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‘4—~5Specific Heat Jump at the Transition Temperature —
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 Thermodynamic'properties of superconducting alloys near the

transition temperature are studied within the interpolation ap-

“proximation which is constructed so as to coincide with theories

ll
|

in limiting cases. Using this approximation, the specific heat
jump at the transition temperature is calculated in the case of
the magnitude of the impurity spin being 1/2. . The result showvs
a continuous change of the specific ﬁeat jump with TK/TCO from

the Abrikosov-Gorkov value to essentially BCS-like behavior in

contrast to the Miller-Hartmann-Zittartz theory. One has an

example of a cross over between a weak coupling sitvation at
/T <« 3 ing behavi T,/%T »>1. T

K/ co 1 and a strong coupling ebav%or at ;K/LCO 1 he
Hartree-Fock theory is also discussed in connection with the

present calculation.

'
S,




§1. Introduction

1)

In the first paper of this series,”’ where the effect of mag-
netic impurities on superconductivity was investigated, we presented
the interpolation approximation which covers two limiting cases;

T(and/or €)>» T, and T(and )« T, in the same framework. We showed

K K
that  contrary to the Muller-Hartmann-Zittartz theoryv(MZ),z) a
finite critical concentration is always obtained for any value of
the Kondo temperature and also that the upper critical field at zero
‘temperature depends on the magnetic impurity concentration in con-
trast to Maki's theory.3) It is left as a next problem to make
clear the thermodynamic and magnetic properties near the transition
poinﬁ._ In this paper, which may be regarded as an extension of the
firs@ paper, we calculate the specific heat jump at the transition
temperature AC and discuss the relation between our calculation and

4)

other theories: in particular, the Hartree-Fock theory and the

M2 theory.?)

Here, discussion is mainly concentrated on the proper-
‘ties of the four-particle Green's function whicﬁ relates to the ther-
modynamic properties near T; (the superconducting transition temper-
ature) as well as on the beha?ior of the specific heat jump AC itself,

) that the

As one knows from the Abrikosov-Gorkov theory (AG)5
specific heat jump of a superconductqf is strongly influenced by
~the presence 5f magnetic impurities. It seems to be generally true
thaﬁ'the reduction of the specific heat jump corresponds to the pair-
breaking situations. On the other hand if_the BCS description is
relevaht, the jump is proportional to Tc’ and thus the reduction in
‘the jump propertional to the T, reduction.

Looking back in perspective at a successive wave of theories

of the Kondo effect, we see that a very simple picture emerges.




When temperature and/or energy goes through T which separates two

K
physically different regimes, the gualitative ﬁhysics of the system
dhanges. Though the intermediate rahge is very complicated, two
;imits .T{and/or e)2>TK and :T(andka)¢:TK are both chceptually

i very simple, albeit different. At T>2>TK and/or e»QTK; the impurity
spin is essentlally free to fluctuate, driven by the thermal agita-
tlon. As it provides a real degree of freedom, as shown in the Curie
sitceptibility in the normal state, the strongly temperature dependent
pair—breaking mechanism acts upon the system in the superconducting,
state and leads to the strong reduction of the spécific heat jump,

On the'other hand, at T<<:TK and e¢:fo the impurity spih is locked
into a singlet bound state and no longer takes part in dynamics,
However, the virtual excitation of the impurity at this state is

6) It follows that in

possible as far as TK/T and TK/e are finite.
a superconductor one electron of mates of the Cooper pair polarizes
theAimpurity at the singlet bound state and that polarization is
felt by another electron. This mechanism gives an effective re-
pulsion between two electrons. Near TK/TCO=M, thé reduction in the
specific heat jump is proportiqnal to the Tc reduction. Therefore
we can expec£ ghat the -BCS~like behavior which is typical for non
~pair-breaking situations should sﬁow_up in the specific heat jump.
;n the cross over region T~Tk and/or e~TK, the situaﬁion is
very complicated and we cannot draw a simple physical picture of
thevmagnetic impurities. If one insistes on mathematical rigor,
‘thre is 6nly one 1ine‘of attack to describe the cross over: numer-

7)

ical intergration, as done by Wilson. However, if our purpose
is mainly to describe the gradual change of the impurity electronic

state from the magnetic behavior to the nonmagnetic ones,we'can get

e
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~around this difficulty by introducing the interpolation approxima-
éion. The sfrong reduction of the specific heét jump in this
 region can be easily observable. |

e These behaviors are best visualized in the Quantitj C* which

is introduced as the initial slope of the specific heat jump at T,
As-C* depends exclusively on single-impurity parameters, it may be
used to defermine the Kondo temperature. The quantity C* is equal
to 1 for a BCS-superconductor; i.e. when the transition temperature
is depressed by the effective repulsive interaction mechanism.
However, C* is larger than 1 for a pair-breaking situation, in
particular the largest value of C* %ust be observed for a supercon-
ductor containing magnetic impuritieé bf which the Kondo temperature
is_of‘tﬁe same order as Tco‘ Such behaviors are qualitatiyely in

11)

good agreement with experiments. Quite generally we can say
*
that the size of the guantity C reveals the magnetic character

of the single impurity imbedded in a superconductor. From these

consideration, we expect that c* approachés the BCS-value, c*=1
in.the limit of high Kondo temperature, TK/fcérw énd then the mag-
netic impurity loses its magnetic character, contrary to the MZ
theory. . |

This paper is arranged as follows: Section 2 is devoted to
the genefal formulation of the self-consistent equation for A up to
the third order, taking account of dynamical properties of impuri-~
ties. In §3, we discuss the four-particle Green's function for the
two 1imi£ing cases agd construct an interpolation expression for
,them. Using it, we calculate the specific heat jump at the transi-
tion temperature in §4. In §5, we give summary and comments on some

other works.
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i§2¢ Formulation

As in Ref.l), hereafter refered to as I, we study the self
-consistent equation for the ordef parameter A, taking account
“of the dynamical behavior of impurities. Following AG, the self

~consistent equation is given up to the third order in A by

8= lgloma + |glB(ma’ S (2.1)
S W 3 L . ey
QT = J dt' Jd e'<T ¥, (r, )Y, (c, )Y (', e)¥ (", 1) }>
. _ 0 L S ¢ M ¢ . 4 |
| R , : . (2.2)
o (7 3 o ol
B(T) = Io"- Jdtl---dT3I--- j ry*+d r3<TT{W+(r,T)W+(r,T)
, 0 : o ‘ ,
o ey e ~ ‘ ot -
X ?+(rl,rl)Wftrl,Tl)?+(rz,rz)?+(rz,Tz)W*(r3,T3)?+(r3,T3)}> :
S ' | - (2.3)
where @; and go are respectively the Heisenberg represehtation

‘of the creatioq and annihilation operators of conduction electrons
"with spin ¢ and <+*+> denotes both the statisticél average and

- the average over the impurity distribution. |

7[1] We must first calculate the two-particle Green's function

Q(T). This is down in I, where it is found that

o) =1 J £ Y{0)6 ()G (-v) (2.4)
_ w 3

G, (w) = - L . T (2.5)

where Gk(Q) is the renormalized one-particle Green's-function.

Here, w={(2n+l)nT, is the one-electron energy of conduction

&x

electrons, and ] (w) is the self-energy correction due to impurities.

1
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-;;In.the casejéf the electron-hole symmetry, the.vertex correction

?(m}iwhiqhﬁéppéars‘in Eq. (2.4) is‘giVen by

) = . (2.6)

w|+ _—
1| na(w) 1+4TKD¢2

whefe p_is the density of states of conduction electrons pef atom
per spin, n is the impurity concentration and d(w}-is the pair
_bréaking parameter which is given bylﬁq&3fl9) in I and Qk is
written by '

. R
{f({w)} L ‘ _
kT om) ! é | w|+nao (w) ! _ - 2.7

ol -2
4TK
vertex correction y{w) by the use of two renormalization factors;

. For the later convenience, we rewrite the

w1th f(w)“(l+

ni(w) and nz(w),

' ny (w) 7 '
Yi{w) = W ' (?-8)
lafny (@) = Jo|+[](w)] (2.9)
-1+—4,1?p¢2
lolny () = [Jo]+na(w)]- & , (2,10
1+ m‘“ﬁ" [@2—¢lf(m)}

where N is the number of atoms.
" [2] Next we consider the four-particle Green's function B(T).

Since we will describe the whole aspect of the expressions of B(T)
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1nclud1ng two 11m1t1ng cases 1n the following section, here we
give only the formal expression of B(T) This is done_by intro-
ducing the third renormalization factor né(m) as follows;

Ne . o @Ing ()

T ¥ . . T (2.1
o [|ofn, (@) : '

e ) ; 7
For the later convenience, we separate n3(w) into the n-independ-~-
ent part and the n-linear part. |

folng (@) = [wl + 5%3 X (w) . S 22y

.If we neglect the second term in Eq.(2.12), the contributions
from the higher order processes of the impurity scattering beyond
the AG type theory drop off in the four-particle Green's function

B(T), as will be shown later.

‘§3. Approximation for Vertex and Four-particle Green's function

.;‘In this section we examine the -behavior of the vertex f(w)
and the fou;—particle Green's function B(T) for two limiting
cases, and propose the approximate ekpression for BfT) which 1is
expected to be valid in the wide range of T in the s-d limit of
“1mpur1t1es. The Hartree-~Fock theory and the MZ theory are also
'Qiscussed in connection with the present calculation.

[1] When Tx>Tk and/or e>> Ty, the Kondo effect can be takep into
account by replacing J (the é-d exchange interaction} by the spin
-fiip part of the t-matrix. It is given in the MZ theory by

i
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12) the épin—non

If we employ the most divergént approkimation,
flip_part t(w) of the't—matrix in a normal metal is equal to zero.
'This_fact leads us to conclude that the vertex corrections, which
are related to the spin-noq flip part t{w), drop off in the four
_ -particle Green's function B(T). So we need to caléulate B(T) in
the}approximation beyond the most divergent one even in the mag-

netic region. In order to demonstrate what type of contributions

are included in the present calculation, we show in Fig.1l

'“Fig. 1

the Feynman diagrams of all the contributions to B(T).

As Shiba pointed out in Ref.4), there exists a certain rela-
tion between the Hartree-Fock theory including the classical spin
theory and the MZ theory. It is shown that the four-particle Green's
.function for the Kondo spin within é certain approximation can be
derived from fhe calculations for the classical spin by the re-
placement |T(m)[c’by Tt (w) ], of Eq. (3.1), and $4 by S(S+1)[S(S+1)-%}

where

1

T =Ry T T7
: 1+(538mp)

L] (3'2)
Let us now ask for the four-particle Green's function on this

‘principle. The four-particle Green's function for the classical

spin becomes (see Appendix A)

AP




o : lo] +18% rnos )T () | 14 -

BT = - TP ey A .o - (3.3)
. w o]+ N LT
_ | .

- Thus in the case of the Kondo spin, we arrive at

n

 B(T) = (3.4)
276 tlolny@n® |
x(@) = 25(s+1) [5(s+1) -31 Gne)d (3.5)
where ;
J = - Zl(n %?l)z s wls(sen)1 "M% L (3.6)
K .

Although the analogous expression was derived in the:MZ theory,

we notice that the spin term is given by S(S+1) [S(S+1l) —%& instead
of [S(S+l)]2 for reasons of the non-~commutative nature of the
'bpin in contrast to their result. |
[2] On the other hand, when T¢<TK

of the magnetic impurities based on the Yamada-Yosida theory of

9}

and e« T,, we study the behavior

_'the Anderson model. Using the results of the Yamada-Yosida

" theory, we find for the renormalization factor nl(w)

- 1 P
toln, () =~ o] + 2= (3.7)
1 14w
. . —_ Tiw '_aﬂd i ' . .
-with [w]= S , HdSe—we—fisd for the renormalization factor
. K .
Ny ) |
TP (1 |a])?
fuln, (w) = = ' . (3.8)
n




with

' 5 = o.sr z,.%“v...,_f¢1? T (3-9).
1 1K 4T, ;. 10 . :
' . . 4T, p "2

Notice that ¢l corresponds to the quantity ¢=—Ad/AO in the Hartree

-Fock theory,4) and Tc$1 is always smaller than unity (e.g. in the

case of the low impurity concentration Tco$l=lo_3~10—2 for reason-

: *y - :
able values of TK/Tco)' ) Using Egs.{(3.7) and (3.8), we have
-n . . alv -
NRLLE . =
Jw]+ L - [EI'Z (14 {w])
TP )

y(w) = . (3.10)
Now we turn to the study of the properties of the four-particle

Green's function B(T). Typical diagrams of B{T) look like Fig.2.
Fig. 2

Thé contributions to B(T) can be classified in general into the
Hartree-Fock type contribution (Fig.2a)} and the non-H.F., type ones
(Fig.2b). The former contributions can be derived from the Hartree
~Fock results by the replacement of the d-electron Green's function
G, (w)=liwtilsgn w] ™" by |

-L ) Gd(w) = -

i ' (3.11)

T T T
1+ Il
IT,

‘and the effective interaction between d-electrons Fd=U=U/(l+;ﬁﬂ by

77T - :
*) ln_T.i{..
T $. " Eg ' TC for T <7T
.e'l Tx N T, c K °
1+ In —
4T p T
3 K C
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On the other hané, the latter corresponds to the contributions
‘of diagrams which are never considered in the H.F. approximation.
' Alihough X{w) at [wI/TK‘<l is a very complicated function of
|@]/TK, fortﬁnately we can pick out the leading term; the lw]
-linear contribution of X(w), as far as the condition TGiTK is
satisfied. This calculations can be done by standard methods,
but'requires complicated analysis. "From these analysis we see that‘
some of the H.F.Vtype contributions give us the leading term 6f |
~¥{w). The leading term of y{w) becomes (see Appendix B)*)
ua

x(w)1= 3T, N ' ' {3.13j

[3] Now we turn to the intermediate region. In this region, we
éhopid take interpolation of Eq.(3.5) and (3.13). Though inter-

polation is rather arbitrary, we must determine it so that y(w)

47
becomes a smooth, continuous function at lo]=—X . We choose
T
the following expression for convenience:
rol g xlel o g wlelg o wlel
. ZTK 3 4TK 9 " 4Ty 4TK
x{w) = 3 2 (3.14)
: 10 . g 2 7]w]
R 1 a5, >3
(an Mali2, 32 X
4TK 4

where the méénitude of the impurity spin is assumed 1/2. Notice
that in the first expression of Eq.(3.14) only the coefficient of
the linear term in |w] is meaningful, because the coefficients of

the quadratic and cubic terms are not exact. The

‘ *) This expression consists with the result previously obtained by

14) One may regard therefore our

Matsuura by a different method.
calculation as a sort of a justification of his result, as far as
the main contribution is concerned.

- 11 -
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‘numerical calculation of X(w) is shown in Fig.3. It takes the

Fig. 3
maximum value 10 at-EhiL=
9 4TK

quency region is similar to the expression of ¥(w) in the MZ theory,

1. The expression for the high fre-

~ except for the numerical factor. There remains some ambiguity in

the form of x(w) in the region w-vTK.

§4. Specific heat jump at the transition temperature

We first calculate the thermodynamic potential to derive
the thermodynamic quantity near the transition temperature.
The difference of the thermodynamic potential between the super-

4)

conducting and normal states is expressed as

=
I

el
]

' f
o da

A ) -
J dAl(Al)z QLLLLQLL . (4.1)

- which reduces to

-
I
b

f

= %B(T)Ad , ' ' (4.2)
" near Tc. Here use has been made of the relation
. 1 .
= 2B(T)ASA 4.3
6(T§T) (T) ' . ( ?

which is derivable from:Eq.(Z.l) for Q?STC. As evident from

Eq.(2.l),_A2 is proportional to l-T/Tc near T in the form

- 12 -




: e . 9B _(T) o
2 Np o T .
A" s = (1 + T —— ) (1= =—) (4.4)
B(T,) c 39T =T T, !
c _
 where ﬁO(T) is expressed as

o ':1' .é.  d(fj

B (T) = - 1n 2 -2

Ao( ) [gnp nTco Np

NN C N .
= «(T) +3 5" = , i (4.5)
. K 1+WK—5'¢‘2(T) ot

where ¢(T) is the quantity introduced in I:

o(1) = ET o

5 jwitna(w) - |w|1 o - e

Using Egs.(4.2) and (4.4), we f£ind for AC

‘ 32(93"9 )
AC = -Tc————_i_ﬂ_
aoT T:Tc
. 2 (4.7)
= e T_C_(N_pz. . (___l_ + aBO{T) )2
. r
B (TC) Tc | 3T T=Tc
which finally gives
CAC _ _7r(3) [ Np T (L 3B (T) 2
A'CO 8172 B (TC) TCO Tc "—"“"——'BT _—
o’ | | ~ C  (4.8)
87 NpT -

where ACO=——7ET§%9 is the speéifig heat jump of the pure super-

conductor.
~ The reduction of the specific heat jump at Tc is most easily

observed by evaluating

+ d(ac/ac) oo
C = WT-—)— . (4.9)
. _ c’ co TC=TC

o

Since it is tedious to write down long expression for AC/QCO

¢

- 13 -




. ‘
and C , we show the expressions for them only for two limiting
cases and point out some of the features.

[17] ‘When T>> T., &,
alw) by a(r), then Eq.(4.5) can be approximated by

and @2 can be neglectéd. If we replace

ST na{T) " hal(T Yy L.
B (D) g—lmTC + ¢ gy 1, ey 1

1 o
——) ’ (4.10)
co 2% 2 ZﬂTc T TC

near T_. Here a(Tc)'is defined by

._3_,".2
c, 2”7 3 2
(In—=)"+ =
TK 4

When we also replace y({w}) by x(T), B(Tc) is expressed as

Np {(2) .1 1 (3) ‘
- [y (+0_ ) +z0_(1-8)Y ( )] , (4.12)
lG('ﬂTc)2 ¢ 3¢ . 2"

B(T ) = 3

]

where 6—%§ﬂpu(T ), which reduces to zero in the AG limit, and
na(T );

= 2ﬂTC Using Egs.{(4.11) and (4.12) in Eq.(4.8), we find
for AC/AC
o
v PG nae vy daa)?
8 Too ¥ (Zaa)) + Ta (1 6)‘i’(3)( o) '
2 c 2 c
where W(n)(z) is the poly-gamma function. One easily finds that

Eq.f4.13) corresponds to the result of the Mz theory,z)

except
for the numer1ca1 factor of §.

Calculations of C can be 51mp11f1ed using the approximations




" -plified using the approximations

‘ - _ _ E _
- 3n K,-2 el . .
o (T, ) = 7=(1In ) ' i - (4.14)
"~ Tco 8p T T, o L
32pT '
ddTn ~ 20 (1n 592 (4.15)
ot =1 3n co
2 T ' . . ,
S8z S o ) . (4.16)
- co ' : ' :
where,tcE?C/Tco. The result ig given by
' 4 T
* _ * m K _2
.C = CAG + 156 €(3)(ln Tco) ’ ‘4.17)
where '
Ty 2
o4 4
€a = 3 " 2w gy T 1436

- ' * *
One easily finds that C approaches the AG value_CAG in the limit

Tco/TK-M”
[2] ©On the other hand, if T,> T, we can put
¢ (T) = &, (7)) = &, (T.) = (4.18)
_ Ko '+ l' ¢ 2 Cc Igle
where
5] = lg] - —— : R | (4.19)
4NTKp A
Using the approximations
N _
|m|n3(w) ~ (1 + W)lwl .- ' (4.20)
n ‘
w| + na(w) = (1 + ﬁF)]wl , (4.21)

- 15 -
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- 3B _(T)

we can greatly .simplify the calculations of B(Tc) and —J%F—— .
' S : . o =T
These results are given by _ ¢
B(Tc) . 7C(3)Ng . 157.‘3 R n“l"i" '4 (4.22)
- B(nTc) (1+*4T y (1+4T 5 ——)
. N R S T
AQL-+,3B0(T) 1 e 1
T 9T o7 n - n ! 2 *
c , T=T c 1t - (14 . )
¢ 4Typ TP [glwe (4.23)

From Egs. (4.22) and (4.23) we have*)

. B }

AC C n .

AC L 1+ By . S (4.24)
ACO Tco 4Tkp _ o

. . .
THe TK/TCO- dependence of C 1is given by

¢ = ¢ (1 "k )2 . (4.25)
= - n— . : .
BCS T,

N

Ca
where CBCS=1. Here use has been made of the approximation

T
. Gn =4TKp(1n§§—)‘2
C tc=l co

. (4.26)

One easily finds that C* approaches the BCS-value C;CS=1 in the
limit of high Xondo temperature, TK/TCO-+m, in contrast to the
MZ theory.

The behavior of AC/AC0 as a function of T;7TCO is given by
the numerical. calculation for the wide region of TK/TCO. Results

are given in Fig.4. Here the parameter used for the

Fig. 4

*) If we replace 1 by the state density of the d-electron: f#,, we
Ty d 10)
can.immediately obtain the result for the nonmagnetic Anderson model.
™~
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-numerical calculation ié =1169. In order to calculate Eq. (4.9)

TrTCO

in the whole region of TK/Tco' we should carry out the numerical

"calculation. Results are given in Fig.5. The initial slope of

the specific heat jump becomes maximum where TK/Tco %1, The numer-
ical value of TK/Tco at the maximum is not so much meaningful,

~since it depends on the detail of our interpolation.

§5, Discussion

Throughout this paper we have employed an interpolation ap-
proximation to study the thermodynamic properties of superconducting
" dilute alloys containing magnetic impurities with Kondo effect.

Let us give a brief summary of the present calculations and then
discuss the relation between the MZ theory and the present one.
Our calculations show a continuous éhange of the specific heat
jump with TK/Tco from the AG-value to essentially BCS-like be-
havior and that the initial slépe of the specific heat jumb C*
approaches the BCS-value in the limit of high ﬁondo temperature,
/T > in contrast to the M2 theory. |

13)

In view of the philosophy of scaling, we see that the end
of an infinite TK/Tco is indeed a fixed point-one in which the
physics is completely different from that which prevails near
TK/TCO=Q. Oné cannot break the impurity singlet state without

an infinite expense of energy: we are left with a nonmagnetic,
infinitely repulsive impurity. Therefore the reduction of the

~

-17 =




"specific heat jump must correspond to the non—pair-breaking‘
_situations at-the end of an infinite TK/TCO. From-these con-
sideration we can conclude that when Tco goes through TK’ the
éuélitative physics Qf the system changes and then one has an
:example of a crosé ovér between a weak coupling situation at
small_Kondo.temperature TK/TCO¢<1 and.a strong coupling behavior

“at high Kondo temperature TK/TCOE>1.

Acknowledgments

The author would like t§ éxpress his-sincere thanks to
Professor Y. Nagaoka and Dr. T. Matsuura for their valuable
comments. He is also indebted to Professor H. Shiba for his
enlighting discussion, and to Dr. Ichikawa for his aid of

numierical calculations.

- 18 -




- Appendix A

I3

In this appendix, we compute thenfdur—particleAGreenfs

8)

funétion B{T) for the classical spiﬁ, which is illustrated

in'Fig.l. The results are given by

_ mNp zrwl + 2 (w) ] l(A.l)

1-1 w [lw| + %L]4
' s
B rimps|tiw) | 12
= TNp o y 7P o
By-2 7 T 1.4 (a.2)
: o [lo] + =]
o <
2n 4
' Ll wNps|t(w) ] ]
By = -l : (2.3)
1-3 2 ‘@ [!wl + ‘%];-]4
s
e o astmp e ] 1
Bi-g =720 0 174 (8.4)
- . w [|w| + '1_—'-'-]
s
an 3
_ mNp oMt (w) | ]
Byog =3 T T4 (A.5)
W [Imi + ':[—]
s
20 e [ (w) | 14
= - TNp TP c
B¢ 7 T T4 (Aa.6)
: W [I(U[ +-_E-—°}
s
: 4n 2
B . _mNp gg[anslT{w)Ic] ﬂNplt(m)lc .
.17 2 1.4 .
w e + =)
Ts
gn 2
B _ oo, ,,,p{'rers]r(w) |c] 'ﬂNp]t(m)[c o)
1-8 2 1.4 .
w [lo] + s
s
’ 4n ' 2 .
5 - TN g a5 lmes| (@) | 17 Ime |t (w) | ] o)
“1-9 2 ® - [le +?l__}4. .

]
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80 fmes ()| )P (mwe e ) |12

TN
B = T : {(A.10)
1-10 2 o , [lml-"'%"]‘l
o s
where TS is the relaxation time in the normal state
= = Hp[ﬂNpSlT(w)lc] . - (A,11)

S

Here t(m)C and T(w)c are the spin-non flip and spin-flip parts

of the t-matrix for the classical spin in a normal metal respec-

tively.
o 1 - (%JS'rrp)2 sgnw
t(w) | = = (A.12)
¢ 1Np 1+ (%nJSﬁp)z
. ~ _J . 1

1+ (-]zlJSwp)2

Summing up the contributions from the diagram (1-1) to (i-lO)

(we denote the total contributions as B(T))}, we have

ANp |w|-+£%?{ﬂNpS|T(w)|c]4
- B(T) = - 5 T T4 . (r.14)
w []w[ + T_I
. . S.
Here use has been made of the relation
an[t(w)|c[l —ﬂNp[t(m)|c] = EﬂNpS]T(_w)lcl2 , (A.15)

-

which is derivable from a unitarity relation for the s—-matrix.
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Appendix B

" In this appendix, we estimate the contributions of typical

diagrams for B(T) which is illustrated in Fig.2. The results

afe-given by

type (a)
B _ TNp T [w]?]l(w)
a-1 2 telny @?
N, :
B, W =-—=mF 1 : L
a2 2 atulngwn® @+ |ah?
1 1
B__ 2N, T} . —
a=3 w[[w{nz(w)14 a+lup3
: 1 !
B__ ~N.T } . —
a-4 w[lwlnz(m)]4 (1+|wh?
- -2 1 1
B, . = 2N,§% T . —
as M g e, @ 1? @ fa)h’
=3 1 1
B 4N.$7 T © =
a-6 ifl E)]w[nz(w) (1+|-(;.)~‘)4
—4 1
B, = ~N.¢; T —F "
a-7 ivl o U.+|w|)4
) - 1 1
B__ -4N. ¢, T} . —
- a8 YL G teln, @1? @@’
- 1 1
Ba-g = 4N;9; T ! )

wlloln, w1®  (@+]ah?
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(B.1)}

(B.2)

(B. 3}

(B.4)

(B.5)

(B.6)

(B.7}

- (B.8)

(B.9)




. ’ _2 . ...1... .”.., . - 1 . )
B, 1o = —4N 37T} . . (B.10)
10 T ey 1® asfen® -

Summing up the contrubutionS'from the diagram (a-1) to_(a—4)
(we denote the total contribution as Bl), we immediately have

as the leading term contribution

|m|(l+

.Bl‘-=__.2_p z 4.;..... . ) . (B.11)
: ' o [u[ny(w)]

While summing up the contributions from the diagram (a-8) to

(a-10) (we dencte the total contribution as Bz),.we have

-

"B, = -IN.F [TZ |w] S .
® [Iw[nz(w)] (1+]w})

- T 1 1 '
+ 6.7 . 1. : {B.12)
L dtulng 1® a+ah?

From these calculations, one finds that the second term of Bl
N,
gives the order of = ;2 and that the first and second terms of
X N, N,
. . i i =2 _
B2 give no more than the order of E—E§T¢l and E_;?TTK¢1' respect

'ively. Therefore B2 may be omitted as far as the condition T T,

is satisfied. The contributions from the diagram (a-5) to (a-6)

may also be omitted for the same reason as Bz. Furthermore, the

diagram {(a-7), Ba__7 can be neglected, because this gives no more

than the order of —-7(——) ¢1
K
. type (b)

As regards the non Hartree-Fock type contributions, we give order

-of-magnitude discussions. The contribution from the diagram (b-1),

. : Ny 1.2
. i T . .
Bb_1 gives the order of E—ET(TK) ¢l. The contribution from the

- 22 =




NS '
—%(Tl)%i._ We find that
TgT K '

~the (b)-type diagrams with more than two crossing lines of the

diagram (b-2), By gives the order of

effgctive interaction between d-electrons are no more than the
same order as ones without crossing lines. Therefore all of the
(b) ~type contributions may also be omitted for reasons of the
higher-order contributions to B(T), fhough the diagraﬁs Qith more

than two crossing lines can never be calculated analytically.

[
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Fig. 1

Fig. 2

. - Figure Captions

Diagrams of the contributions to B(T) in the magnetic
region. The solid line shows the propagator of the

s-electron, while the impurity scattering by one and

‘the same impurity atom is shown with dotted lines. The

crosses represent the spin-flip part of the t-matrix

(5+8)7{w), while the spin-non f£flip part t{w) is attached

to the squares. The vertex correction y(w)} is attached

to the four corners of the each diagram.'

Diagrams of the contributions to B{T) in the nonmagnetic
region. {a) is the Hartree—Eock type contributioﬁ, and
(b) is the non-Hartree-Fock type one. The single solid
and double lines represent the propagators of s and 4
~electrons. The wavy lines represent the repulsive inter-
act;on between d~e1ectfons and are given as Pd=w2F2/4TK.
v{w) is attached to the four corners of the each diagram,
as before. Notice that symbols which display the impurity
scattering by one and the same impurity atom are omitted
férﬂthe reason of avoiding the complication of graphs.
The-frequency dependence of the parameter y (w) given in
Eq.{(3.14). |

The specific heat jump at TC as a function of Tc/Tco'
Numbers attached to each curve denote the ratio TK/Tco'
The initial slope of the specific heat jump as a function

of TK/Tco‘
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