular, on sensor 2 (second row in Figure ??),

the correlations picked by the single hidden variable successfully capture the missing values in that

region (consisting of 270 time ticks). On sensor 1, (first row in Figure ??, 300 blanked values), the

upward trend in the blanked regions also picked up by the correlations. Even though the trend

is slightly miss-estimated as soon as the values are observed again, our proposed methods very

quickly gets back to near-perfect tracking.

4.5 Summary

In this chapter, we proposed a method to mine underlying correlated-clusters as well as local

correlations from data streams incrementally and adaptively. We discussed a generalized multiple

regression measurement for clustering data samples, and an IPCA algorithm for updating local

correlations. An extensive experimental study demonstrated that our methods can achieve higher

accuracy of query than other related works, and performs much more efficiently. Additionally, our

proposed methods are able to forecast missing values in streaming data successfully.

73

Projection of pt on eliminated dimension
correlated-clusterc

pt

Reconstruction distance tup
(1)cΦ

Figure 4.3: Reconstruction error

Incremental Principal Component Analysis：：：：0. Initialize to a unit vector, to small positive values .1. for a newly arrived data sample 2. 3. for 1< < 4. // compute - th PC5. // energy of -th PC6. // reconstruction error based on -th PC7. // update coefficient of -th PC8. // output the actual - th PC 9. // repeat with remainder PCs 10. Endfor11. Endfor

1ˆ : t=p p

1 , ,ˆ ˆ:i i t i t iy+ = −p p e, (1), , ,,1:t i t i t i t it i yg− ′= +e e u
(1),, ˆ: Tt it i iy −′ = e p 2, (1), ,:t i t i t ig g yδ − ′= +, ,ˆ:t i i t i iy′= −u p e

,, ˆ: Tt it i iy = e p

ie ig (1, ...,)ci d=tp
ii i

i

cd

i

i

Figure 4.4: Incremental update of local correlations

74

Figure 4.5: Accuracy vs. the number of hidden variables k

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
)

Number of correlated-clusters k

CCIPCA
Proposed methods

Figure 4.6: Execution time vs. the number of hidden variables k

75

Figure 4.7: Accuracy vs. degree of correlation p

 0

 50

 100

 150

 200

 2000 4000 6000 8000 10000

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
)

Total number of data samples

CCIPCA
Proposed methods

Figure 4.8: Execution time vs. total number of data samples N

76

Figure 4.9: Example of real sequences of images

Figure 4.10: Comparison of accuracy

77

1 1
2 2

Data values Data values
Data values Data values

Figure 4.11: Detail of forecasts with blanked values.

78

Chapter 5

Flexible Timeline Clustering over Data
Streams

Clustering techniques are also applied to multiple data streams for discovering continuous cor-

relations. However, the existence of data evolution in data streams leads to another important

issue of various clustering requirements at the same time. In this chapter, we discuss about the

problem of flexible timeline clustering over multiple data streams. In the applications of flexible

timeline clustering over data streams, user may be interested in clustering all stream pairs that

are similar with each other during an arbitrary period of time. In the context of data streams,

how to summarize the huge number of data resources for online calculation of similarity, and how

to efficiently retrieve abstractions of the streaming data during a certain period in response to

users’ request are important issues.

5.1 Introduction

We devise a framework to dynamically and flexibly cluster multiple evolving data streams. The

proposed framework consists of two phases: namely, online statistics maintenance phase and

offline clustering phase. The online statistics maintenance phase realizes online collection and

maintenance of summary statistics of fast data streams. Once a request of clustering is submitted,

the offline clustering phase devises an adaptive abstraction algorithm to abstract statistics for

approximating the user-desired subsequences as precisely as possible from the summary statistics

hierarchies, and outputs the results of clustering over the statistics. Since the offline phase requires

only the summary statistics as inputs, it turns out to be very efficient in practice. As shown in the

79

{V1}, {V2, V3}, {V4}

{V1,V2},{ V3}, {V4}

{V1}, {V2, V3}, {V4}

{V1, V2, V3}, {V4}

Framework

Offline Clustering Phase

{V1}, {V2, V3}, {V4}

Clustering Results
•Type I:

•Type II:Clustering reques t:

• Type I : t1=15, ω=3, P=3

• Type I I: t1=15, t2=5, ω=3

summary
statistics

Adaptive
Subsequence

Abstraction
Algorithm

Approximated
substreams

clustersSW (P)

SW3

SW2

SW1

clustersSW

SW1’

SW2’Kmeans
Clustering

Online Statistics
Maintenance Phase

Statistics
Collection

Hierarchy
Maintenance

{V1}, {V2, V3}, {V4}

{V1,V2},{ V3}, {V4}

{V1}, {V2, V3}, {V4}

{V1, V2, V3}, {V4}

Framework

Offline Clustering Phase

{V1}, {V2, V3}, {V4}

Clustering Results
•Type I:

•Type II:Clustering reques t:

• Type I : t1=15, ω=3, P=3

• Type I I: t1=15, t2=5, ω=3

summary
statistics

Adaptive
Subsequence

Abstraction
Algorithm

Approximated
substreams

clustersSW (P)

SW3

SW2

SW1

clustersSW

SW1’

SW2’Kmeans
Clustering

Online Statistics
Maintenance Phase

Statistics
Collection

Hierarchy
Maintenance

Framework

Offline Clustering Phase

{V1}, {V2, V3}, {V4}

Clustering Results
•Type I:

•Type II:Clustering reques t:

• Type I : t1=15, ω=3, P=3

• Type I I: t1=15, t2=5, ω=3

summary
statistics

Adaptive
Subsequence

Abstraction
Algorithm

Approximated
substreams

clustersSW (P)

SW3

SW2

SW1

clustersSW

SW1’

SW2’Kmeans
Clustering

Online Statistics
Maintenance Phase

Statistics
Collection

Hierarchy
Maintenance

Figure 5.1: An overview of the proposed framework for clustering multiple evolving data streams.

complexity analyses and also validated by our empirical studies, the algorithms of our framework

perform very efficiently in the data stream environment while producing clustering results of very

quality.

The rest of this chapter is organized as follows: Section 5.2 describes the definitions of the

proposed framework. Section 5.3 discusses how the summary statistics are collected and stored

in the online statistics maintenance phase. Section 5.4 discusses how the offline clustering phase

generates clusters over different time horizons at all possible time points using the statistics from

the hierarchy structures. Section 5.5 analyzes complexity of the proposed framework. Section 5.6

reports our performance study on real and synthetic data sets. Section 5.7 concludes our study.

5.2 Framework

Figure ?? illustrates an example of the flexible clustering process over multiple evolving data

streams. Continuous data streams are input into the online statistics maintenance phase, and

the online statistics maintenance phase summarizes data streams into statistics and maintains

the statistics in hierarchies. Once a clustering request is submitted into the offline clustering

80

phase, the adaptive abstraction algorithm retrieves the statistics of the desired subsequences from

the summary hierarchies, clusters statistics, and then outputs clustering results. In a clustering

request, the user specifies arbitrary interested subsequence at arbitrary time point. By realizing

the clustering over different subsequences, our framework also supports a user to explore the

evolution of the nature of clusters over different sliding windows (Ws). Here, a subsequence in a

sliding window is referred to as the subsequence from the user specified time point and with the

length of user specified time horizon. The user may be interested in consecutive sliding windows

or discrete sliding windows. In Figure ??, we give the examples of consecutive sliding windows

and discrete sliding windows as Type I and Type II, respectively. As shown in the example of

Type I in Figure ??, we get the results of clustering specifying P = 3 consecutive sliding windows

with the time horizon size of ω = 3 time points before time point t1. Additionally, in the example

of Type II, we observe the results of clustering before t1 and t2 specifying the same size of time

horizon ω = 3.

5.3 Online Statistics Maintenance Phase

In this phase, for a data stream, data samples are approximated into linear segments based on a

new segmentation criterion to realize online summary statistics collection, and all these statistics

are maintained in a compact hierarchy which supports flexible clustering in the offline clustering

phase.

5.3.1 Online Statistics Collection

Several high-level representations have been proposed for approximation of time series, including

Discrete Fourier Transform [?], Discrete Wavelet Transform [?], Singular Value Decomposition

[?] and Piecewise Linear Approximation (PLA) [?]. Among these representations, PLA which

approximates data samples into linear segments is one that is widely used because of its simplicity

and is applicable to online approximation. Additionally, for the PLA linear approximation, due

to the advantages of smooth approximation and low computational complexity discussed in [?],

linear interpolation becomes our technical choice for online segmentation algorithm. A classic SW

method in [?] is proposed for online segmental approximation of subsequences.

81

Figure 5.2: An example of tolerance slope interval.

We introduce a new segmentation criterion which reduces the computational complexity of the

classic SW method in subsection 5.3.1.1. Based on this criterion, we propose a linear approxi-

mation method guaranteeing the approximation error of each data sample is less than the user

specified maximum tolerance error δ in subsection 5.3.1.2.

5.3.1.1 Segmentation Criterion

It can be simply defined as the sum of the squares of vertical distance between actual data samples

and the approximation line. The sum of the squares are used to evaluate the goodness-of-fit for

potential segments. Another measure is the maximum vertical distance (MVD) between the data

points and the approximation line, which is commonly used in linear interpolation [?]. In our

method, we propose a new segmentation criterion based on MVD to make the approximation

process more efficient.

[Property 1.] For δ > 0, i < j < k, when we approximate the time series T = (ai, aj, ak)

guaranteeing V D(aj, L(ai, ak)) ≤ δ iff l(ai, low(aj)) ≤ l(ai, ak) ≤ l(ai, up(aj)). Here l(ai, ak) is

slope of line L(ai, ak) whcih is the result of linear approximation of the time series, and low(aj) and

up(aj) are the tolerant approximate points of aj with respect to the maximum vertical tolerance

error δ.

This property is simply illustrated in Figure ??. The interpolation line passing through ai

and ak is the potential approximation line for ai, aj and ak. For any data sample aj where

i < j < k, we need to determine whether the vertical distance of aj to the interpolating line,

82

Figure 5.3: Illustration of tolerance slope interval of L(a1, a4).

V D(aj, L(ai, ak)), is within δ. In Figure ??, we can see that in order to keep V D(aj, L(ai, ak)) ≤

δ, L(ai, ak) must lie between the lines L(ai, up(aj)) and L(ai, low(aj)), which is equivalent to

l(ai, low(aj)) ≤ l(ai, ak) ≤ l(ai, up(aj)), and vice versa. Based on this property, we propose our

segmentation criterion as follows:

[Segmentation criterion.] For the current segment S = (ai, . . . , aj) and δ > 0, let lowli:j =

max(l(ai, low(at))) and upli:j = min(l(ai, low(at))), where i < t ≤ j. The newly arriving data

sample aj+1 can be added into the segment S iff lowli:j ≤ l(ai, aj+1) ≤ upli:j.

This segmentation criterion is derived directly from Property 1:

lowli:j ≤ l(ai, aj+1) ≤ upli:j

⇔ max
i<t≤j

l(ai, low(at)) ≤ l(ai, aj+1) ≤ min
i<t≤j

l(ai, low(at))

⇔ l(ai, low(at)) ≤ l(ai, aj+1) ≤ l(ai, up(at)), i < t < j

⇔ V D(at, L(ai, aj+1)) ≤ δ, i < t < j (Property1)

⇔ aj+1 can be added to the segment S.

According to the segmentation criterion, each time a new data sample arrives. In order to

determine the approximation line including the new data sample, we do not need to recompute

all the vertical distances between the data samples and the new interpolating line as the classic

SW method. Instead, we simply compare the slope of the new interpolating line with [lowl, upl]

of the current segment and update them accordingly. Here we note [lowl, upl] as tolerance slope

83

Figure 5.4: A proposed approximation algorithm.

Linear approximation algorithm based on a new segmentation criteria
Input: time sequence , maximum tolerance error
Output: segmenting points
Initial:
While not finished segmenting time series

If then

// the farthest CSP is a new segmenting point.

// reset
Else

If then
// record ID of farthest CSP.

End
End

End

1 2, , ,na a a… … δ
1 2(, , ,)ks s s… …

1 1 1 2 1 2_ _ 1, , (, ()), (, ())i seg no csp id s a lowl l a low a upl l a up a← ← ← ← ← ←

1;i i← +
_ _min(, (, ())), max(, (, ()));seg no i seg no iupl upl l s up a lowl lowl l s low a← ←

upl lowl<
_ _ 1;seg no seg no← +
_ _ ;seg no csp ids a←

_ ;i csp id←
_ _ 1 _ _ 1(, ()); (, ());csp id csp id csp id csp idlowl l a low a upl l a up a+ +← ←

_(,)seg no ilowl l s a upl≤ ≤
_ ;csp id i←

interval.

5.3.1.2 Approximation Method

The key idea of the proposed approximation method is to search for the farthest candidate seg-

mentation point (CSP) to make the current segment as long as possible, and to reduce the number

of segments for approximation. We call a data sample as a CSP if it may be chosen to be the next

eligible segmentation point: i.e., the distances of all the points lying between the last segmentation

point and the new chosen one to the new approximation line are all within δ.

According to the segmentation criterion, when a new data sample arrives, the newly updated

tolerance slope interval [lowl, upl] is contained in the older one. [lowl, upl] is nonempty, which

implies that it is possible for future data samples to be CSPs, even though the current new

data sample is not a CSP. For example, in Figure ??, the vertical distance of a2 to L(a1, a3)

exceeds δ because l(a1, a3) is outside of [l(a1, low(a2)), l(a1, up(a2))]; so a3 is not CSP, but after

updating the tolerance error interval, lowl < upl, it is possible for future data samples to be CSPs.

In this example, a4 is the furthest CSP because l(a1, a4) falls into the tolerance slope interval

[max(l(a1, low(at))),min(l(a1, up(at)))] where 1 < t ≤ 3, which is the shaded area in Figure ??:

i.e., the vertical distances of data samples a2 and a3 to L(a1, a4) are within the maximum error

84

Figure 5.5: An example of integration of two segments.

tolerance δ. The tolerance slope interval shrinks as the new data sample arrives. When the

tolerance slope interval becomes empty, (i.e., upl < lowl), it is impossible for any future data

point to be a CSP. Therefore, because we choose the farthest CSP to be the next segmentation

point, the current segment is certainly made the longest.

Finally, the approximation algorithm is given in Figure ??.

5.3.2 Multi-level Summary Statistics Hierarchy

A Multi-level summary statistic hierarchy is proposed to store the statistics of each data stream.

It plays an important role for our flexible clustering objective. It supports abstracting statistics

of desired subsequences directly from the existing summary statistic without parsing raw data

samples again. Therefore, clustering over statistics rather than original data samples addresses

the time and space constraints in data streams environment. In this subsection, we discuss how

to construct the multi-level summary statistic hierarchy for a data stream. In the next offline

clustering phase, how to retrieve statistics of subsequences will be discussed in detail.

5.3.2.1 Segments Integration Criterion

In the hierarchy, statistics of lower level are stored in segments; therefore, in order to generate

statistics of higher level, it is possible to integrate segments of lower level. In the example il-

lustrated in Figure ??, for the current segments S1 = (a1, a2, a3) and S2 = (a4, a5, a6, a7), we

85

Figure 5.6: Geometric interpretation of segment integration criterion.

consider whether it is possible to integrate S1 and S2 into S3 = (a1, a2, a3, a4, a5, a6, a7) for ap-

proximating all the data samples. Firstly, because l(a1, a7) is included in the tolerance slope

space [low(a3), up(a3)] of S1, S3 guarantees that the approximation errors of data samples a1, a2,

a3 are less than δ. For the data samples in segment S2, note that the tolerance slope space

[up(a6), low(a5)] of S2 is referred to data sample a3, not a1; therefore, [up(a6), low(a5)] is not the

tolerance slope space for approximating segment S2 using approximation segment S3. Therefore,

the segmentation criterion for data sample is not suitable for integration of segments. Focusing

on the data samples a5 and a6 which related to the tolerance slope space of segment S2, we find

that low(a5) = y5 − δ and up(a6) = y6 + δ are the lower and upper boundary of approximation

error of all the data samples in segment S2. Therefore, if the approximation data of a5 and a6: ŷa5

and ŷa6 calculated from S3 respectively, within [low(a5), up(a6)], then S3 also guarantees that the

approximation error of each data sample in S2 is less than δ. Otherwise, S3 cannot approximate

the data samples in segment S2. In this example, because ŷa5 < low(a5), S1 and S2 cannot be

integrated.

As illustrated in Figure ??, for two consecutive segments Si and Sj, we denote [lowlSi
, uplSi

]

as the tolerance slope interval of Si. alowlSj
and auplSi

are the data samples which determine

the tolerance slope interval of Sj. ŷlowlSj
and ŷuplSi

are the approximation data of alowlSj
and

auplSi
calculated from approximation segment Sk, which is the potential approximation line after

integrating Si and Sj. We propose criterion for segments integration as follows:

86

[Segments Integration criterion.] For the current consecutive segments Si and Sj, the

potential approximation segment Sk by integration of Si and Sȷ is approved iff the following two

conditions are satisfied:

(a) Slop of Sk within [lowlSi
, uplSi

].

(b) ŷlowlSj
≥ low(auplSi

) and ŷuplSi
≤ up(auplSi

) where low(auplSi
) = ylowlSj

− δ and up(auplSi
) =

yuplSi
+ δ.

5.3.2.2 Summary Statistic Hierarchy

Figure ?? describes the procedure of constructing the summary statistic hierarchy for a data

stream. When a new data sample arrives, it is summarized into the temporary bucket firstly

according to the segmentation algorithm discussed in Section 5.3.1.2. Until the number of data

samples in the temporary bucket (TB) reaches Bt, the statistic of all segments in TB will be

stored into a new basic window at level 0. When Bh new basic windows are accumulated at level

(H − 1), a new basic window at level H is generated. Note that in this step segments in basic

windows may be integrated. The integration process is explained in Figure ??. For segments of

a basic window of level (H − 1), obviously, the integration of two segments possibly occurs at

the connection of two basic windows of level (H − 1), and other segments need to be copied into

the new basic window at level H. If the two segments of two connected basic windows of level

(H − 1) satisfy the segments integration criterion as discussed in subsection 5.3.2.1, then the two

segments are integrated. Then it is necessary to check whether the newly integrated segment

and the next segment of the connected basic window can be integrated or not. If the segments

integration criterion is not satisfied, the integrated segment and all of the remaining segments of

the connected basic window will be copied into the new basic window at level H.

Generally, n hierarchies are maintained for n data streams. Due to the space limitation in

the streaming environment, only the latest α basic windows are maintained at each level. Note

that α should not be set smaller than Bh in order to keep enough basic windows at lower level for

generation of a basic window at a higher level.

87

Procedure of constructing summarized statistics hierarchy (for one data steam)
Input: data samples , size of temporal bucket , , maximum tolerance error
Output: summarized statistics hierarchy
Initial: , empty temporal bucket, ,

While not finished data streams
1. For each incoming data sample, approximate the data samples into temporary bucket

incrementally according to proposed approximation algorithm.
2. If the number of data samples in the temporary bucket is less than , then return to Step 1.

Else
3. Create a new basic window at level 0.
4. Store the statistics of segments in temporal bucket into the new basic window.
5. Empty temporal bucket.
6. If the number of basic window at equals to , then
7. Create a new basic window at .
8. While not finish basic windows at
9. first segment of the first basic window
10. Procedure for integrating segments (, , 1, 0).
11. Initialize .
12. .
13. End
14. End
15. End
16. End

1 2, , ,na a a… … δtB hB

0level ←

level hB

tB

1level +
hB level

seg ←

seg null←

seg

seg ←
seg

1i i← +

0i ←

i

Figure 5.7: Procedure for constructing summarized statistics hierarchy.

5.4 Offline Clustering Phase

In this section, we discuss the clustering process when a clustering request is submitted. Note

that user-specified time horizon w would be different from the size of basic windows maintained

in the summary statistic hierarchies. It is important to retrieve statistics of the user desired

subsequences as precisely as possible. Here we define an entry which contains the statistics of the

desired subsequence. We have the following definitions for appropriate level selection in order to

abstract entries which are most recent from user-specified time point t1.

Definition 1. The highest level and lowest level for generation of entries are defined as

Hmax = ⌊logBh
(
w

Bt

)⌋ (5.1)

Hmin = argmin{H|w ≤ (t1 − t[H,i,ki]) + αHhH} (5.2)

where αH is the exact number of basic windows at level H, t[H,i,ki] is the end time point of the

last segment (ki-th segment) of the ith basic window at level H from t1, and hH = BtBh
H is the

size of a basic window of level H.

In the above definitions, window size of level Hmax on the hierarchy is no larger than w, and

88

Procedure for integrating segments (segment , int , int , int)
Input: j-th segment of basic window

1. If is the last segment of basic window or then
2. If and satisfy the segments integration criterion, then
3. Integrate the two segments as : data samples within the two segments are

approximated by a interpolation line passing the fist data sample of and
the last data sample of .

4. .
5. .
6. Procedure for integrating segments (, , ,).

Else
7. While not finish the segments at basic window
8. .
9． Store into the new basic window at the higher level.
10. .
11. .
12. End
13. End
14. End

1i +
flag

seg

j

iseg

jtemp

seg i

seg

jtemp
1j j← +

seg

seg ← seg i
1flag ←

flag

1flag =

j

i
jseg temp←

1j j← +
0flag ←

jtemp

seg

Figure 5.8: Procedure for integrating segments.

Hmin is the lowest level whose basic windows are still enough to illustrate the pattern with window

size w. Therefore, from level Hmin to Hmax, we can abstract (Hmax −Hmin) entries which closely

satisfy the user’s request and most recent from t1. The outline of adaptive abstraction algorithm

for statistics is shown in Figure ??. In the first step the values of Hmin and Hmax are calculated

according to the time horizon w. Then, entries are retrieved from each data stream by Step 2 and

Step 3, where t[Hmin,i,ki] means the end time points of the last segment (kith segment) of the last

basic window (ith basic window) of level Hmin. In Step 3, we encapsulate the basic windows at one

level of the hierarchy which cover the desired time horizon w into an entry. Let us consider Step

2 in the proposed abstraction algorithm. In the example shown in Figure ??, assume the level

Hmin = 2. Since the end time point t[2,1,k1] is not equal to t1, we aggregate the basic windows from

lower levels (from level 1 to 0) and segments from the temporary bucket to generate a temporary

basic window which characterizes the interval between t[2,1,k1] and t1. Then, it is aggregated into

the latest basic window of level 2. After abstracting the statistics of user-desired subsequences,

the k-means clustering algorithm is utilized to declare the group behavior of data streams in each

sliding window.

89

Procedure of adaptive subsequence abstraction algorithm
1. Calculate and . For each data stream do Steps 2 and 3.

2. If the end time point of level is not equal to , aggregate the basic windows at lower
levels (from (-1) to 0) and segments in the temporary bucket to generate a temporary basic
window to characterize the pattern in interval .
Then, aggregate this temporary basic window to the latest basic window at level .

3. Encapsulate the basic windows between level and to generate at most P entries, where
each entry represents a sliding window with size . Set initially.
For the sliding windows from to , if the range of a desired window is covered by the interval of
the basic windows in level H, encapsulate an appropriate number of basic windows into that entry.
Else, increase H by one to look for the basic windows with enough coverage. This step stops when p
entries have been retrieved or when H exceeds the maximum level with entries obtained,
where .

4. Run the kmeans clustering algorithm to cluster these subsequences by the retrieved entries for each
sliding window.

maxH minH

min[, ,]iH i kt minH 1t

minH

min[, ,] 1[,]
iH i kt t

minH

minH maxH
ω minH H←

1w pw

rpminH

rp P≤

Procedure of adaptive subsequence abstraction algorithm
1. Calculate and . For each data stream do Steps 2 and 3.

2. If the end time point of level is not equal to , aggregate the basic windows at lower
levels (from (-1) to 0) and segments in the temporary bucket to generate a temporary basic
window to characterize the pattern in interval .
Then, aggregate this temporary basic window to the latest basic window at level .

3. Encapsulate the basic windows between level and to generate at most P entries, where
each entry represents a sliding window with size . Set initially.
For the sliding windows from to , if the range of a desired window is covered by the interval of
the basic windows in level H, encapsulate an appropriate number of basic windows into that entry.
Else, increase H by one to look for the basic windows with enough coverage. This step stops when p
entries have been retrieved or when H exceeds the maximum level with entries obtained,
where .

4. Run the kmeans clustering algorithm to cluster these subsequences by the retrieved entries for each
sliding window.

maxH minH

min[, ,]iH i kt minH 1t

minH

min[, ,] 1[,]
iH i kt t

minH

minH maxH
ω minH H←

1w pw

rpminH

rp P≤

Figure 5.9: The outline of the adaptive subsequences abstraction algorithm

A typical function for measure quality of cluster in sliding window Wi is

Cost(CL(Wi) =

∑
Cj(Wi)

∑
Sq(Wi)∈Cj(Wi)

dis(Sq(Wi)− Cj(Wi).center)

n ∗ w
.

where Cj(Wi).center is the center of cluster Cj(Wi), and dis(Sq(Wi) − Cj(Wi).center) is the

distance of each member of cluster Cj(Wi) with the center.

Euclidean distance is used as the distance measurement between two subsequences. If more

than one window is observed, the total quality will be the average clustering quality of the retrieved

windows, as follows:

Cost(CL) =

∑Pr

i=1 Cost(Cl(Wi))

Pr

. (5.3)

where Pr is the number of windows actually retrieved.

5.5 Complexity Analysis

The complexities of the online and offline phases in our framework are as follows, where n is the

number of streams and m is the number of data samples in each stream. We denote the number

of segments and average segment length of a series by K and L, respectively; thus, m = K ∗ L.

Time Complexity of Approximation. For our approximation method, in the worst case,

theoretically, it is possible for the tolerance slope interval to stay nonempty even if a new CSP

never arrives. For example, in Figure ??, suppose the current segmentation point is a1; if every

90

Clustering request is
submitted at

Entry: 4T

Not generated

t0 T 2T 5T4T3T 7T6T

H=0

H=2

H=1

BW0_0: T: k0

BW 1_0: 2T: k0

BW 2_0: 4T: k0

TB: : k

BW1_1: 2T: k1

BW0_1: T: k1 BW0_2: T: k2 BW0_4: T: k4 BW0_5: T: k5 BW0_6: T: k6

BW1_2: 2T: k2 BW0_6: T: k3 TB: TN: k4

Entry1: 4T

Entry0: 4T

BW0_3: T: k3

2[1,2,] 4kt T=

1[2,1,] 4kt T=

3[1,3,] 6kt T=

6[0 ,6,] 6kt T=
7[0,7 ,] 7kt T=

1t

1t

Clustering request is
submitted at

Entry: 4T

Not generated

t0 T 2T 5T4T3T 7T6T

H=0

H=2

H=1

BW0_0: T: k0

BW 1_0: 2T: k0

BW 2_0: 4T: k0

TB: : k

BW1_1: 2T: k1

BW0_1: T: k1 BW0_2: T: k2 BW0_4: T: k4 BW0_5: T: k5 BW0_6: T: k6

BW1_2: 2T: k2 BW0_6: T: k3 TB: TN: k4

Entry1: 4T

Entry0: 4T

BW0_3: T: k3

2[1,2,] 4kt T=

1[2,1,] 4kt T=

3[1,3,] 6kt T=

6[0 ,6,] 6kt T=
7[0,7 ,] 7kt T=

1t

1t

Figure 5.10: The illustration of summary hierarchy, where BW1 0 : T : k1 represents the 0-th basic
window at level 1 of time horizon Bt = T , k1 is the number of segments in this basic window,
t[1,1,k1] records the end time point of the last segments of the first basic window at level 1, Entry1

is the generated entry for the most recent sliding window from t1 and Bh = 2.

data sample ai(i = 3, . . .) is not a CSP but is very close to the straight line L(a1, low(a2)): i.e.,

V D(ai, L(a1, a2)) > δ. The tolerance slope interval will surely stay nonempty. When the tolerance

slope interval finally becomes empty after searching through large numbers of non-CSPs, the next

segmentation point is just a2. Therefore, the time complexity of our approximation method is

O(Kn) in the worst case. While for the classic SW method [?], each time a new data sample

arrives, we have to remeasure the approximation error of all data samples. Since the length of a

potential segment grows from 2 to L and we do not need to measure the endpoints of the segment,

the time to compute a single segment is
∑L−1

i=1 O(i) = O(L2). Therefore, the time complexity is

K ∗O(L2) = O(Lm). While for segments integration, our method can realize incremental process,

the classic SW method has to parse the original data sample to calculate the approximation error,

and this computation may be expensive, especially for long segments.

Time Complexity of Online Phase. For each data stream, in level 0, m
Bt

basic win-

dows can be generated in time O(m) after m data samples arrive. In each basic window, Bt

91

Figure 5.11: The worst case of our approximation method

times iteration will be processed to generate K segments. In the worst case, we can get the

total time complexity at level 0 is mKBt. Aggregating Bh basic windows of lower level and

generation into a new basic window of higher level requires integration or copy of segments,

whose complexity is O(1). Accordingly, the total number of basic windows at higher levels is

m
Bt
×
(

1
Bh

+ 1
Bh

2 + · · ·+ 1
logBh

(m
Bt

)

)
≤ m

Bt
×
(

1
Bh

1− 1
Bh

)
= O

(
m

Bt(Bh−1)

)
. The time for building these

basic windows will be O
(

m
Bt(Bh−1)

)
. Consequently, the overall time complexity of the online

recent-biased statistics maintenance phase for n streams is nmKBt.

Space Complexity of Online Phase. For each data stream, in level 0, m
Bt

basic windows

have been created after m points arrived. Bt basic windows at lower level are aggregated to a

basic window at higher level. Accordingly, the height of the summary hierarchy is logBh
(m

Bt
) and

each level maintains at most α basic windows. Note that each basic window contains a constant

number of parameters. Consequently, totally n
(
α logBh

m
Bt

)
basic windows are maintained for n

streams. We denote the number of segments of one basic window as K. Therefore, the space

complexity of the online recent-biased summary statistic phase is O
(
nαK logBh

m
Bt

)
.

Space Complexity of Offline Phase. The complexity of k-means clustering algorithm is

O(knd), where d is the number of dimensions. Since an entry of a clustering request is represented

by at most α basic windows with constant number of parameters. Therefore, the time complexity

of the offline clustering phase is O(knα) for one entry.

From the above analysis, we can see that both of the time and space complexity of the online

92

Figure 5.12: Fast/Slow Synthetic Dataset

maintenance phase are linear with the number of segment K. Therefore, our proposed approx-

imation method of finding the least number of segments makes the framework more efficient.

5.6 Empirical Results

To access the performance of our framework, we have conducted a series of experiments. In

Section 5.6.1, we introduce the test environment and data sets. Next, we investigate the sensitivity

analyses of parameters in Section 5.6.2. Then the performance of the offline clustering phase of our

framework on the real data set is evaluated in Section 5.6.3. Finally, we examine the scalability

of the online statistics maintenance phase in Section 5.6.4.

5.6.1 Test Environment and Data Sets

All of our experiments are conducted on a PC with AMD Athlon(tm) 64X2 Dual Core Processor

and 1G memory, which runs Windows Vista Business operating system. In order to evaluate our

framework, both the synthetic data set and the real data set are used.

Real dataset. We obtain average daily temperatures of 290 cities around the world from

Temperature Data Archive, the University of Dayton. The daily average temperatures of each

city are recorded from 1 January 1995 to present. Each city is regarded as a data stream and each

stream has 3, 416 data samples.

Synthetic dataset. This data is designed to provide different fractions of fast/slow changing

data sets . For a given fraction of fast data, λ, each series is the concatenation of several segments

93

with length LEN. Data Samples of the j-th segment are generated as follows:

gj(t) = (S + η) ∗ χj(t) + ε(t), (5.4)

where η and ε(t) are drawn from a standard normal distribution N(0, 1), t is in the range [0, LEN−

1], and χj(t) is decided according to the rules in Figure ??.

The slope of the jth segment is determined by λj and statej, where λj is a value drawn

uniformly from [0, 1], and statej is either 0 or 1. Initially, state0 is set to 0. Then, each state value

is set according to its value in the previous segment and the current λj value. More specifically,

statej ← statej−1 if λj > λ, and statej ← 1 − statej−1 if λj ≤ λ. By this setting, about (1 − λ)

fraction of segments in a series are slowly changing segments with the corresponding slopes being

close to 0. On the other hand, about λ fraction of segments in a series are fast changing segments

with the slopes being close to ± S
LEN

. In our experiments, S and LEN are set as 30 and 50,

respectively. Therefore, the slopes of fast changing segments are about ±0.6. This data supports

the need of varying the number of data samples and the number of data streams for the scalability

analysis.

We provide extensive empirical comparison of our approach with the classic SW method. It

has been shown in [?] that the performance of the approximation algorithm is influenced by the

setting of maximum tolerance error δ. For example, when δ is very small, data samples form

(n−1) segments (any two adjacent data samples form a segment in the interpolation case). When

δ becomes positive infinite, all algorithms give only one segment. In our experiments, we use

the relative series values, called the Maximum Error Percentage (MEP), instead of the absolute

maximum tolerance error. The quality of these methods is measured as the ratio of the quality

obtained by running the k-means algorithm on the raw data streams. Because the choice of initial

cluster centers in a k-means algorithm affects the quality of results, the best set of clusters from

multiple restarts is employed to alleviate this effect. Note that parameter Bt represents the number

of values to be merged into a basic window while parameter Bh represents the number of basic

windows to be merged into a new basic window in a higher level. Both of these two parameters

imply approximation of several data samples with a coarser summary. Therefore, they are set

as the same value in our experiments to avoid presenting two experiments with similar effects.

Without loss of generality, we assume that the bucket size Bt = Bh = B.

94

5.6.2 Sensitivity Analysis

In this section, two parameters of the summary hierarchy, which are the number of basic windows

maintained in each level α and bucket size B are investigated on the weather data with a fixed

time horizon w = 50. In addition, the sensitivity of our approximation method with parameter

δ is also discussed here. In the complexity analysis, the worse case which retrieves at most α

basic windows for clustering, is discussed. Note, in practice this method does not encounter the

worst case oftenly. Therefore, the clustering time is mostly dominated by the execution time of

the k-means clustering algorithm. As shown in Figure ?? and Figure ??, α does not have much

influence on the costs and execution time of clustering. Note that since the clustering algorithms

are only applied to the statistics maintained, the clustering method is much efficient than the

clustering on the raw data streams, though with slight additional time for calculation from the

summary hierarchy. Therefore, when the bucket size is too small, the execution time of framework

will be larger. As shown in Figure ?? and Figure ??, clustering on the summary hierarchies of our

framework is able to achieve almost the same quality as that on the raw data streams efficiently.

As shown in Figure ?? and Figure ??, obviously, with larger maximum tolerance error, the number

of segments decrease; so the response time will be shorter. Also, we can see that our proposed

approximation method is more efficient than classic SW method with less approximation error.

5.6.3 Clustering Quality

The performance of the framework on real data is then evaluated with a fixed bucket size B = 12.

As shown in Figure ?? and Figure ??, while varying the time horizon and the number of sliding

windows observed, the framework can attain the same good clustering quality as the clustering on

the raw data streams, with significantly shorter execution time, as shown in Figure ?? and Figure

??.

5.6.4 Scalability Analysis

To evaluate the scalability of the online maintenance phase, the scale-up experiments on both

the number of data samples and the number of data streams are conducted. As shown in Figure

??, as the number of data samples in each stream increases from 1, 000 to 10, 000 the execution

95

time grows linearly. This property also holds when the number of data streams varies from 100

to 1, 000 as shown in Figure ??. These results conform to our analyses in Section 5 which state

that the time complexity of the online maintenance phase of the framework is linear in both the

number of streams and number of data samples in each stream.

5.7 Summary

In order to support flexible timeline clustering, we devised a two-phased framework to dynamically

cluster multiple evolving data streams. While providing a general framework of clustering on

multiple data streams, our framework has two advantages: single data scan for online statistics

collection and compact multi-resolution approximation, which can address respectively the time

and space constraints in a data stream environment. Furthermore, with the multi-resolution

hierarchies of data streams, flexible clustering demands can be supported. The online statistics

maintenance phase provided efficient algorithms to generate and maintain statistics in time linear

in both the number of streams and the number of data samples in each stream. On the other hand,

an adaptive abstraction algorithm is devised to abstract statistics of a user-interested subsequences

from the summary hierarchies as precise as possible. As shown in empirical studies, the algorithms

performed very efficiently in data stream environment.

96

 0.96

 0.98

 1

 1.02

 1.04

 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

in
tr

a-
cl

us
te

r
di

st
an

ce

alpha

raw data
our framework

(a) Clustering Quality versus alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80 90 100

re
la

tiv
e

ex
ec

ut
io

n
tim

e

alpha

raw data
our framework

(b) Time versus alpha

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 4 6 8 10 12 14 16 18 20

Q
ua

lit
y

of
 c

lu
st

er
in

g

bucket size

proposed
classic SW

(c) Clustering Quality versus bucket size

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 6 8 10 12 14 16 18 20

R
el

at
iv

e
tim

e

bucket size

proposed
classic SW

raw data

(d) Time versus bucket size

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 2 3 4 5 6 7 8 9 10

Q
ua

lit
y

of
 c

lu
st

er
in

g

maximum tolerance error

proposed
classic SW

(e) Clustering Quality versus δ

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
tim

e

maximum tolerance error

proposed
classic SW

raw data

(f) Time versus δ

Figure 5.13: Sensitivity Analysis
97

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 20 40 60 80 100 120 140 160 180

Q
ua

lit
y

of
 c

lu
st

er
in

g

time horizon

proposed
classic SW

(a) Clustering Quality versus size of time horizon

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 40 60 80 100 120 140 160 180

R
es

po
ns

e
tim

e

time horizon

proposed
classic SW

raw data

(b) Time versus size of time horizon

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 2 3 4 5 6 7 8 9

Q
ua

lit
y

of
 c

lu
st

er
in

g

number of windows

proposed
classic SW

(c) Clustering Quality versus number of entries

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5 6 7 8 9

R
es

po
ns

e
tim

e

number of windows

proposed
classic SW

raw data

(d) Time versus number of entries

Figure 5.14: Experimental results on Real Data

98

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

po
ns

e
tim

e

number of data samples

proposed
classic SW

raw data

(a) Time versus number of data samples

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
tim

e

number of streams

proposed
classic SW

raw data

(b) Time versus number of data streams

Figure 5.15: Scalability Analysis

99

Chapter 6

Cross-domain Correlation Mining
among Multiple Data Sources

In this chapter, given a news article referring to one company, we decide whether it is a piece of

good news that is followed by a moving up trend in the company’s stock market or a piece of bad

news reversely. The novelty of our proposed framework is the achievement of dynamic analysis

of the complex correlation between online news articles and stock price series. Existing research

work did not support flexible identification of the trends in stock price series, or take account of

the case that temporal consecutive news articles may influence the stock market sensitively. In

our proposed framework, we combine the investigations of the discrete correlation as well as the

continuous correlation.

In this problem, the process of classification achieves to mine discrete correlation, for the reason

that we treat the collection of news articles as transaction data consisting of words, and the news

articles are independent with each other. While, in order to improve the accuracy of prediction,

we also take account of continuous correlations. On one hand, in the generation of news articles

for learning, we abstract trends of stock prices, and then label the news articles according to

corresponding trends in stock prices. On the other hand, taking account of the evolving social

environment, we can see that people may be more interested in the contents of consecutive news

articles which may influence the stock market sensitively. Therefore, it is prefer to identify the

trends in stock market dynamically. We propose dynamic mechanism of choosing sliding windows

to identify trends of stock prices according to the contents of consecutive news articles as shown

in the green part of this figure. In order to detect the sensitive topic in consecutive news articles,

101

we observe continuous changes of the words’ occurrences.

In this chapter, we take the individual company as the research objective. The news articles

referring to the company are useful to predict the stock prices of the company itself. In fact, the

proposed methods introduced in Chapter 4 is also appliable to the framework proposed in this

chapter, and the results are useful to explain the financial market involving multiple companies.

For example, firstly, we can discover the abonormal behaviors of stocks comparing to the key

trends in the whole market according to the method proposed in Chapter 4, and we can explain

how it happened by analysis the corresponding news articles.

Comparing the processes of identifying patterns or trends in time series data discussedn in

Chapter 5 and this chapter, we can see that Chapater 5 provides mechanism to store historical

data as well as the flexibility of multi-solution clustering. Nevertheless, in this chapter, we foucus

on dynamically choosing sliding windows for abstracting trends now and predict future accurately.

Thus, we scan the streaming stock price data samples as them arrive and then drop them imme-

diately, without storing. Certainly, it is also possible to apply the methods proposed in Chapter

5 to discover similar patterns of different stocks and explain why these patterns happened.

6.1 Introduction

Although stock prices follow a random walk and are extremely difficult to predict, as pointed

out in [?, ?, ?], the analysis of textual information concerning to the financial market is helpful

to generate profitable action signals (buy or sell) accurately. As we can see that in contrast to

numeric time series data, textual data contains not only the effect (e.g., “the stock of Apple Inc.

fell about 1 percent”) but also the possible causes of the event (e.g., “after warning in a regulatory

filing that profit margins might narrow next year”). Unfortunately, because of the large volume

of textual information, it is difficult for investors to track and captur each of them. Therefore, it

would be very helpful to have a system that can automatically classify information which in turn

can be used as indicators of forthcoming trends in stock market.

We investigate how news articles can be useful to forecast trends of stock prices by discovering

the correlation between news articles and trends of stock prices. Given a news article, we decide

whether it is a piece of good news followed by a moving up trend in stock market or a piece of

102

bad news reversely, in addition to predicting how will the fluctuation of stock price be influenced

by the news article. We propose classification and regression methods to address this problem.

Labels of historical news articles for learning are generated by diagnosis and definition of

trends in historical stock price series. We propose an algorithm based on estimating variance of

data density in sliding windows to segment continuous stock price series. Trends are defined as

piecewise linear fitting to these segments, and are assigned with labels: up, steady and down by

an agglomerative hierarchical clustering algorithm. Taking the advantage of parameter ht as the

length of sliding windows for identifying trends, it is flexible for investors to grasp short-term or

long-term trends of stock prices. Additionally, we propose ideas to determine ht automatically

and dynamically, according to the contents of the news article sequences. For example, some hot

topics in a period may influence the financial market sensitively.

Therefore, the news articles are labeled by alignment with trends in stock prices according to

the time when articles were released and when each trend was promoted. In the discussion of

how to represent articles for classification and regression, our ideas are as follows: (1) instead of

characterizing a news article by words, we abstract pairs of syntactically depended words, namely

terms, and present news articles as a vector of weighted terms; (2) for the reason that articles may

describe the same subject with different vocabulary, we count the statistics of terms; taking into

account of the semantic coherence among words; and (3) we weight terms with respect to class

relevance and discrimination. For example, we assign higher weights to the terms if they occur in

news article of up class but not occur in articles of the opposite down class.

Based on support vector classification technique, we classify articles that are highly associated

with particularly labeled trends of stock prices. Meanwhile, we present a support vector regression

method to predict the fluctuation of stock prices influenced by the news articles. Experiments of

our proposed methods yield high accuracy of prediction. The proposed mechanism for dynamically

choosing sliding window to identify trends is also proven to be effective.

We realize a more flexible and accurate investigation of correlation between news articles and

stock prices:

1) Identification of trends in stock prices based on sliding windows satisfies both short-term

and long-term needs;

103

2) Representation of news articles as vectors of terms weighted with class relevance and dis-

crimination improves the accuracy of prediction;

3) Dynamic choice of sliding windows in terms of the consecutive news articles for identifying

trends of stock prices realizes online investigation of the influence of news articles to stock

prices;

4) Prediction of forthcoming stock prices in terms of direction and magnitude is much more

informative and helpful for investors’ decision-making.

The overview of our methods is illustrated in Figure ??. In the following sections we elaborate

our ideas in each of the procedures. Firstly, we identify and label trends of stock prices. Then

according to the time when news articles are released and the labels of trends at the same time, we

assign labels to news articles. Thus the labeled training news articles data is generated. In order

to classify the news articles, we select terms of dependent words as features of articles. Finally, by

utilizing the Support Vector Classification, we successfully get the classifiers of good news followed

by moving up trend in stock market and bad news, reversely. Therefore, given a newly released

news article, according to the classifiers of news articles, we can predict whether the forthcoming

trend of stock price is up or down, as well as how much is the fluctuation influenced by the news

article based on a proposed Support Vector Regression method. Additionally, according to the

contents of consecutive news articles, we dynamically choose sliding windows to abstract trends

in stock prices. Finally, we realize the dynamic stock prediction based on analysis of online news

articles.

This chapter is organized as follows. Section 6.2 details the methods for diagnosis of trends

in stock price series and assignment of labels to news articles. In Section 6.3, we describe the

preprocessing of news articles. Section 6.4 explains the procedure for classification. Section 6.5

explains the prediction of how much will the fluctuation of prices be affected based on the support

vector regression method. We extend our method to dynamic choice of sliding window in Section

6.6. Section 6.7 provides the experimental results and compares them with those of existing

methods. Finally, Section 6.8 concludes this chapter.

104

Stock pricedata
Identification

of Trends

Relevant news articles

Trends

Alignment of
News Articles
with Trends

Trendsstable

drop

rise

drop

rise

Labeling
of Trends

Classifiers
of trends

Regression
coefficients

（（（（コストコストコストコスト、、、、削減削減削減削減）））） 0.24。。。。。。。。。。。。

News
article

Dynamical
Choice of

Sliding Windows

Modeling

Learning News Data
Generation

Feature
Selection

Figure 6.1: Overview of our proposed procedures for prediction of forthcoming trend in stock
market based on analysis of news articles.

6.2 Generation of Labeled News Articles

We associate news articles with the trends of price series. We assign labels to news articles

according to the trends of prices. In this section, we discuss two topics: the first one being how

to represent the trends of price series, and the other is how to determine the influence window of

news articles.

6.2.1 Representing Trends of Price Series

Most of the related work introduced in Chapter 2 identified trends by categorizing two consecutive

data samples in the return series or the stock market volatility independently, and the results for

categorization were not globally optimal. With a similar viewpoint to the re-description of price

series in [?,?], we define a trend as an interval in time by segmentation of continuous price series,

105

1tt ha − + …
Data Samples S arrived within time horizon

tt ha − 2tt ha − + ta…
time
th

(,) (,)
s th hR A t

(,) (,)
s th hF A t

Figure 6.2: Stock price series at time instant t.

and then cluster these segments into clusters whose segments are increasing, decreasing or remains

relatively unaffected.

6.2.1.1 Identifying Trends

Although there are some well-known time series segmentation techniques which include Fourier

coefficients [?] and parametric spectral models [?], stock series follow a random walk [?] repre-

senting very weak spectral signatures even locally. Therefore, we adopt the solution of piecewise

linear segmentation for approximating the price series.

Referring to how to identify potentially important end points of linear segments, authors in [?]

and [?] observed the error of piecewise linear regression of the price series, and used t-test to test

end points which maximized the approximation error to make sure that there was a statistically

significant difference. In addition to a top-down split phase in [?], authors in [?] executed a

merging phase for the purpose of avoiding over-segmentation. However, because the spliting and

merging phases are recursive processes, these methods cannot be applied to online segmentation

of price series. More significantly, these methods are just useful for the intraday prediction of

stock price.

On the other hand, authors in [?] advocated the piecewise linear representation of the price

series should be in an up-down-up-down repetitive pattern (the zigzag shape) based on a wave

theory of [?], and proposed an online segmentation and pruning method for identifying upper

and lower end points in sliding windows based on a financial indicator, Bollinger Band Percent

(%b). Empirical best choice of the sliding window’s length and thresholds for identifying upper

and lower points are provided.

Moving average method is helpful to smooth out short-term fluctuation and highlight long-

106

term trends or cycles. Motivated from the moving average method, we observe trends of price data

using sliding windows with the length of parameter ht. However, the value of ht can be specified

by investors, or dynamically be determined by the contents of news articles discussed in Section

??.

Considering the difficulty in choosing thresholds in [?], we observe rate of variance in data

densities to characterize change points. Note that we estimate data densities taking account of

the direction. Given a price series in Figure ??, at is the price data at current time instant t.

According to the size of sliding window ht, we target on the data samples arrived in the time

window (t− ht, t), denoted as S. We use a time-factored Gaussian Kernel Function

F(hs,ht)(A, t) =
t∑

i=t−ht

(
i

ht

)
Ḱ(hs)(A, ai). (6.1)

where

Ḱ(hs)(A, ai) =

(
1√
2πh2

s

)
exp

(
−(A− ai)

2

2h2
s

)
, (6.2)

to estimate the density at a position A (a discrete possible value of stock prices) at time instant

t, where hs is the smooth parameter. We call F(hs,ht)(A, t) as forward data density. In order to

observe the variance of data density, theoretically, we should compare the data density of data

samples S with that of future data arriving in time window (t, t + ht). However, we have no

information about future data. Therefore, we estimate the variance of data density. Firstly, we

defined a reverse data density at position A as

R(hs,ht)(A, t) =
t∑

i=t−ht

(
1− i

ht

)
∗ Ḱ(hs)(A, ai). (6.3)

Here, R(hs,ht)(A, i) is calculated from the same data samples S, but assuming that time was

reversed and the data samples arrived in the reverse order. Then, the rate of variance in data

density at position A can be estimated as

V(hs,ht)(A, t) =
F(hs,ht)(A, t)−R(hs,ht)(A, t)

ht

. (6.4)

Note that if a great number of price data which are closer to value A arrived at the end of time

window (t−ht, t), then V(hs,ht)(A, t) is positive. On the other hand, when a great number of price

107

data which are closer to value A arrive at the beginning of the time window, then V(hs,ht)(A, t) is

negative. If there is a repetitive fluctuation of price data towards value A, then V(hs,ht)(A, t) will

almost be zero.

According to the sign of V(hs,ht)(A, t) for all possible positions, we can detect trend of data

distribution at t by finding two fields:

Definition 1 (Coagulation Field Rt) A coagulation field Rt at t is defined to be a set of posi-

tions A∗ such that for any position A, we have V(hs,ht)(A, t) ≤ V(hs,ht)(A
∗, t) and V(hs,ht)(A

∗, t) ≥

δ ≥ 0.

Definition 2 (Dissolution Field Ŕt) A dissolution field Ŕt at t is defined to be a set of positions

A∗ such that for any position A, we have V(hs,ht)(A, t) ≥ V(hs,ht)(A
∗, t) and V(hs,ht)(A

∗, t) ≤ −δ ≤ 0.

Here, the value of threshold δ is set as the average rate of variance in data density at all possible

positions. Therefore, the estimated data densities s⃗t at time t can be described as a change of data

densities of direction
−−→
ŔtRt (a shift of data distribution from the dissolution field Ŕt to coagulation

field Ŕt). Then we compare
−−→
ŔtRt with

−−−−−−−−→
Ŕ(t−1)R(t−1) at time (t− 1): if there is any overlap between

Ŕt and R(t−1), then we say that at is a change point.

Given an example in Figure ??, we find change points (C1, C2, C3, C4, C5) with respect to

ht = 5, and consequently, we can abstract the trends of stock prices from t1 to t5 as shown in

the dashed line. Consider a sliding window (C1, a1, a2, a3, C2) at t2, there is a down-up-down

pattern in the fluctuation of prices, but approaching to a4, the values coagulate in the value field

[479, 490]. We estimate the data density as
−−−−→
Ŕt2Rt2 , where Rt2 is [479, 490], and Ŕt2 is [470, 478].

However, at next time point t4 when a new data sample a4 arrived, considering the sliding window

(a1, a2, a3, C2, a4), we detect a dissolution field Ŕt4 equals to [479, 490]. Because there is an overlap

between Rt2 and Ŕt4 , then we regard a4 as a change point.

After finding the end points of segments, we regard each piecewise fitting segment as a trend.

The significance of a trend is defined by its regression statistics: slope (m) and correlation co-

efficient (R) The slope of the line indicates whether the trend is of interest. Very steep slopes

characterize opportunities for maximizing profit by buying and selling when they are found in

stock price data, while flatter segments, in general, recommend nothing. Likewise, high values of

108

415425435445455465475485495505515

218 223 228 233 238 243 248 253 258 263 268 273 278 283 288t1 t2 t4 t5

Length of sliding window hs = 5

C1

C2
C3

C4

C5

C6

a1 a2
a3

a4

470

478
479

490

time

Stock
prices

Figure 6.3: Example to identify trends of prices data.

R indicate strong confidence in the slope, and these trends are more trustworthy as a basis for

decision.

6.2.1.2 Discreting Trends

The second step to re-describe price series is to assign labels to trends. These labels will be the

basis for correlating trends with news articles. Initially, we implement a distance-based hierarchical

agglomerative clustering [?] algorithm to automatically cluster stock trends. Because technical

analysis of financial data assumes that the amplitude difference is more important than the time

difference [?], the clustering algorithm is not necessary for the length of segments.

In detail, we do bottom-up merge of segments according to minimum group average distance;

defined as

GAD(Ci, Cj) =
∑

k∈Ci

∑
l∈Cj

disij(k, l)

|Ci||Cj|
(6.5)

where |Ci| and |Cj| are the magnitudes of the clusters Ci and Cj respectively; disij(k, l) =√
(mk −ml)2 + (Rk −Rl)2 is Euclidean distance between the segments k and l which are included

in Ci and Cj, respectively.

The clustering procedure terminates when the number of clusters equals to three: up, down

and steady. Those segments in the cluster having the maximum average slope are labeled as up.

109

T1
T2

d1h
h

News
article

Trends of
stock
prices

Figure 6.4: Alignment of news articles.

Similarly, those segments in the cluster having the minimum average slope are labeled as down.

Segments in the remained cluster are labeled as steady.

6.2.2 Aligning Trends with News Articles

The news articles are labeled by alignment with trends in stock prices according to when the

articles were released and when each trend was promoted. In order to learn models that might

assist to suggest future behavior of price series, we associate news articles with trends in stock

prices if its time stamp is h time units or less before the beginning of the trend. We define h as

the size of influence window of news articles to stock prices.

An article may be associated with more than one trend. Article d1 in Figure ?? is associated

with both trends T1 and T2. While this may be contradictory, it is possible for d1 to influence both

trends T1 and T2. We can reduce the amount of overlap between time windows associated with

trends by decreasing h. However, this can reduce the number of news articles that are associated

with each trend, yielding fewer examples with which to train our prediction model. In Section ??,

we will give the evaluation of the prediction by changing the parameter h within (0, ht). We treat

all articles aligned with a trend as having equivalent importance to a trend.

6.3 Preprocess of News Articles

In order to recommend investors profitable action signals (buy or sell), we focus on the trends of

up and down in the forthcoming stock prices. Therefore, we propose a classification method to

110

製造製造製造製造 コストコストコストコスト 削減削減削減削減 が 進んだ
Syntactically depended pairs of words:(製造製造製造製造, コストコストコストコスト)(コストコストコストコスト, 削減削減削減削減)(削減削減削減削減, 進進進進むむむむ)
Figure 6.5: An example of terms.

discriminate good news which will be followed by a moving up trend of stock price against the

bad ones which will be followed by a going down trend, reversely.

In this section, we discuss about the preprocess of news articles before feeding news articles into

classification in two steps: firstly, we choose features for representing news articles; and secondly,

we propose a differentiation scheme for weighting terms which are frequently occurred in one class

but rarely occurred in the other.

6.3.1 Feature Selection

All of the news articles labeled with up (down) are grouped together, and we select features for

representing news articles. In the related work [?], the authors confirmed that there is a very

stronger correlation between the rate of change in stock price and the parsed phases occurred

in news articles rather than words. Therefore, we utilize terms which are pairs of syntactically

depended words to characterize news articles. An example is illustrated in Figure ??. We utilize

the cabocha 1 to extract syntactical dependency among words, and choose noun and verb words

for representing terms.

Furthermore, note that news articles may describe the same subject with different vocabulary:

it is also necessary to capture semantic coherence between words. In our method, we employ

the Latent Semantic Analysis (LSA) method [?]. LSA is a technique that discovers the salient

semantic relationships between words by representing the original word-by-document matrix in a

low dimensional linear combination of orthogonal variables. A matrix decomposition (i.e., Singular

1htt://chasen.org/taku/software/cabocha

111

Value Decomposition (SVD)) plays a pivotal role to generate a large number of orthogonal singular

factors from an inverted index matrix. A small number of the most important singular factors

are then selected to approximate the covariance of the original inverted matrix. Then a word is

represented as a weighted vector with respect to the singular factors. A hierarchical agglomerative

clustering [?] is employed to group words. Therefore, when we count the statistics of terms, we

consider that the words in the same semantic group are the same.

After finding out the terms, each article in a particular class (up or down) is represented by a

normalized vector-space model:

d = (w1, w2, ...wn) (6.6)

where the element wT corresponds to the score of term T in the article d, and for the initialization,

it is calculated by the standard tf∗idf scheme:

wT = tfd,T × log
N

dfT

(6.7)

where tfd,T is the frequency of the term T in the article d; dfT is the number of articles containing

the term T ; and N is the total number of articles labeled according to a particular class (up or

down).

6.3.2 Filtering and Weighting Scheme

We are interested in filtering out terms which frequently occur in one class of articles but rarely

occur in the other. Incremental K-means is used for splitting the weighted articles of each class

into two clusters. The centroid of the cluster Ci is defined as:

Ci =
1

|Ni|
∑
d∈Di

d (6.8)

where Ni is the set of articles within the cluster Ci and |Di| is the number of articles in this set.

The similarity between the article di and the centroid Cj is determined by the cosine measure

which is recommended by most researchers in document categorization:

cos(di, Cj) =
di ∗ Cj

|di| ∗ |Cj|
(6.9)

where |di| and |Cj| are the magnitude of the article di and the cluster Cj respectively.

112

The above procedure is taken out by both articles of up class and down class. Thus, on

completion, four clusters of articles exist: two clusters of up class articles, Cup1 and Cup2 , and two

clusters of down class articles, Cdown1 and Cdown2 . Using the following formula:

cos(Ci, Cj) =
Ci ∗ Cj

|Ci| ∗ |Cj|
(6.10)

we say that Cupi
(for i = 1, 2), which has the higher average similarity with the two Cdownj

(for j = 1, 2), is insufficient to differentiate the up trend. Thus, it will be removed. Suppose we

removed Cup1 , then just all of the news articles within Cup2 will be used in classification. Similarly,

the Cdownj
(for j = 1, 2), which has the higher average similarity with Cupi

(for i = 1, 2), will also

be removed. Filtering is thus achieved.

In order to differentiate the terms appearing in one class of articles but not in the other class, we

propose a new weighting scheme with respect to class relevance and discrimination by introducing

two coefficients: inter-class discrimination coefficient (CDC) and intra-class similarity coefficient

(CSC):

CDC =
ni,T

NT

(6.11a)

CSC =
ni,T

ni

(6.11b)

where ni,T is the number of articles in the i class (up or down) containing the term T ; NT is

the total number of articles containing the term T ; and ni is the total number of different terms

appearing within the i class.

Note that both CDC and CSC are always between 0 and 1. For CDC, the higher the value,

the more powerful discrimination of the term T across classes. For CSC, the higher the value, the

more the specified term is contained within the articles of the class. The weight of each term in

each article is finally calculated as follows:

w(T, d) = tfT,d × CDC × CSC (6.12)

where tfT,d is the frequency of the term T in the article d.

113

6.4 SVM-based Classification of News Articles

We use Support Vector Machine (SVM) [?] to learn the patterns of terms in news articles that

are highly associated with particular trends in stock prices. SVM obtains very accurate result in

text classification, and outperforms any other techniques such as neural network and Naive Bayes.

Since SVM is a binary classifier, we need to have a pair of classifiers. One classifier is responsible

for checking if a piece of news will trigger the up event, while the other classifier is responsible for

the event of down.

For the classification, we simply pass the newly collected news article to the pair of classifiers

and decide which class the article should belong to. For example, an article signals an up event

if the output value of the up classifier is positive. If the output values of both classifiers are

negative, we will classify that article is not recommended, as it belongs to neither of the trends.

If the output values of two classifiers are positive, then it certainly leads to be ambiguous, and

therefore it is not classified as recommendation as well.

6.5 Regression-based Stock Price Prediction

In addition, we present an SVM regression method to predict stock movement. We do the process

on each class of news articles respectively. We assume that the stock movement data are yt

(t = 1, 2, . . . , N), for the corresponding N time units. Consequently, we present articles influencing

the prices as Dt. In our experiments on real data, Dt is choosen as daily close price data. Note

that the weight of each term Ti in Dt is calculated by adding up all the weights of Ti in each news

article. SVM regression function f(D) is trained on (D1, y1), . . . , (DN , yN). It is tested on the

samples ((DN+1, yN+1), . . . , (DM , yM)) incrementally to get the prediction prices (ŷN+1, . . . , ŷM).

We use the Root Mean Square Error (RMSE) defined as

E =

√√√√ 1

(M −N)

M∑
j=(N+1)

(yj − ŷj)2. (6.13)

to evaluate the error of prediction.

114

6.6 Extension to Dynamic Prediction of Stock Data

In the above design of our prediction precess, we label the news articles for learning according to

the trends of stock prices in sliding windows. Therefore, selecting an appropriate length of sliding

windows for identifying trends is a very important step for prediction. In the real world, investors

may have some ideas for the choices of parameter ht. However, considering the influence of some

events to the stock market may be sensitive. In this case, it maybe necessary to analyze the trend

of stock price in dynamic sliding windows. In this section, we extend our method to the dynamic

determination of sliding windows.

We represent l-th article as dl = (wl1, wl2, . . . , wlm), where wlk is the weight of k-th term; m is

the total number of terms. We define the hotness Hij(Tk) of term Tk in a period from j-th time

unit to i-th time unit (where i− j = ht) as

Hij(Tk) =
Wi(Tk)−Wj(Tk)

Wi(Tk)
(6.14)

where Wi(Tk) is the sum of weight wlk in all of the news articles released in the i-th time unit.

Then we regard the term, which has the maximum hotness that also must be larger than the

average hotness of all the m terms; as a hot topic. Then we reset ht as the length of the period

from the time unit when this hot topic occurred to that when the fluctuation of stock price became

maximum. Until the hot topic disappears, ht is reset to the initial value.

6.7 Experiment Results

In this section, we demonstrate several experimental results to evaluate our proposed methods.

We carry out evaluations on two major processes. Firstly, we attempt to evaluate the effectiveness

of our proposed method for grasping trend of stock prices based on estimating variance of data

densities. Then we discuss the discriminating power of our ideas for representing news articles.

6.7.1 Experimental Setup

In our analysis we focused on a set of 120 stocks over the period from January, 2005 to December,

2008. The stocks are selected, based on the average amount of news about that stock. We generate

the daily closing prices of these stocks, resulting in 986 or more data samples for every stock. The

115

6870
7274
7678
8082
8486
88

5 10 15 20 60 120

アサヒビール野村総合研究所花王トヨタ自動車
A

B
C
D

Size of sliding window (days)

Prediction
accuracy

(%)

Figure 6.6: Effect of sliding window size on accuracy.

price data is re-described into trends as explained in Section ??. Our news collection contains

28042 or more news articles, gathered from the Nikei Shimbun over the same period of time. Each

article contains a reference to at least one of the stocks that we are tracking.

We discuss two factors about the results of prediction: the direction (up or down), and the

magnitude of the forthcoming trend in price series. We determine the direction of trend by

classification. We evaluate the classification accuracy: the proportion of the number of news

articles classified correctly to the number of total news articles for testing. On the other hand, we

use the RMSE defined in Equation (??) to evaluate the power of prediction.

6.7.2 Experiments on Representation of Movement in Price Series

6.7.2.1 Choice of Sliding Window

In order to choose an effective news classifier, it is necessary to determine an effective value as the

length of sliding window for grasping trends in stock prices. For this purpose, the news articles are

labeled using various sliding window sizes. In Figure ?? the effect of increasing the sliding window

size is investigated on the accuracy of classification in terms of four different companies. The most

accurate results (i.e., those with the highest accuracy) for these companies are different. For the

company A, we can see the best observation of movement in stock price is about two weeks. For

116

Figure 6.7: Real stock price of company E in 2006 and the prediction price with respect to ht = 20.

the company D, the best choice is about half a year. The best values are about one month and

three monthes in the cases of company B and company C, respectively. We consider that these

results correspond to the type of each company’s business. For example, we can see that there are

many news reports about new products in daily use of company C before a new season comes in

a year.

6.7.2.2 Choice of Influence Window

We assume that a news article affects stock price only after it becomes publicly available and

then we do experiments for a set of alignments. Here, we test the results of average accuracy of

classifications for all the stocks against the null hypothesis, that the results of the classification are

the results of random guessing. Results of Chi-square hypothesis tests against the null hypothesis

are shown in terms of z-scores. We do experiments on different window bounding offsets in days for

the alignments. We find that the most significant classification results and best relative prediction

accuracy occurred for alignment h = 2 days. Furthermore, we find that as the window of influence

is extended, classification results become less and less significant. This suggests that we have

found a strong correlation between news articles and the daily behavior of stock prices 2 days

after news articles become publicly available.

117

2007200720072007年年年年3333月月月月14141414日日日日 日本経済新聞日本経済新聞日本経済新聞日本経済新聞 （（（（朝刊朝刊朝刊朝刊））））不二家不二家不二家不二家、、、、最終赤字最終赤字最終赤字最終赤字６７６７６７６７億円億円億円億円、、、、今期業績下方修正今期業績下方修正今期業績下方修正今期業績下方修正、、、、菓子販売菓子販売菓子販売菓子販売のののの停止響停止響停止響停止響くくくく不二家は十三日、二〇〇七年三月期の連結最終損失が六十七億円にふくらむ見通しになったと発表した。消費期限切れの原料使用などにより、一月中旬から洋菓子、菓子とも実質的に販売が停止し、当初見込みに比べ二百七億円の売り上げ減となったのが響く。東京・銀座の本社ビルを売却するなど特別利益を百四十二億円計上するが大幅赤字は避けられなくなった。同期の売上高は六百三十三億円で、前期を二五％下回る見込み。これに伴い、経常損失は七十二億円にまで悪化する。
Figure 6.8: Big news released on March 14, 2007, which trigger sudden drop in stock market.

6.7.2.3 Dynamic Choice of Sliding Windows

We illustrate an example to evaluate the effectiveness of our mechanism of dynamic choice of

sliding window size. From the movement of stock market of company E in 2006 as illustrated in

Figure ??, we can grasp the trends in stock price correctly with the parameter ht = 20 according

to the method proposed in Section ??. However, after the release of news article as shown in

Figure ?? at March 14, 2007, stock prices of company E dropped suddenly as the blue line as

shown in the Figure ??. The words like ”売却”,”損失”appeared frequently in news articles for a

consecutive period. According to our proposed dynamic mechanism in Section ??, we detect these

events, and find the first maximum drop of price on March 20, which is 5 days after the release

of the event. Then our method changes to observe the movement of price series with respect to

ht = 5. In Figure ??, the green line is the prediction of price after the adjustment of sliding

windows; however, the red line is the prediction results of the previous parameter. Here, we can

see that the accuracy is higher than the previous one. Figure ?? shows the ratio of RMSE with

different value of ht to the real price data. We can see that the dynamic adjustment of sliding

windows is effective.

6.7.2.4 Comparison with Related Work

We compared the accuracy of classification and RMSE error of our proposed method with those of

method based on %b series proposed in [?] in Figure ?? and Figure ??. From the results, we can

see that our proposed method outperforms the traditional method by yielding about 78% accuracy

in predicting the magnitude of movement and 83% accuracy for the direction of movement in stock

118

150
170
190
210
230
250
270
290
310
330

Real Stock Price
Predict Price with ht=20Prediction Price with ht=5

time

Stock price

Figure 6.9: Prediction price after dynamic adjustment of sliding window for observing stock
market.

price.

6.7.3 Experiments on Preprocessing News Articles

In order to evaluate the effectiveness of our preprocessing of news articles, we compare the results

of our method with other two methods. One just uses single words for characterizing news articles,

and the other presents news articles as term vectors in our method but weighted with tf*idf values.

As shown in Table ??, our proposed method achieves the best performance.

6.8 Summary

We proposed classification and regression methods to forecast stock prices based on news articles.

In our proposed framework, it is flexible for investors to grasp short-term or long-term trends of

stock prices by identifying trends in sliding windows. Additionally, we proposed ideas to determine

ht dynamically according to the contents of news article sequences. Moreover, our proposed ideas

for processing news articles also contribute to good performances. Experiments on real stock

data and news articles are performed. Our results yield about 83% accuracy in predicting the

119

Figure 6.10: Comparison of RMSE of prediction after dynamic adjustment of sliding window.

Table 6.1: Experiment on different preprocessing method of news articles

Feature of Single Word Terms Weighted with tf*idf Our Proposed Method
up down up down up down

Precision 0.989 0.885 0.923 0.914 0.972 0.925
Recall 0.794 0.733 0.912 0.847 0.930 0.922
F-value 0.790 0.818 0.920 0.879 0.980 0.917
Accuracy 0.787 0.904 0.952

magnitude of forthcoming trend and 83% for the direction of forthcoming trend in stock price.

The mechanism for dynamically choosing sliding windows for identification of trends is also proven

to be effective for higher prediction of stock prices.

120

70%72%74%76%78%80%82%84%86%88%90%

1 2 3 4

Our proposed method
Method based on %b series

A B C D

Prediction accuracy

Figure 6.11: Comparison of prediction accuracy.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4
Our proposed
method

Method based
on %b sereiesCCCC DBA

Ratio
of

RMSE
to

average
price

Figure 6.12: Comparison of RMSE ratio exhibited by companies.

121

Chapter 7

CONCLUSIONS

Techniques of data stream mining discover up-to-date patterns which are invaluable for strategic

decisions, but the mining process has to be done accurately, quickly with limited computation

resources, as well as adaptively considering concept drifts.

Besides the needs for knowledge discovery from single data sources, in the era of information

overload, it becomes more and more important to mine interesting correlations among multiple

streaming cross-domain data sources to support people’s decision making. The objective of this

dissertation is do further explorations of mining correlations among multiple streaming cross-

domain data sources. In terms of different types of streaming data, we categorize the correlations

into two basic correlations: discrete correlation and continuous correlation. The discrete correla-

tion corresponds to the applications assuming that the data samples are independent with each

other, and continuous correlation is defined as the cross-relationship among the multiple continu-

ous time-series data streams. We propose novel and efficient algorithms to discover these two kinds

of correlations in different applications of single data source. Moreover, this dissertation extends

the study to mine complex correlations in cross-domain data sources by combining the investi-

gations of these two kinds of basic correlations, taking the example of dynamic stock prediction

based on analysis of online news articles.

In the applications of discovering discrete correlation from streaming quantitative transaction

data, we proposed efficient algorithms for discovering Quantifiable Correlated Patterns in Chapter

3. The result is the first algorithm that we discover correlations in streaming transaction data with

only one single scan of data. On one hand, the property of correlation in our results is very useful

123

means for the discovery of rarely occurring but important incidents, such as network intrusions;

on the other hand, the quantitative ratio associations among the itemsets are also discovered. The

stronger expressive power of quantitative associations allows us to obtain much richer knowledge.

In Chapters 4 and 5, we targeted to the massive streaming time-series data to discover con-

tinuous correlations. In order to discover the cross-relationship among the streams, as one of

the solutions, we proposed was to incrementally learn the inherent correlations among streams

and find the underlying hidden variables in each correlated-cluster. This algorithm satisfies the

requirement of scalability on the number of streams, full automation and adaptivity taking into

account of the data evolution in streaming data. We proved that the discovered hidden variables

can be used to immediately spot potential anomalies, and do efficient forecasting in sensor net-

work. Another solution is to support flexible timeline clustering techniques to the massive data

streams. This method realizes group streams in terms of arbitrary interested periods of time.

Therefore, it is possible to track the cluster transaction at multi-solutions.

In Chapter 6, we proposed a framework for investigating the correlation among news articles

and the evolving stock prices. We realized the automatic and dynamic classification of news

articles for predicting forthcoming trends of stock prices. Given a news article, we decide whether

it is a piece of good news followed by a moving up trend in stock market, or a piece of bad

news reversely. Furthermore, we proposed the regression method to estimate how much would

the fluctuation of stock price be influenced by the news article. In our proposed framework, we

combine the investigations of the discrete correlation as well as the continuous correlation, in order

to achieve dynamic analysis of the correlation between online news articles and stock price series.

Future work There are many researches to be done to enhance the applicability and efficiency

of the methods in this dissertation as listed in Table ??.

Meanwhile, in many business applications, business people cannot effectively take over and

interpret the identified patterns for business use [?,?]. Therefore, it is also important to develop

effective approaches for discovering patterns which are not only technical significant, but also

satisfy business expectations, and further indicate the possible actions that can be explicitly

taken by business people.

124

Table 7.1: Main contribution, future works and possible applications.

Contribution Future work Possible Applications
Quantifiable correlated patterns 1. Other quantities to estimate correlation Web usage analysis,
mining coefficient, such as Bayesian approach Mobile communication analysis
Correlated-clusters mining 1. Modeling and tracking transitions of clusters Sensor network monitoring
Flexible timeline clustering 1. Backward segmentation for improving

the accuracy of approximation with Sensor network monitoring
an overall view of the whole time series
2. Modeling and tracking transitions of clusters

Dynamic prediction of stock prices 1. Explanation of similarity among different Information integration
based on analysis of news articles stock prices

2. Discovery of abnormal behaviors of stocks
comparing to the key trends in the whole market

125

Bibliography

[1] Cranor, C., Johnson, T., Spataschek, O. and V. Shkapenyuk (2003) “Gigascope: a stream

database for network applications”. In proceedings of the 22nd ACM International Confer-

ence on Management of Data (SIGMOD), San Diego, pp. 647-651.

[2] Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,

M., Tatbul, N. and Zdonik, S. (2003) “Aurora: a new model and architecture for data stream

management”. In The International Journal on Very Large Data Bases (VLDB Journal),

Vol. 12, No. 2, pp. 120-139.

[3] Rosset, S., Murad, U., Neumann, E., Idan, Y. and Pinkas, G. (1999) “Discovery of fraud

rules for telecommunications - challenges and solutions”. In proceedings of the fifth ACM

International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Diego,

pp. 409-413.

[4] Zhu, Y.Y and Shasha, D. (2002) “StatStream: Statistical monitoring of thousands of data

streams in real time”. In proceedings of the 28th International Conference of Very Large

Data Bases (VLDB), Hong Kong, pp. 358-369.

[5] Zhu, Y.Y and Shasha, D. (2003) “Efficient elastic burst detection in data streams”. In

proceedings of the ninth ACM International Conference on Knowledge Discovery and Data

Mining (SIGKDD), Washington, D.C., pp. 336-345.

[6] Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002) “Models and issues

in data stream systems”. In proceedings of 21st SIGMOD-SIGACT-SIGART Symposium on

Principles of database systems (PODS), New York, pp. 1-16.

127

[7] Aggarwal. C.C. (2007) “Data Streams: Models and Algorithms”. Springer Berlin Heidelberg.

[8] Gaber, M., Zaslavsky, A. and Krishnaswamy, S. (2005) “Mining Data Streams: A Review”.

SIGMOD Record, Vol. 34, No. 2. pp. 18-26.

[9] Jiang, N. and Gruenwald, L. (2006) “Research Issues in Data Stream Association Rule

Mining”. SIGMOD Record, Vol. 35, No. 1, pp. 14-19.

[10] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Dtar, M., Manku, G., Olston,

C., Rosenstein, J. and Varma, R. (2003) “Query Processing, Approximation, and Resource

Management in a Data Stream Management System”. In proceedings of Conference on In-

novative Data System Research, Asiloma, pp. 245-256.

[11] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,

Krishnamurthy, S., Madden, S., Raman, V., Reiss, F. and Shah, M. (2003) “TelegraphCQ:

Continuous Data Flow Processing for an Uncertain World”. In proceeding of Conference on

Innovative Data System Research, Asiloma, pp. 269-280.

[12] Aggarwal, C.C., Han, J. Wang, P., Yu, S. (2003) “A Framework for Clustering Evolving

Data Streams”. In proceedings of the 19th International Conference on Very Large Data

Bases (VLDB), Berlin, Volumn 3, pp. 81-92.

[13] Wang, H., Fan, W., Yu, P. and Han, J. (2003) “Mining Concept-Drifting Data Streams

using Ensemble Classifiers”. In proceedings of the 9th ACM International Conference on

Knowledge Discovery and Data Mining (SIGKDD), Washington, D.C., pp. 226-235.

[14] Manku, G.S. and Motwani, R. (2002) “Approximate frequent counts over data streams”. In

proceedings of International Conference on Very Large Data Bases (VLDB), pp. 346-357.

[15] Beyer, K., Goldstein, J., Ramakrishnan, R. and Shaft, U. (1999) “When is nearest neighbors

meaningful?”. In proceedings of International Conference on Database Theory, pp. 217-235.

[16] Sakurai, Y., Papadimitriou, S., and Faloutsos, C. (2005) “BRAID: Streaming mining

through group lag correlations”. In proceedings of 2005 ACM International Conference on

Management of Data (SIGMOD), pp. 599-610.

128

[17] Yeh, M.Y., Dai, B.R. and Chen, M.S. (2007) “Clustering over Multiple Evolving Streams

by Events and Correlations”. In IEEE Transactions on Knowledge and Data Engineering,

Vol. 19, No. 10, pp. 1349-1362.

[18] Beringer, J. and Hullermeier, E. (2005) “Online Clustering of Parallel Data Streams”. In

Journal of Data and Knowledge Engineering, Vol. 58, No. 2, pp. 180-204.

[19] Rodrigues, P.P., Gama, J. and Pedroso, J.P. (2006) “ODAC: Hierarchical Clustering of Time

Series Data Streams”. In proceedings of the sixth SIAM International Conference of Data

Mining, pp. 499-503.

[20] Fan, W., Watanabe, T. and Asakura, K. (2009) “Mining Interesting Ratio Patterns over a

Stream Sliding Window”, In proceedings of International Conference on Machine Learning

and Applications (ICMLA), pp. 731-734.

[21] Fan, W., Watanabe, T. and Asakura, K. (2009) “Ratio Rules Mining in Concept Drifting

Data Streams”, In proceedings of International Conference on Machine Learning and Data

Analysis (ICMLDA), Volume. II, pp. 809-814.

[22] Fan, W., Watanabe, T. and Asakura, K. (2010) “Mining underlying correlated-clusters in

high-dimensional data streams”, In International Journal of Social and Humanistic Com-

puting, Vol. 1, No. 3, pp. 282-299.

[23] Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2008) “An Incremental PCA for

Stream Analysis Based on NLMS Adaptive Filter”, In proceedings of 電気関係学会東海支

部連合大会, O-511.

[24] Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2009) “Generalized Regression

Measure for Local Correlation Tracking in Evolving Data Streams”, In proceedings of DIEM

Forum, E6-3.

[25] Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2009) “A System for Mining Cor-

relations among Multiple Evolving Data Streams”, In the 23th Annual Conference of the

Japanese Society for Artificial Intelligence (JSAI), pp. 1-4.

129

[26] Fan, W., Watanabe, T. and Asakura, K. (2008) “A framework for flexible clustering of

multiple evolving data streams”, International Journal of Advanced Intelligence Paradigms,

Vol. 1, No. 2, pp. 178-195.

[27] Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2008) “Clustering over Evolving

Data Streams Based on Online Recent-biased Approximation”, In proceedings of Pacific

Rim Knowledge Acquisition Workshop, LNAI 5351 (Springer), pp. 273-287.

[28] Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2008) “Clustering on Multi-

granularity Temporal Trend of Multiple Evolving Data Streams”, In proceedings of Workshop

on Informatics, pp. 215-220.

[29] 范 薇, 渡邉 豊英, 朝倉 宏一. (2010) “Multi-solution Trend Analysis of Stock Price Change

by Textual Information”, In proceedings of FIT, pp.163-166.

[30] 范 薇, 渡邉 豊英, 朝倉 宏一. (2010) “連続的時系列データストリームからの知識発見”, In

Technical Report of IEICE: DE2010, pp. 7-12.

[31] Fan, W., Watanabe, T. and Asakura, K. (2010) “News-sensitive Multi-solution Prediction of

Stock Price”, In proceedings of Information Processing Society of Japan 50th Anniversary,

72nd National Convention of IPSJ, pp. 1-257-1-258.

[32] Guha, S., Mishra, N., Motwani, R. and Callaghan, L. (2000) “Clustering data streams”. In

proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 359-366.

[33] Chang, J.K. Lee, W.S. and Zhou, A. (2003) “Finding Recent Frequent Itemsets Adaptively

over Online Data Streams”. In proceeding of 9th ACM International Conference on Knowl-

edge Discovery and Data Mining (SIGKDD), pp. 487-492.

[34] Aggarwal, C.C., Han, J., Wang J. and Yu. P. (2004) “A framework for projected clustering

of high dimensional data streams”. In proceeding of 30th International Conference on Very

Large Data Bases (VLDB), pp. 852-863.

130

[35] Chang, J. and Lee, W. (2004) “ A sliding window method for finding recently frequent

itemsets over online data streams”. In Journal of Information Science and Engineering,

Vol. 20, No. 4, pp. 753-762.

[36] Chi, Y., Wang, H. Yu, P. and Richard, R. (2004) “Moment: Maintaining Closed Frequent

Itemsets over a Stream Sliding Window”. In proceedings of IEEE International Conference

on Data Mining, pp. 59-66.

[37] Lin, C., Chiu, D., Wu, Y. and Chen, A. (2005) “Mining Frequent Itemsets from Data Streams

with a Time-Sensitive Sliding Window”. In proceedings of SIAM International Conference

on Data Mining, pp. 68-79.

[38] Agrawal, R. and Srikant, R. (1994) “Fast Algorithms for Mining Association Rules in Large

Databases”. In proceedings of 20th International Conference on Very Large Data Bases, pp.

487-499.

[39] Xiong, H., Tan, P.N. and Kumar, V. (2006) “Hyperclique Pattern Discovery”. In Journal

of Data Mining and Knowledge Discovery, Vol.13, No.2, pp. 219-242.

[40] Brin, S., Motwani, R. and Silverstein, R. (1997) “Beyond Market Basket: Generalizing

Association Rules to Correlations”. In proceedings of ACM International Conference on

Management of Data (SIGMOD), pp. 265-276.

[41] Lee, Y.K., Kim, W.Y., Cai,Y.D., and Han, J. (2003) “CoMine: Efficient Mining of Correlated

Patterns”. In proceedings of 3rd IEEE International Conference on Data Mining, pp. 581-

584.

[42] Kim, W.Y., Lee, Y.K. and Han, J. (2004) “CCMine: Efficient Mining of Confidence-closed

Correlated Patterns”. In proceedings of the 8th Pacific-Asia Conference on Advances in

Knowledge Discovery and Data Mining, pp. 569-579.

[43] Omiecinski, E. (2003) “Alternative Interest Measures for Mining Associations”. In IEEE

Transactions on Knowledge and Data Engineering, Vol.15, No. 1, pp.57-69.

131

[44] Ma, S. and Hellerstein, J.L. (2001) “Mining Mutually Dependent Patterns”. In proceedings

of 2001 IEEE International Conference on Data Mining, pp. 409-416.

[45] Ke, Y., Cheng, J. and Ng, W. (2006) “Mic framework: An information-theoretic Approach to

Quantitative Association Rule Mining”. In proceedings of the 22th International Conference

on Data Engineering, pp. 112-112.

[46] Ke, Y., Cheng, J. and Ng, W. (2008) “Correlated Pattern Mining in Quantitative

Databases”. In ACM Transaction on Database Systems, Vol. 33, No. 3. August, pp. 1-44.

[47] Xiong, H., Shekhar, S., Tan, P.N. and Kumar, V. (2006) “TAPER: A Two-step Approach for

All-strong-pairs Correlation Query in Large Databases”. In IEEE Transactions on Knowl-

edge and Data Engineering, Vol, 18, No. 4, pp. 493-508.

[48] Srikant, R. and Agrawal, R. (1996) “Mining Quantitative Association Rules in Large Re-

lational Tables”. In proceedings of 1997 ACM SIGMOD International Conference on Man-

agement of Data, pp. 1-12.

[49] Wang, K., Tay, S.H. and Liu, B. (1998) “Interestingness-based Interval Merger for Numeric

Association Rules”. In proceedings of the 5th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 121-128.

[50] Fukuda, T., Morimoto, Y., Morishita, S. and Tokuyama, T. (2001) “Data Mining with

Optimized two-dimensional association rules”. In ACM Transations on Database Systems,

Vol. 26, No. 2, pp. 179-213.

[51] Zhang, H., Padmanabhan, B. and Tuzhilin, A. (2004) “On the Discovery of Significant

Statistical Quantitative Rules”. In proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 374-383.

[52] Chen, Z.Y. and Liu, G.H. (2005) “Quantitative Association Rules Mining Methods with

Privacy Preserving”. In proceedings of the 6th International Conference on Parallel and

Distributed Computing Applications and Technologies, pp. 910-912.

132

[53] Korn, F., Labrinidis, A., Kotidis, Y. and Faloutsos, C. (2000) “Quantifiable data mining

using ratio rules”, In Journal of Very Large of Data Base, Vol. 8, pp. 254-266.

[54] Yan, J., Yang, Q., Zhang, B., Cheng, Q. and Chen Z. (2006) “Mining Adaptive Ratio Rules

from Distributed Data Sources”, In Journal of Data Mining and Knowledge Discovery, Vol.

12, No. 2-3, pp. 249-273.

[55] 濱本 雅史, 北川 博之 (2006) “サポートと確信度をもとにした比率規則による線形関係抽出”,

情報処理学会論文誌, Vol. 47, No. 19, pp. 54-71.

[56] Demiriz, A., Cihan, A. and Kula, U. (2009) “Analyzing Price Data to Determine Positive

and Negative Product Associations”, In proceedings of the 16th International Conference on

Neural Information Processing, pp. 846-855.

[57] Hidlber, C. (1999) “Online Association Rule Mining”. In proceedings of the 1999 ACM

SIGMOD International Conference on Management of Data (SIGMOD), pp. 145-156.

[58] Giannella, C. Han, J.W., Pei, J. Yan, X.F. and Yu, P.S. (2003) “Mining Frequent Patterns in

Data Streams at Multiple Time Granularities”. In proceedings of Next Generation Challenges

and Future Directions, pp. 486-491.

[59] Li, H.F., Lee, S.Y. and Shan, M.K. (2004) “An Efficient Algorithm for Mining Frequent

Itemsets over the Entire History of Data Streams”. In proceedings of International Workshop

on Knowledge Discovery in Data Streams.

[60] Yang, L. and Sanver, M. (2004) “Mining Short Association Rules with One Database Scan”.

In proceedings of International Conference on Information and Knowledge Engineering.

[61] Han, J., Pei, J. and Yin, Y. (2000) “Mining frequent patterns without candidate genera-

tion”, In proceedings of the 2000 ACM International Conference on Management of Data

(SIGMOD), pp. 1-12.

[62] Perlman, E. and Java, A. (2003) “Predictive Mining of Time Series Data in Astronomy”, In

Journal of Astronomical Data Analysis Software and Systems XII ASP Conference Series,

Vol. 295, pp. 431-434.

133

[63] Artae, M., Jogan, M. and Leonardis, A. (2002) “Incremental PCA for On-line Visual Learn-

ing and Recognition”. In proceedings of 16th International Conference on Pattern Recogni-

tion, Quebec, pp. 781-784.

[64] Guha, S., Gunopulos, D. and Koudas, N. (2003) “Correlating synchronous and asynchronous

data streams”, In proceedings of ninth ACM SIGKDD international conference on Knowl-

edge discovery and data mining (KDD), pp. 529-534.

[65] Weng, J., Zhang, Y. and Hwang, W.S. (2003) “Candid Covariance-free Incremental Prin-

cipal Component Analysis”. In IEEE Transactions of the Pattern Analysis and Machine

Intelligence, Vol. 15, No. 8, pp. 1034-1040.

[66] O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S. and MOtwani, R. (2002) “Streaming-

Data Algorithms for High-Quality Clustering”, In proceedings of the 20th International Con-

ference on Data Engineering, IEEE, Boston, USA, pp. 685-694.

[67] Yang, J. (2003) “Dynamic Clustering of Evolving Streams with a Single Pass”, In proceedings

of the 21st International Conference on Data Engineering, IEEE, Bangalore, India, pp. 695-

697.

[68] Rafiei, D. and Mendelzon, A.O. (1998) “Efficient Retrieval of Similar Time Sequences Using

DFT”, In proceedings of the 5th International Conference of Foundations of Data Organi-

zation, Kobe, Japan, pp. 249-257.

[69] Chan, F.K.-P., Fu, A.W.-C. and Yu, C. (2003) “Haar Wavelets for Efficient Similarity Search

of Time-Series: With and without Time Warping”, In IEEE Transactons on Knowledge and

Data Engineering, Vol. 15, No. 3, pp. 686-705.

[70] Kanth, K.V.R., Agrawal, D. and Singh, A.K. (1998) “Dimensionality Reduction for Sim-

ilarity Searching in Dynamic Databases”, In proceedings of ACM SIGMOD International

Conference on Management of Data, ACM, Washington, USA, pp. 166-176.

134

[71] Keogh, E., Chu, S., Hart, D., Pazzani, M. (2003) “Segmenting Time Series: A Survey

and Novel Approach”, In Data Mining in Time Series Databases, second edition, World

Scientific, Singapore, pp. 1-21.

[72] Appel, U. and Brandt, A.V. (1983) “Adaptive Sequential Segmentation of Piecewise Sta-

tionary Time Series”, In Information Science, Vol. 29, No. 1, pp. 27-56.

[73] Klein, F and Prestbo, J. A. (1974) “News and the Market”, Chicago: Henry Regenry.

[74] Peramunetilleke, D and Wong, R. K (2001) “Currency Exchange Rate Forecasting from

News Headlines”, In proceedings of 13th Australasian Database Conference, pp. 131-139.

[75] Antweiler,W. and Frank, M. Z. (2004) “Is All That Talk Just Noise? The Information

Content of Internet Stock Message Boards”, In The Journal of Finance, Vol. 59, No. 3, pp.

1259-1294.

[76] Choudhury, M.D., Sundaram, H., John, A. and Seligmann, D.D. (2008) “Can blog communi-

cation dynamics be correlated with stock market activity?”, In proceedings of the nineteenth

ACM conference on Hypertext and hypermedia, pp. 55-60.

[77] Pan, Q., Cheng, H., Wu, D., Yu, J. X., Ke, Y. P. (2010) “Stock Risk Mining by News”, In

proceeding of 25th Australasian Database Conference, pp. 179-188.

[78] Seo, Y. W., Giampapa, J. and Sycara, K. (2002) “Text Classification for Intelligent Portfolio

Management”, In Technical report CMU-RI-TR-02-14.

[79] Wuthrich, B. and Zhang, J. (1999) “Text Processing for Classification.”, In Journal of

Computational Intelligence in Finance, Vol. 7, No. 2, pp. 6-22.

[80] Wuthrich, B. (1995) “Probabilistic Knowledge bases”, In IEEE transactions on Knowledge

and Data Engineering, Vol. 7, No. 5, pp. 691-698.

[81] Lavrrenko, V., Schmill, M, Lawire, D., Ogilvie, P., Jensen, D. and Allan, J. (2000) “Lan-

guage Models for Financial News Recommendation”, In proceedings of ninth international

conference on Information and knowledge management, pp. 389-396.

135

[82] Lavrrenko, V., Schmill, M, Lawire, D., Ogilvie, P., Jensen, D. and Allan, J. (2000) “Mining

of Concurrent Text and Time Series”, In proceedings of the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining Workshop on Text Mining, pp. 37-44.

[83] Fung, G. Yu, J. X. and Lam, W. (2002) “News Sensitive Stock Trend Prediction.”, In

proceedings of 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data

Mining, pp. 481-493.

[84] Robertson, C., Geva, S. and Wolff, R. C. (2007) “Can the Content of Public News be Used to

Forecast Abnormal Stock Market Behavior?”, In proceedings of Seventh IEEE International

Conference on Data Mining, pp. 637-642.

[85] Gidofalvi, G.: “Using News Articles to Predict Stock Price Movement.”, In Project Report,

Department of Computer Science and Engineering, University of California, San Diego.

http://www-cse.ucsd.edu/users/elkan/254spring01/gidofalvirep.pdf, 2001-06-15.

[86] Joachims, T. (1998) “Text Categorization with Support Vector Machines: Learning with

Many Relevant Features”, In proceedings of European Conference on Machine Learning, pp.

137-142.

[87] Mittermayer, M. A. (2004) “Forecasting Intraday Stock Price Trends with Text Mining

Techniques”, In proceedings of 37th Annual Hawaii International Conference on System

Sciences, pp. 10.

[88] 和泉 潔, 後藤 卓, 松井 藤五郎. (2008) “テキスト情報を用いた金融市場分析の試み.”, 第 22

回人工知能学会全国大会.

[89] Motawani, R., Cohen, E. Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Ullman, J.D.

and Yang, C. (2001) “Finding Interesting Association without Support Pruning”, In IEEE

Transactions on Knowledge and Data Engineering (speical issue), Vol. 13, No. 1, pp. 64-78.

[90] Haykin, S. (1992) “Adaptive Filter Theory”, Prentice Hall.

136

[91] Chakrabarti, K. and Mehrotra, S. (2000) “Local Dimensionality Reduction: A New Ap-

proach to Indexing High Dimensional Spaces”. In proceedings of 26th International Confer-

ence on Very Large Data Bases, Cairo, pp. 89-100.

[92] Ravi Kanth, K.V, Agrawal, D. and Singh, A. (1998) “Dimensionality reduction for similarity

searching dynamic databases”, In ACM SIGMOD Record, Vol. 27, Issue 2, pp. 166-176.

[93] Zhang, M., Hsu, W. and Lee, M. (2007) “Mining Prevalence-based Ratio Patterns”, In

proceedings of Tools with Artificial Intelligence of IEEE Conference, pp. 140-147.

[94] Faloutsos, C., Rangantathan, M. and manalopoulos, Y. (1994) “Fast Subsequence Matching

in Time-Series Databases”, In proceedings of ACM SIGMOD International Conference on

Management of Data, pp, 419-429.

[95] Smyth, P. (1994) “Hidden Markov Models for Fault Detection in Dynamic Systems”, In

Journal of Pattern Recognition, Vol.7, No. 1, pp.149-164.

[96] Keogh, E. and Smyty. P. (1997) “A Probabilistic Approach to Fast Pattern Matching in

Time Series Databases”, In proceedings of 3rd International Conference of KDD, pp. 24-40.

[97] Frost, A. J. and Prechter, R. R. (1998) “Elliott Wave Principle”, New Classics Library, first

edition.

[98] Jain. A and Dubes, R. (1988) “Algorithms for Clustering Data.”, Prentice Hall.

[99] 張 へい, 松原 茂樹. (2008) “株価データに基づく新聞記事の評価.”, 第 22回人工知能学会全

国大会.

[100] Rosset, S., Murad, U., Neumann, E., Idan, Y. and Pinkas, G. (1999) “Discovery of fraud

rules for telecommunications - challenges and solutions”. In proceedings of the fifth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego,

pp. 409-413.

[101] Zhu, Y.Y and Shasha, D. (2003) “Efficient elastic burst detection in data streams”. In

proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Washington, DC, pp. 336-345.

137

[102] Aggarwal, C.C. and Yu, P.S. (2000) “Finding generalized projected clusters in high-

dimensional spaces”. In proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data, Dallas, pp. 70-81.

[103] Thomas, J. D. and Sycara, K. (2000) “Integrating genetic algorithms and text learning for

financial prediction.”, In Data Mining with Evolutionary Algorithms, pp. 72-75. Technical

Report WS-99-06.

[104] Elkan, C. (1999) “Notes on discovering trading strategies.”.

[105] Wu, H. M., Salzberg, B. and Zhang, D. H. (2004) “Online Event-driven Subsequence Match-

ing over Financial Data Streams”, In proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data, pp. 23-34.

[106] Scott, D., Susan T.D., George W.F., Thomas K.L. and Richard, H. (1990) “Indexing by

Latent Semantic Analysis”, In Journal of the American Society for Information Science,

Vol. 41, No. 6, pp. 391-407.

[107] Cao, L., Yu, P., Zhang, C. and Zhang, H. (2008) “Data Mining for Business Applications”,

Springer.

[108] Cao, L., Zhao, Y., Zhang, H., Luo, D., Zhang, C., and Park, E.K. (2010) “Flexible Frame-

work for Actionable Knowledge Discover”, In IEEE transactions on Knowledge Discovery

and Engineering, Vol. 22, No. 9, pp. 1299-1312.

138

PUBLICATION

学術雑誌論文

1. Fan, W., Watanabe, T. and Asakura, K. (2008) “A framework for flexible clustering of mul-

tiple evolving data streams”, In International Journal of Advanced Intelligence Paradigms,

Vol. 1, No. 2, pp. 178-195.

2. Fan, W., Watanabe, T. and Asakura, K. (2010) “Mining underlying correlated-clusters in

high-dimensional data streams”, In International Journal of Social and Humanistic Com-

puting, Vol. 1, No. 3, pp. 282-299.

査読付国際会議・ワークショップ

1. Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2008) “Clustering over Evolving

Data Streams Based on Online Recent-biased Approximation”, In proceedings of Pacific Rim

Knowledge Acquisition Workshop, LNAI 5351 (Springer), pp. 273-287.

2. Fan, W., Watanabe, T. and Asakura, K. (2009) “Ratio Rules Mining in Concept Drifting

Data Streams”, In proceedings of International Conference on Machine Learning and Data

Analysis, Volume. II, pp. 809-814.

3. Fan, W., Watanabe, T. and Asakura, K. (2009) “Mining Interesting Ratio Patterns over a

Stream Sliding Window”, In proceedings of Conference on Machine Learning and Applica-

tions, pp. 731-734.

139

国内研究会・ワークショップ

1. Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2008) “An Incremental PCA for

Stream Analysis Based on NLMS Adaptive Filter”, 電気関係学会東海支部連合大会論文集,

O-511.

2. Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2008) “Clustering on Multi-

granularity Temporal Trend of Multiple Evolving Data Streams”, 情報学ワークショップ

論文集, pp. 215-220.

3. 小柳佑介，范薇，朝倉宏一，渡邉豊英 (2008) “類似度によるパターン分類を用いた時系列

データ圧縮手法の提案”，情報学ワークショップ論文集, pp. 33-36.

4. Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2009) “Generalized Regression

Measure for Local Correlation Tracking in Evolving Data Streams”, 第 1回データ工学と情

報マネジメントに関するフォーラム, E6-3.

5. 小柳佑介，范薇，朝倉宏一，渡邉豊英 (2009) “時系列データ圧縮のための類似部分区間探索

手法”, 第 1回データ工学と情報マネジメントに関するフォーラム，E6-4.

6. Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. (2009) “A System for Mining Cor-

relations among Multiple Evolving Data Streams”, 人工知能学会全国大会, pp. 1-4.

7. Fan, W., Watanabe, T. and Asakura, K. (2010) “News-sensitive Multi-solution Prediction

of Stock Price”, 情報処理学会全国大会, pp. 1-257-1-258.

8. 范 薇, 渡邉 豊英, 朝倉 宏一 (2010) “連続的時系列データストリームからの知識発見”, Tech-

nical Report of IEICE: DE2010, pp. 7-12.

9. 范 薇, 渡邉 豊英, 朝倉 宏一 (2010) “Multi-solution Trend Analysis of Stock Price Change

by Textual Information”, FIT, 第一分冊, pp.163-166.

受賞

1. 范 薇. 平成 20年度電気関係学会東海支部連合大会奨励賞, 2008.

140

2. Fan, W., Koyanagi, Y., Asakura, K. and Watanabe, T. 情報学ワークショップ 2008優秀賞,

2008.

3. 范 薇. 平成 21年度情報処理学会東海支部学生論文奨励賞, 2009.

141

	Dissertatioin_title_WeiFAN.pdf
	Dissertation_WeiFAN

