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Abstract
 We study the equilibrium properties of type II superconductors

with Kondo effect. The Kondo effect associated with the impurity

" spins is taken into account within the interpolation-approximation,

which was used previously in our calculations of the superconduct-

1)

ing transition temperature

2)

and the specific heat jump at the
transition temperature. Using this approximation, the general

Ginzburg-Landau equations .are derived for superconductors with

Kondo effect and the Ginzburg-Landau parameter Kz(T) is calculated,

One finds that the initial slope of the Ginzburg-Landau parameter
shows a continuous change with Tk/Tco and approaches the BCS-value
at the end of an infinite Kondo temperature Tk/Tco=w in contrast

to Maki's theory.B)
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§1.. Introduction

The equilibrium properties of type-II superconductors with

VKondo effect was first explained theoretically by Maki,B)

He
predicted the various interesting behaviors of the type-II super-
conductors in thelpresence of the magnetic field using the pole

4)

approximation employed by Muller-Hartmann and Zittartz. Unfortu-
nately, the pble approximation based on the Suhl-Nagaoka approxima-

tion is wrong at T <Tk. Therefore his predictions seem guestionable,

és far as the behaviors at T < Ty are concerned. It is necessary to
révise his calcﬁlations‘given in Ref.3).

The purpose of the present paper is to present a corrected ver-
sion of the theory of type~II superconauctors with Rondo effect.
We confine ourselves to the properties in the vicinity of the upper
critical field ch(T), where the superconducting order parameter is

small. We will take into account the Kohdo effect associated with

impurity spins based on the interpolation approximation which was

used by Matsuura, Nagaoka and the present author to calculate the

transition temperature;) 2) We neglect :

and the specifie heat jump;
both the effect of an applied magnetic field bn‘the iﬁpurity spins
and that of a Pauli paramagnetisﬁ oﬁ superconductors. We assume
" further that the electron mean free path in the superconductor is i
so short that the dirty-limit treatment would apply, for the mathéj
matical simplicity. In this paper the p-waﬁe scattering of the
impurities is omitted, leading to the substitution of the transport
lifetime Tip by the s-wave scattering lifetime T in the formula.

This paper is arranged as follows: Section 2 is devoted to tﬁe_

generalization of the Ginzburg-Landau equations.. In §3, we discuss

the magnetic properties near the upper critical field, and in par-

ticular calculate the Ginzburg-Landau parameter Kz(T), which describes




the magnetization in this region. 1In §4, we give summary.

§2. Generalized Ginzburg-Landau Eguations

1),2)

in the previous papers we assumed that the order parameter
'ié constant.in space. Theré are, however, other classes of inter-
esting phenoﬁena, which involve a spatially varing order paraneter.
Tb-describe £he spatial variation of the order parameter it is con-
venient to start with the generalized Ginzburg-Landau equations.

In the following we will consider only the gapless region, where

the order parameter A{r) is small. Then the self-consistent equa-

tion is given up to third order in A(r) by 5)
, v, 3. oL ' 3
i A (r) = |g|TZ[d r Qw(r,r YA (x )—+]g|T£I---Id rycee
w
3 + +

where Qw(r,r’) and Bm(r,rl,---,rB) are the two-particle and the

four-particle Green's functions respectively.

1) the first term of Eg. (2.1).
Introducing the vertex correction Y(ﬁz,w) and the bare two
-particle Green's function 53(&) in the presence of magnetic fields,

the first term of Eq. (2.1) can be writteh as
3 rl ™ + » - "'2 “'0 -~ + -
ngd r’Q (r,r)A (r7) = ngy(q w)Q @A) . 5y

Using the renormalized one-particle Green's function in the presence

6)

of magnetic field Gk(m), the bare two-particle Green's function

et e Ay
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63(&) is given aé'

o | R VA - 5
Qg(Q) = ZGk(w)G_ _ {~w) = jﬁ@gL tan 1(~El—l) , (2.3)

K k=q’ Vel |0

where p is the dens@ty of states of conduction electrons per atom
per spin, N is the number of atoms and ® is the renormalized fre-
quency. & is defined as széi or §+2e§.depending on whether it
operates on ﬁ+(r) or A(r) ﬁsing the external momentum E.

Gk(w).= liw = ev-R - £, - [

6 (-w) = [-in + ¥R - g - T, (2.4)

—

where w=(2n+l)7T, Ek'is the one-electron energy of conduction elec-

trons and ) (w) is the self-energy correction due to both the magnetic
-

and the non-magnetic¢ impurities. A is the vector potential and v

the Permi velocity.

~

The vertex correction Y(qz,w) is given by solving the following

equation:

-

v(@,w = 1+ i1, (el @y@E®en)
L |
. N N _ v ~ ‘
=14 20 oy P++(w,w’)y(q2,w')tan 1R
Veld| ” : 2(w |
- ' (2.5)

where Pyéw,w') is the irreducible vertex of the effective inter-
action bétween electrons due to both the magnetic and éhe non mag-
netic impurities. Introducing the electronic relaxation time due
to nonmagnetic impurities alone Ty and the approximation used in

Ref.l), we get an approximate expression for P*+(m,m’) as

~
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PLo(w,00) = 2@ 4Bl ()8, o~ g--(—-"i)-—f—(-“i—)] e
PRRLY 21TTO T l Wy 4Tkp _ g (2.6)
where o -
o = (1 e ey RPN )
. 4T, o S .

and n is the magnetic impurity concentration. If we neglect the
effect of an applied magnetic field on impurity spins, rl(m) is

independent on the magnetic field and is given in Ref. 1) as

© £ (w)

=—=for |m]<<T | o o y
(7P)
Pl(m)” { ' . {(2.8)
__Jiu (1n IT|) zforriw|2>Tk . 7
16p k .
Using the expaniion
(_Tj _ v a v ,_q “
2'_,|tan l(__lil_:_l_) = 1__-‘:‘3;_.(_&:.'___)24. PP ' (2.9)
Vrig 2|5 2|&]
the vertex correction Y(éz.w) is finally obtained as
L2 o]+ ] ()| L EwE E)
T(q ) = l =3 - [ 1“4,1, 5
]w|+na(w)+\§Dl(u§)q‘ k® 1+ 4Tk" <I>2(q)
where . _ ' _ ' (2.10)
k .
N r I [£(w)] ’
2y (@) = "1} : (2.11)

|w|+ﬂa(w)*“%02(w)az

and ®({w) is the pair-breaking parameter which appears in Ref. 1}.
Two kinds. of diffusion constants Dl(w) and Dz(w) are written by the
diffusion constant D0 which is determined by nonmagnetic impurities

alone: 1i,e. .

‘ l+2ﬂT0nDPl(w) :
Dl(m) = DO' 5 : {2.12)
[1+T0/Tl]
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'DO

| - . -Dz(w) = I:?E7?I ’ 7 . (2.13)
| - o |
where D0 = 3 and Ty, is the electronic relaxation time due to

magnetic impurities alone. When the electron mean free path is so

short that it is hardly affected by a small amount of magnetic im-

purities, we can apéroximate them by DO’

Dl(m)é Dz(w)a D0 for To / Tl«:l. | | (2.14)

Pinally substituting Eq. (2.10) into Eq. (2.2), we arrive at

vf[a®r 0, (r,x )8 (e) = WoLdgE%) - o
W :

2) the second térm of-Eq. {(2.1).
Now we turn to the analysis on the second term of Eg. (2.1).

It is convenient to rewrite it as follows:

3 3 + +
Té[---} rl---d r3Bw(r,rl, ,r3)A (rl)A(rz)A (r3)
. ~ o~ + :
= lllfmTéBpj(qi)A (:}:l)a_(rz)AA (ry) . | (2.16)
1

T

}=+x
I‘3 ’

The quantity ﬁw (&i) can be calculated by means of the same per-
turbation method that was used previously by the present author in
the calculation of the specific heat jump at the transition tempexr-

2)

ature, though in this case the dependence of the external momentum

& is introduced into the s-electron Green's function Gk (w) and

vertex corrections y(qz,w). Since it is tedious to write down various

contributions of diagrams for Ew (ai), here we show only the results.

-6 -
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S VSV U
o el (wy+ 2D, (w) [ (g, -q,) “+(a,~-q,) ]
5, (@ ) = _mNp 3787 1793 279

2

’

4. 4 ~2
|w| _{jgln?‘(qj,w)}. '(2.17)

where z q =0 and q operates only on A(ri). Here use has been
Ci=l

made of the fact that in the dirty limit, the term associated with
. the non-commutative nature of the operators ai only gives rise to

6)

a higher order correction in l/E0 even at low temperature, where
1 is the electronic mean free path and gois the BCS coherence
length. Thus we arrive at a quasi-local equation even at low tem-

- perature. Here_|w|n3(w) is given in Ref. 2) as

folng () = fu| + ﬁp—x(m) o - (2.18)
lol 2 wlel.2 2 rlel.3 7|
o - 2 (G220 2 e, <1
. 2T T3 4Tk 9 ‘4T, iT,
X(w) = { . 3 . o {2.19)
o 7" 2 el
® “(in z%"i°2 43 ' Ty
5 |

‘where the magnitude of the impurity spin is assumed > . The
renormalization factor nz(az,w) is the extension of.nz(w), which

appears in Ref. 2), into a magnetic field dependent case and is

- given by : . T
~2 | 1 2 1+ Ty p¢ (qz)

|w|n2(qi,w) = []wl-&na(w)-l—i-nl(m)qi} =5

’ 4 i
| R ' 3.20)

Thus we arrive at the following equation:G)
x(@®)a () + v@patepseystel =0, 2o
1=2=3=r




where

w2002
X(G7) = 1_%_ ~5 ( (§2) M?p.' _Fil('qN‘)']'~'2 (2.22)
k 1+ﬁ£5¢_2(q ) '
- lelng @+ Ep (m)[(&l"§3>2+(&2eé4>?1 ‘
Y(g,) = Frf— e (2.23)
) [m| [ Hl}(q rw) 1

j=1"
3) Glnzburg~Landau current density
The second Ginzburg-Landau equaiion which relates the current
to the vecfor potential is obtained by a similar procedure. Since
thé reduction involves methods already described, we will not take

the space to give more than the final result,6)

34 (0) = g 2(@5) (G -a,) 8T (e a(x,) : (2.24)
where e
g 212 Ner0 T /(T t1,) |
7(qy) = i) . (2.25)
I(D] [ H le(q )]

j=1
Egs. (2.21) and (2.24) are the basic equations for our discussions.

As we will see later, the temperature dependence of the Ginzburg
-Landau parameter KZ(T) is quite different from that of Maki's |
theory, mainly due to the behavior of x{w) at low temperature and

at low frequency. However, there remains some ambiguity in the form
of af{w) and y(w) in the region w:STk. Fortunately no sharp transi-
tion between two limiting regions, and so we can believe¥ such

interpolation gives semi-quantitatively correct results,

§3. Magnetic properties

Using the basic equations in the preceding section, we can
discuss quite generally the magnetic properties of superconductors

-near the upper critical field. 1In the following we describe several




applications of the above equations.

) 1) the upper critical fieldrchfT)l)

. If the trénsitionfrom the supercondﬁcting state to the

normél state in the presence of a magnetic fieid is of second

' ofde;, tﬁe uppér cfitical field ch(T) is determiﬁed from the first
term in Eq, (2.21)by | u

- x@tm =0 e

._Taking for A+(r) the Abrikosov solution in a magnetic field, the

upper critical field is determined from

3 (22y12
v ~2. e (¢, (gy)]
B (@) - s+ e = (3.2)
_ kE Lg%y (ap) lg|ne

where qg is the lowest eigenvalue of the following equation:

A Y

HD'Z(w)§2A+(r) = Dz(w) qg A+(r)
2 | | : '
QO - 2ech (T) . (3-3)

—

If we confine ourselves to the case of alloys where the electronic

mean free path is extremely short, then we can obtain thée previous

| 1) T Ve ”
result™’ using Dy= —5— instead of Dz(w).

i 2) the Ginzburg-Landau parameter KZ(T)
The general Genzburg-Landau parameter K2(T) introduced by
Maki, which may be deterhined from the slope of the magnetization

curve near ch, is defined as follows:G)




SR - SR & ')

where M is the magnetization and the constant 8 depends on the
éymmetry of the vortex line lattice. For the triangular lattice

i B=i.16. Using two fundamental equations (2.21) and (2.24), we

" have- for Kz(T),G)
, , e
- Y(g9) |
2 () = st ——— | 3.9
| 2 (qq) X ()
where
‘ ~2 S :
x"(qd) = VLY L (3.6)
- 9q q =q, T :
3z vyt +
'Y(qz) _ Té[d xB (q;)A (ry)alry)A (r3)alx,) |
.0 1~1£>Jcil3r|;:3(r)|4 &2=q§
. 1 2 '
|w]+uﬂ—x(w)+—0 (w)qg -
= Ipy—2re_ 22 0 (3.7)
w [wln, (a5 w)]
2 R
21 Nert T/ (1,+1,) : :
2(q?) = — 07 J— 02 O (3.8)

w[lmlnz(qg:m)]z

Deviation of Kz(Tc)/K from the AG-of BCS-like behavior is most
, ) . _
clearly observed by evaluating the quantity k¥ which is introduced

as the initial slope of Kz(T) at the transition temperature:

. -

_1l. d

e oy = -3 1 1)
dt t =1 2 dtc

x’(O)Z(O))]tc=l '
(3.9)

1n{

% 1 dKZ(tc) 1
e

wherevg is the Ginzburg-Landau parameter as defined by Gor'kov.
ﬁotice that K* depends exclusively on the single-impurity parameter
and is one of the quanties sensitive to the magnetic nature of the
singie impurity imbedded in a superconductor.

*
Next we consider the behaviors of Kz(t), Kz(tc) and ¢ for

- 10 -
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two limiting cases.

. ~ 2 ~ 2 _' : .
a) When T»‘Tk, @l(qo)‘and @2(q0) can be_neglected. If we replace
- o{w) by of(T} and x(w) by X(T), then we find for Kz(t) near ch(T)

Ky(E) , 4 w‘z’(zn) o (1= .5.)&'.‘.3.’( +2)
) T serm

L

Iy
v g n1® (3.10)

where W(n) {(z) is the poly-gamma function. Here o is defined bj

_no(T) . -
o= ST with .
3.2 .
. 1 T | .
a(T) =55 T2 3 7 - (3.11)
(11’1@*) +7
k
X and 8 are defined as follows:
o (
: eD H . (T) . .
. - 0 c2 : ,
A=t (3.12)
6= 2 noam) . | (3.13)

- Here use has been made of the approximation,
i Dl(w)==D2(@)2fD0,: . o (3.14)

. When T=TC, Kz(tc) is given by -~

() ¢ @B dia-La - 619 (Liq)
( 2 )2 T . 2 2
1 2 !
562(3) w(“(§ a )] (3.15)
na(Tc) * ‘ |
where T The calculation of k can be simplified using
c

the approximations

._.11_
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L &

k)2 T (3.6)

c0
.hn 32QT00 TK 2 o '
- a—ﬁ—‘ £ =1 ~ P (lnT ) S (3.17)
c l e 3n c0 o
2 T
§ =T (Ing )72, - (3.18)
. c S
_ - ﬁ .
The result is given by
' 4 T, : :
& * - :
u ky=2., (3.19)

K s K + {In
_ AG 252%(3). TcO

. . * . ) o
~ Wwhere Kpg==0.091. One ea31ly flnds that K approaches the AG

*
value Kag in the 11m1t T O/T + o,
b) - On the opher hand, if T<<Tk, we can put

~ 2 = 2 o q '
Qo(qo),— d>l(qo)- <b2(q0)- lé“in . - (3.20)

n

where |§l= lg|- —2— .
4TkNp

Using the approximations

; n
'm|n3(w) Y §l+ﬁ;ﬁ)|w| —
C(3.21)
|w| + no(w) = (1+ 4 iT, p) [w] -
we can simplify the calculations of Kz(T)as
K (t) 4 -y'2) (L +A)
(Z— % T s () gy . (3.22)
K S S (¥ (2+AH o
-12 -




where
2(T) - 1
2nT . n :

_ eDOHc

> 2
I

When T=Tc, this result reduces to the simple formula,

kst ) - .
2V e’ 2, n :
— )T e 1+————4Tkp : (3.23)

. , .
Then the Tk/TcO ~ dependence of ¥ is given by

T .
SN S | (3.24)

c0

DO | bt

Here use has been made of the approximation

' T
o] tc=1 cO

. (3.25)

One easily finds that k* "approaches the BCS-value K;CS

limit of high Kondo temperature, Tk/TCO-+w, in contrast to Maki's

=0 in the

theory. The behavior of Kz(tc)/K as a function of TC/TCO is

given by the numerical calculation for the wide region of Tk/TCO.

Results are given in Fig, 1. Here the parameter used for the

Fig. 1

0

HTCO

culations for k° are given in Fig. 2. The initial slope of the

nunerical calculation is

= 1169. Results of numerical cal-

Fig. 2

Ginzburg-Landau parameter at Tc becomes maximum where Tk/Tc = 1,

0
The numerical value of Tk/TCO at the maximum is not so much

-~ 13 -




meaningful, since it depends on the detail of our interpolation.*)
Throughout this section we have considered only the equilibrium
properties of typeuil superconductors with Kondo effect near the
transition point. Finally we comment that using the Ginzburg
ﬁLandau‘parameter_Kz(t), we can -also discuss the dynamigal Rro-
perties of thé vorfex state near the traﬁsition point (e;g._the

flux-flow resistivity arising from the motion of the order parameter).

§4. Discussion

In this paper we have discussed how the Xondo effeét affects
the magnetic properties of type-II superconducting alloys based on
the interpolation approximation. Though our results contain the
already known limiting cases: the AG~ or BCS- like behavior, they
are different from those of Maki's theory. In particular, the
initial slqpe ™ oftjuaGinéburé—Landau parameter tends to the BCS
-value at the end of an infinite Kondo temperature. Therefofe we
o in
type-I1I superconductors with Kondo effect will also provide im;

can say that the study of the magnetié properties near Hc

portant information ofi the Kondo effect in superconductors.
Throughout this paper we havelneglected completely the effect of
the magnetic field on magnetic impurities. - Since the magnetic
field characteristic of the Kondo effect is given by

szkBTk/uB , this approximation is allowed only when

*) The definition of the Kondo temperature in the Yamada-Yosida
“theory is different from that of the most divergent approximation.
Since we made an interpolation between them, our calculation con-
tains some ambiguity about T, . Therefore, quantitative comparison
of our results with experiments does not seem so much meaningful.

- 14 -
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ECZS:HK - In general, the magnetic- fleld effect on magnetic 1me

] -
purities is expected to appear as (H/H\) in the lowest order.
@
Therefore, the Ginzburg-Landau parameter’?fk \\ at /A\end \V are

\
not affected by this effect, and our approximation of neglecting.

it is justified.
Experimentally, the Kondo effect in type II superconductors
has not been studied extensively. Most of the pfevious work7)

was carried out in alloy systems with Tk/’l‘co < 1. Yor the most

interesting case of Tk/Tcoiil there exist no reliable experimental

results. However, if alloy systems with Tk/TCOE:l are found in
the future, we believe that a continuous change in the guantity

k* from the negative value to the positive ones can be observed

experimentally.
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 Pigure Captions . o
The temperature dependence of the Kz(Tc) pérameter is shown

in the absence of magnetic field for the various values of

- T /T

. . 7 .
The initial slope k o©of the Ginzburg-Landau parameter as

a funct10§ ?f Tk/Tco. o SR

L\




Fig. 1

)
2
3
4
.'5

Te/Teo
100
10

0.23
0.02

3.0;

251

2.0

Xz (tc)
x

151

L.

0.8

08 1.0




—— ——— — — ——— —

-0.08T




	20110623135654509_0001
	20110623135654509_0002
	20110623135654509_0003
	20110623135654509_0004
	20110623135654509_0005
	20110623135654509_0006
	20110623135654509_0007
	20110623135654509_0008
	20110623135654509_0009
	20110623135654509_0010
	20110623135654509_0011
	20110623135654509_0012
	20110623135654509_0013
	20110623135654509_0014
	20110623135654509_0015
	20110623135654509_0016
	20110623135654509_0017
	20110623135654509_0018
	20110623135654509_0019

