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General Introduction



1.1. Introduction.

Henri Braconnds work in the 1830s is perhaps the first modern example of polymer science.
Braconnot, along withChristian Schénbeirand others, developed derivatives of the natural
polymer cellulose producing new, sensynthetc materials, such aselluloid and cellulose
acetate The term "polymer" was coined in 1833 byns Jakob Berzeliuthough Berzelius did

little that would be considered polymer science in the modern sense. In the E8d05ch
Ludersdorfand Nathaniel Haywardndependentlydiscoveredthat adding sulfur to raw natural
rubber (polyisopreng helped prevent the material from becoming sticky. In 1&%arles
Goodyearreceived a U.S. patent feulcanizingrubber withsulfur and heatThomas Hancock

had received a patent for the same process in the UK the year before. Vulcanized rubber
represents the first commercially successful product of polymer research. IrHl88é de
Chardonnestarted the first artificidliber plant based on regenerategllulose or viscoserayon

as a substitute fosilk, but it was very flammablé! In 1907 Leo Baekelandnvented the first

syntheticpolymer, athermosettingohenolformaldehydeesin calledBakelite

Despite significant advances in polymer synthesis, the molecular nature of the polymet was n
understood until the work dfermann Staudingen 1922. Prior to Staudinger's work, polymers
were understood in terms of tlassociation theorgr aggregate theory which originated with
Thomas Grahann 1861. Graham proposed that cellulose and othmmers were "colloids",
aggregates of molecules small molecular mass connected by an unknown intermolecular force.
Hermann Staudingewas the first to propose thatlpmers consisted of long chains atoms

held together bycovalent bondslit took over a decade for Staudinger's kvéo gain wide

acceptance in the scientific community, work for which he was awardédbtied Prizein 1953.

The World War 1l era marked the emergence of a strong commercial polymer industry. The
limited or restricted supply of natural materials such as silk and latex necessitated the increased
production of synthetic substitutes, suchragon and neoprene In the intervening years, the
development of advanced polymers suctKaslar and Teflon have continued to fuel a strong

and growing polymer industry.
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The growth in industrial applications was mirrored by the establishment of strong academic
programsand research institute. In 194Berman Markestablished the Polymer Research
Institute atBrooklyn Polytechnic the first research facility in thelnited Statededicated to
polymer research. Mark is also recognized as a pioneer in establishilegloon and pedagogy

for the field of polymer sciend®. In 1950, the POLY division of thémerican Chemical
Societywas formed, and has since grown to the sedarggst division in this association with
nearly 8,000 members. Fred W.Billmeyer, JR, a Professor of Analytical Chemistry had once said
that "although the scarcity of education in polymer science is slowly diminishing but it is still
evident in many areas. What is most unfortunate is that it appears to exist, not because of a lack

of awareness but, rather, a lack of interd8durce Polymer Science, Wikipedia)
1.2. Polymer brush.

Polymer brushis a layer ofpolymersattached with one end to a surfaGeThe brushes may be

either in a solvent state, when the dangling chains are submerged into a solvent, or in a melt state,
when the dangling chains completely fill up the space available. Additionally, there is a separate
class of polyelectigte brushes, when the polymer chains themselves carry an electrostatic

charge.

The brushes are often characterized by the high density of grafted chains. The limited space then
leads to a strong extension of the chains, and unusual properties of tine. 8rstehes can be

used to stabilizeolloids, reduce friction between surfaces, and to provide lubrication in artificial
joints. ) Polymer brushes have been modeled with Monte Carlo meftaztswith Brownian

dynamicssimulations®.
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1.3. Grafting methods.

Most of these studies have focused ot o$bdr pbace
66grdfroimdd t&% hnddqGteasd di mgvol vesa pteformed erain di n g
functionalized polymer chains to the reactive surface groups on the substrate. The limitation in

this technique is that the attachment of a small number of chains significantly hinders diffusion

of additional polymer chains to the surfatiegreby leading to very low grafting density. In the
graftingfrom technique, initiator species on the substrate surface are used to initiate
polymerization upon exposure to a monomer solution under appropriate conditions, so that high
grafting densitycan be achieved.

1.4. ATRP.

ATRP or atom transfer radical polymerizatiom an example of &ving polymerizationor a
controlled/living radical polymerization (CRP). Like its counpart, ATRA or atom transfer
radical additionit is a means of forming carbararbon bond througtransition metatcatlyst

As the name implies, the atom transfer step is the key step in the reaction responsible for uniform
polymer chain growth. ATRP (or transition metadediated living radical polymerizand was
independently discovered by Mitsuo Sawarfidtand byKrzysztof MatyjaszewskandJin-Shan
Wangin 19951% This is a typical ATRP reaction:

The uniformed polymer chain growth, which leads to low polydispersity, stems from the
transition metal based cétat. This catalyst provides apquilibrium between active, and
therefore propagating, polymer and an inactive form of the polymer; known as the dormant form.
Since the dormant state of the polymer is vastly preferred in this equilibrium, side reactions are
syopressedThis equilibrium in turn lowers the concentration of propagating radicals, therefore

suppressing unintentional termination and controlling molecular weights.

ATRP reactions are very robust in that they are tolerant of riamgtional groupdike allyl,
amino, epoxy, hydroxy and vinyl groups present in either the monomer or the initator. ATRP
methods are also advantageous due to the ease of preparation, commercially avallable a

inexpensivecatalystgcopper complexes), pyridine badegndsand initiators (alkyl halides”
13
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Figure 12: Schematic diagram of the technique of tkarface

modification by  means of either (a) graftitay(b) graftingfrom
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1.5. Components of ATRP

There are five important variable components of Atom Transfer Radical Polymerizations. They
are the monomer, initiator, catalyst, solvent and temperature. The following section breaks down

the contributions of each component to the overall polymerization.

1.6. Monomer.

Monomers that are typically used in ATRP are molecules with substituents that can stabilize the
propagating radicals; for example, styrenes, (meth)acrylates, (meth)acrylamides, and
acrylonitrile¥ ATRP are successful at leading to polymers of ligmber average molecular
weight and a narrowpolydispersity indexwhen the concentration of the propagating radical
balances the rate of radical termination. Yet, the propagating rate is unique to each individual
monomer. Therefore, it is important that the other comepts of the polymerization (initiator,
catalysts, ligands and solvents) are optimized in order for the concentration of the dormant
species to be greater than the concentration of the propagating radical and yet not too great to

slow down or halt the reton.
1.7. Initiator .

The number of growing polymer chains is determined by the initiator. The faster the initiation,
the fewer terminations and transfers, the more consistent the number of propagating chains
leading to narrow molecular weight distributidfs.Organic halides that are similar in the
organic framework as the propagating radical are often chosen as initiators. Most initators for
ATRP are alkyl halidesAlkyl halides such as alkyl bromides are more reactive than alkyl
chlorides and both have good molecular weight cofiffolThe shape or structure of your
initiator can determine the architecture of your polymer. For example, initiators with multiple

alkyl halide groups on a single core can lead to alig&polymer shape.
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Figure 23: lllustration of a star initiator for ATRP
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1.8. Catalyst.

The catalyst is the most important component of ATRP because it determines the equilibrium
constant between the active and dormant species. Thidibegm determines the
polymerization rate and an equilibrium constant too small may inhibit or slow the polymerization

while an equilibrium constant too large leads to a high distribution of chain léfths.
There are several requirements for the metal catalyst:

1. there needs to be two accessible oxidation states that are separated by one electron

2. the metal center needs to have a reasonable affinity for halogens

3. the coordination sphere of the metal needs to be expandable when its oxidized so to be
able to accommodate the halogen

4. astrong ligand complexation

The most studied catalysts are those that polymerizations involving copper, which has shown the

most versality, showing successful polymerizations regardless of the monomer.
1.9. Solvent

Toluene,1,4dioxane, xylene, anisgl®MSO

1.10. Poly(N-isopropylacrylamide).

Poly(N-isopropylacrylamidejvariously abbreviated PNIPA, PNIPAAN

PNIPAA or PNIPAmM) is atemperature@esponsive polymethat was ., ¢ ~
first synthesized in the 19568 1t forms a threedimensionalhydrogel

when crosslinked withN , Méthylenebis-acrylamide (MBAm) or D,;f’ —_
N, Mystaminebis-acrylamide (CBAm). When heated in water abo |

33°C, it undergoes a reversiltaver critical solution temperatupghase i /CHHCH

transition from a swollen hydrated state to a shrunken dehydrated siae, 3 ?
losing about 90% of itsnass In dilute solution, it undergoes a correspondoag-to-globule

transitionat similar conditiond}”. Since PNIPAm expels its liquid contents at a temperature
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near that of the human body, PNIPAmM has been investigated by many researchers for possible

applications in controlledrug delivery?24

1.11. Aim of the Experiment.

The surface initiated ATRP of NIPA onto a silicon wafer and-éeposited mica has been
reported, bt in many cases, the authors do not give molecular weight and polydispersify data.
%2 Judging by our additional examinations, many cases of stirfiizéed ATRP of NIPA on a
flattened surface such as silicon, the thickness of the grafted PNIPA nmesicemanot be well
controlled according to the living polymerization system. Moreover, the densities of the grafted
PNIPA membranes are in diluted or safiluted regions, and as a result, the intermolecular
interaction between grafted polymers is not gigant due to the poor choice of the
polymerization system&ut Well defined polymer brushes are used for making materials with
surfaces that have been designed on the nano¥¢alecontrolled PNIPA is also used for cell
sheet engineerin@igure 1-5). For the preparatioaf cell sheets, the surface must be
hydrophobic around the cultivati®emperature, i.e., 3, and hydrophilic below the LCST. As
aresult, the cell sheets cultured at°87that are useful for tisswmgineering are safely isolated
from the membranes below th€ST. So aim of this study is to synthesis PNIPA grafted
membrane on silicon surface by ATRP and precisely controlled their chain length and graft
density, @amination of the effect of chaiength and graft density on the sagé characteristics
check the change of the wettability at hydration state in the polgneefinally check the stimuli
responsive behavior of PNIPA grafted membrane on silicon suAddéeP is attractive because

it can provide good control ovpredictalle polymer molecular weight, PDI and end groups as

long as the conditions are suitable.
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2o Lo

Phasecontrast photograps‘of rat pfi.raéry hepatoytes cultured on PlPgrafted (A) and
control  B) dishes. Rat primary hepatgtes were cultured for 4 days

852347 -i 348

Scanning electron micrographs of hepatocytes recovered by low temperature treatm
(A) and trypsin treatment (B).

Phasecontrast micrographs of hepatocysebcultured by low temperaturdreatment (A) and trypsin
treatmen{8). Primary hepatocytes were recovered by low temperature treatroemtife PPAAmM-
grafted dish and by trypsin treatment from the control dish. The recovered hepatocytes were
subcultured for 3 days on controldishes.

Figure 1-5: Application of PNIPA gel.(sournal of Biomedical

Materials Research, Vol. 27, 124251 (1993)
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/777 Chapter 2

Characteristics of Higibensity Poly(Nisopropylacrylamide)
(PNIPA) Brushes on Silicon Surfat®y Atom Transfer Radical
Polymerization
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2.1.Abstract.

High-density poly(N-isopropylacrylamide) (PNIPA) brushes were synthesized on silicon
surfaces by surface initiated ATRP at various polymerization conditions. Polymerization
was achieved using CuCl/tris(@imethylamingethyl)amine (MeTREN) as a catalytic
system in DMSO at 2C. The linear evolution of number average molecular weigh} (
versus monomer conversion, the increase in layer thickness with polymerization time and
relatively low molecular weight distribution (~ 1.2) indicatevall-controlled manner of
polymerization. The average value of grafting density of PNIPA brushes was around 0.48
chain/nnf: We obtained higilensity PNIPA brushes. During the measurement of air
bubble contact angle under the surface of the PNIPA brusheater, the surface property

of PNIPA brushes shows an interesting phenomenon, which is antithetic to that of typical
PNIPA gel. With the increase of temperature from 10°C, the surfaces of the PNIPA brushes
gradually change to more hydrophobic natured. &utemperature approaches the LCST,

the brush surfaces turned back to hydrophilic state. This might be the effect of the change in
the surface morphology of the polymer brushes and/or the change in physical state of the

terminal end groups of the polymelepending on temperature.

Keywords: atorrtransfer radical polymerization (ATRP); monolayers; polymer brushes;

surfaceinitiated polymerization.
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2.1.INTRODUCTION .

Atom transfer radical polymerization (ATRP) is one of the attractive andtiersantrolled
or living radical polymerization techniques. A variety of monomer can be used, and the
polymerization can be performed in bulk solutions and at surfaces to obtain a wide variety of
functional materi al s. F o that dre sensgiveitontige cliiange thne | | i ¢
environments, poly{-isopropylacrylamide) (PNIPA) has a great interest as a theamsitive
polymer. It has a lower critical solution temperature (LCST) af&3a water, between room
temperature and physiological tperature* Below its LCST, the linear polymer in aqueous
solution is in a random coil conformation. However, when the temperature is above the LCST,
the linear polymer chains undergo a sharp phase transition, forming a collapsed globule state. A
sharp clange in the solubility of polymer chains in water is thus triggered by a moderate
temperature stimulus. As a result of this property, thermoresponsive surfaces based on PNIPA
covalently bounded on solid surfaces have been developed for various applitations
Thermoresponsive surfaces with temperature responsive properties are most important among
smart surfaces since temperature can be easily controlled as a stimulant. By applying external
stimuli (e.g. adhesion, wettability, friction, roughness, reagtivbiocompatibility, selectivity
etc.) on fAsmarto materials, it $Whatbsanbteore
for developing many thermoresponsive surfdcégaturally hydrophobic interactions are
thermodynamic in nature. If watstructure forms around hydrophobic groups, gained entropy is
reduced by accomplishing hydrophobic spetiego study alteration of polymer brushes few
research groups used AFM method and presumed if temperature raised over LCST brush
thickness will decrase.Most of the controlled radical polymerization reactiahsurfaces so far
have been carried out at fairly elevatéeimperatures, mostly between 90 and 1208
Polymerizationat lower temperature would have several advantdgstly, such processes
would be compatible with substratist are sensitive to elevated temperatures. Additionally,
spontaneous thermal polymerization and otfige reactions, such as transesterification reactions,
elimination reactions and thermal crosslinking, occurringsystems with sensitive monomers
will be less likely.Accordingly, lower polymerization temperatures col@dd to a better control
of the polymerization reaction amchprove the structural homogeneity of the grafted filrhs.
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polymergrafted surfaces can ber epar ed by Aigrafting t&80 or
Comparing to the i g-deadiy polgnmer gratied membrane,asmdled hi g h
Apol ymer br ucsdhmt r owiltehd wsetlrluct ure <can be synt
method.**? In this work, we synthesizetiigh-density polymer brushes of PNIPA on silicon
surface by t he Agr af t i n-g2-chldra)poopianyloxyjuadedylo d us
dimethylchlorosilane modified silicon and propargyti#oropropionate/CuCl/M@REN (1:1:1)

as the initiatig system at 20°C and examined the kinetics of the ATRP system and the static
structure of the resultant grafted membrane. Through variation of reaction time of
polymerization, we showed that how the reaction time influenced the polymerization kinetics,
evdution of number average molecular weight,, molecular weight distributioriyl,,/M,, and

the distinctive properties of the grafted membrane. Here we successfully showed that, ATRP of
NIPA on silicon surface was precisely controlled to demonstrate a @mgjthlof PNIPA as well

as graft density. We also found a very interesting thesemsitivity of the PNIPA grafted

membrane.

2.2. EXPERIMENTAL SECTION .
2.2.1. SeltAssembly of Initiator Monolayer on Silicon Wafers *®

The surfaceattachable ATRP inigitor ([1E(2-chloro)propionyloxy]undecyl
dimethylchlorosilane, CPAAMCS), was synthesized by the hydrosilylation of-ub@ecerl-yl
2-chloropropionate with chlorodimethylsilane in the presence of Karsted catalyst at room
temperature for 6 hour@igure2l). 10-undecenl-yl 2-chloropropionate was synthesized by a
substitution chloride in the presence of triethylamine inTdiy F . 1 0 GdMES as & sildne
coupling solution was added into 100ml dry toluene in a glove box. Treated silicon wafers were
then imnersed into the silane coupling solution and were kept into a thermostat chamb®¥g at 60
for 84 hours to form a selissembled initiator monolayer. The surface modified silicon wafers
were then removed from solution and ultrasonically cleaned by dry ®luesed sequentially
with toluene and methanol, and then dried through an argon stream. The successful synthesizes

of the ATRP initiator layer was verified by-pay photoelectron spectroscopy (XPS).
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Figure 2-1: Synthetic route of [11-(2-Chloro)propionyloxy]
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2.2.2. Synthesis procedure of the ATRP initiator

Propargyl 2chloropropionate (PCP) was used as a free ATRP initiator. PCP was synthesized
by an esterification reaction of propargyl alcohol witbroropropionyl chloride in presice of

dry trimethyl amine and THEFigure 23 (a)) A typical procedure was as follow.

Air was removed from a 250 ml rourfidbottom flask by freeze/pump/thaw cycle and the flask
was charged with trimethyl amine (1.98ml), propargyl alcohol (1.98 ml)dapdHF (40 ml).

The reaction mixture was cooled tdO in an icewater bath2-chloropropionylchloride (3.37

ml) was added dropwise over a period of 1hour under continuous magnetic stirring. Then the
mixture was stirred at 8C for 1 hour and at room rrgperature whole night. The mixture was
diluted with rhexane (equivalent amount of THF volume) and washed with 10% HCI solution,
NaHCG;, brine and miliQ water. To remove water from the mixture, dried Mg&3 added

and kept it over night. After removingd®Q, by filtration, the filtrate was concentrated and then
further purified by silica gel column chromatography using a mixturelsxane: ethyl acetate

= 9:1 as the eluent. Then the solvent was removed by rotary evaporator and residue was distilled
unde reduced pressure. A colorless liquid was obtained with 74% YidltNMR (Figure 23

(b)) (CDCl,Gt, pp m) : -CHO-B 4642 (H-EHCI-), 2.53 (H,-C[ B), and 1.695 (3H;

CHy).

2.2.3 ATRP of NIPA in bulk solution and on surface of ATRP initiator layer.

Scheme2-4 shows the preparation of PNIPA brushes on silicon surface. Formation -of self
assembled monolayer was discussed abbve.polymerization was carried out as follows: A
Schlenk tube was charged with NIPA (1.65 gm,) as a monomewdiBmaihylsulfoxide(DMSO)
was added with monomer inside glove box. The solution was degassed by three consecutive
freeze/pump/thaw cycles and backfilled with nitrogen gas (procedure repeated three times). Then
the tube was again charged with copper chloriderf®y9, MeTREN (10. 03 ¢l , ) an
el ). A sil i c o rassambledsntomolayerenvasarisdriéd ingoehe $olution of the tube
very carefully under a nitrogen atmosphere. The tube was then sealed with stopper by using
aboratory film paper. Thergfting process was carried out at®Dwith continuous shaking by a
shaker (Model: EYELA, NTSI000) at different prplanned time. After desired time period
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Figure 2-5: 14 NMR spectrum of Poly(N-isopropylacrylamide)
(PNIPA)
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Figure 2-6: FT-IR spectra of PNRA-Cl cast film

33



the tube was exposed to air to terminate the polymerization. The collected eluents were
concentratedrad precipitated into an excess of hexane. Monomer conversions were observed by
'H NMR based on integration areas. At resonance peak 4.0 ppm was considered as NIPA
monomer and PNIPA, the integration factor was assented to 1 and the resonance-pebk 6.0
ppm (vinyl portion of NIPA) as monomer. By GPC analysis number average molecular weight,
M, and molecular weight distributioM,,/M,, were obtained. Thickness of the grafted membrane
were measured by a multimode, Nanoscope llla controller (Digital Instrgm®anta Barbara,

CA) equipped with an ’adarorangec Measirament®viere tiaheir thed 0
air by contact mode using a commercially manufacturedhdped silicon nitride ($Ny4)
cantilever with gold on the back for laser beam reflectioan@pics 2100, NPX2100). Air
bubblecontact angle measurements were made with a Data Physics telescopic goniometer with a
Hamilton syringe with a flatipped needle. Water was used as the probe liquid.

2.3 RESULT AND DISCUSSION.

ATRP of NIPA on the gicon surface was accomplished in presence of a free initiator,
CuCl/Me;TREN system, and DMSO as a solvent, because the polymerization without the free
initiator will give free polymers withMl, values independent of monomer conversion and high
molecular weght distribution M,/M, > 3). During the polymerization without a free initiator,
the concentration of the &womplex produced from the reaction at the substrate surface is too
low to reversibly deactivate',Rvhich is the propagating radical producedtbe halogen atom
(X) transfer from PX to CU complex, with a sufficiently high rate. Thus, during polymerization
reaction a minimum amount of deactivator is required to control the surface initiator of ATRP.
On the other hand, the additional initiatoowid increase and adjust the concentration df Cu
complex as in a free ATRP system. Alternatively, the adjustment of thedBoentration could
be made by directly adding an appropriate amount df@mplex. Another advantage of the
addition of thefree initiator is that it produces free polymers, which can be used for the
measurement of molecular weight and molecular weight distribution of the graft chains, because

the graft chains have nearly the same molecular weight and molecular weight distrasuie
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Figure 2-7: (a) First order kinetic plot for ATRP of NIPA in DMSO at
20°C. (b) Monomer conversion vs time curve for ATRP of NIPA in

DMSO at 20°C. (c) Dependence of molecular weight and polydispersity
on conversion.
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free polymers. We performed polymerization reaction by varying polymerization time from 30

minutes to 8 hours keeping the temperature constant 4.20

The kinetic plot in Figure-7 for reaction that was carried out in DMSO shows curvature,
which usually indicates (1) the presence of termination reactions caused by the increase in the
amount ofCuCl, (2) the deactivation of CuCl by the commingling of oxygen, or (3) the increase
in the reaction kinetics by heat of reaction. If the curvature of the kinetic plot is caused by the
case of (1), some tailing could be seen in the molecular weightipé¢iaé& GPC chromatogram,
suggesting small amounts of dead chains. As, however, our obtained GPC chromatograms were
symmetric curveshis concern will be swept asidgince the final solutions turn to bluish tinge,
the curvature of the kinetic plot coule lbue to a progressive reduction of the concentration of
the available catalyst, i.e. by (2). The increase in the reaction kinetics by heat of reaction may be
also important factor. The conversion approaches to 100 % with time (R2guré)). The
molecublr weight data are plotted in Figu2er (c) molecular weights increased lineally, passing
through the origin. The molecular weight distributions, which are relatively low, slightly
decrease but nearly constant of approximately 1.2 with the conversiamgBiJ (c)). These
indicate that the number of polymer chains kept constant during the polymerization and the
polymerization process is controlled with a negligible contribution of transfer and termination
reactions.As the number of initiator is largen isolution polymerization than that of surface
polymerization, termination could be less important in solution polymerization. Polymer growth
is limited to a thin layer near surface and polymerization from the surface should be
homogeneous. By repeatedsiimg the membranes with solvents, we confirmed that the polymer
chains were not physically adsorbed onto the membranes. The thickness of the polymer
membranes, which were determined by AFM Nanopics imaging across the scratch boundary, is
plotted against # polymerization time in Figure-& (@). The layer thickness increased with
polymerization time. As the molecular weight of the polymer grafted on the substrate should be
correlated to that of the free polymer produced in the solution, the thicknessottad phainst
M, of the free polymer. The relationship between the thickness of the polymer layer grown from
the surface and thd, of the free polymer chains is plotted in Figur8 ). A linear increase in
the thickness with chain length was observedicating the chain growth from the surface is a
controlled process with a degree of living character to it and that the thickness of the membrane,
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which corresponds to the chain length, can be easily manipulated. The living nature was also
probed by examing the relation between conversion and the thickness (Fig8r&)2. These
observations demonstrate that the growth of the polymer chains in the solution and from the

surface is a living or controlled process.

From the data in Figure-2 (b), graftdensity,l, can be determined from the molecular weight

of the polymer chainM,, and the corresponding membrane thicknesby the equatiof?
a=1L J AWM,

where} is the mass density of PNIPA (1.042 g@randNai s Avogadr o6s number

of G for all samples are listed in Table I.

Table I. Values of graft density of the

Reaction time ()| 0.5 |1 |2 4 8

& (chain/nn) 0.45 | 0.5 |0.46 | 0.5 |0.48

The graft densities vied within a range from 0.45 0.5 chain/nf, where polymer chains
behae as extended brushes, meaning that polymer chains are highly extended states regardless

of the polymerization time.

To determine the behavior of therraensitive wettability of the PNIPA brushes, contact angle
must be one of the effective analyticaktimods. Static contact angle of air bubble under the
polymer brushes of different samples as a function of temperature is shown inZgurethe
case of all five samples with different thickness, trend of the curve is almost the same. With
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Figure 2-9: Contact angles of air bubble under PNIPA brushes with
different thickness in water as a function of temperature.
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