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PAPER

Energy-Efficient Pre-Execution Techniques in Two-Step Physical
Register Deallocation

Kazunaga HYODO†∗, Kengo IWAMOTO†, Nonmembers, and Hideki ANDO††a), Member

SUMMARY Instruction pre-execution is an effective way to prefetch
data. We previously proposed an instruction pre-execution scheme, which
we call two-step physical register deallocation (TSD). The TSD real-
izes pre-execution by exploiting the difference between the amount of
instruction-level parallelism available with an unlimited number of phys-
ical registers and that available with an actual number of physical registers.
Although previous TSD study has successfully improved performance, it
still has an inefficient energy consumption. This is because attempts are
made for instructions to be pre-executed as much as possible, indepen-
dently of whether or not they can significantly contribute to load latency
reduction, allowing for maximal performance improvement. This paper
presents a scheme that improves the energy efficiency of the TSD by pre-
executing only those instructions that have great benefit. Our evaluation
results using the SPECfp2000 benchmark show that our scheme reduces
the dynamic pre-executed instruction count by 76%, compared with the
original scheme. This reduction saves 7% energy consumption of the ex-
ecution core with 2% overhead. Performance degrades by 2%, compared
with that of the original scheme, but is still 15% higher than that of the
normal processor without the TSD.
key words: microarchitecture, microprocessor, instruction pre-execution,
low power

1. Introduction

The load latency in cycles increases as LSI technology ad-
vances because the rate of improvement of memory access
time is much slower than that of the processor’s clock fre-
quency. This gap between processor and memory is often
called a memory wall. A general method of reducing latency
due to a memory wall is to fill the gap with several cache hi-
erarchy levels, and to satisfy load requests at as high a level
as possible. However, this method is both very costly and
often insufficient.

Data prefetching is an alternative or additional method
of solving this problem. Many hardware schemes have been
proposed for prefetching of data with both a regular pattern
(e.g., [1]) and an irregular pattern (e.g., [2]). Instruction
pre-execution (e.g., [3]) is effective for prefetching data with
an irregular pattern. Pre-execution of loads that miss the
cache moves data from a lower level to an upper level of the
memory hierarchy, before the main execution that builds the
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architectural state.
We previously proposed an instruction pre-execution

scheme, which we call two-step physical register dealloca-
tion (TSD) [4], [5]. A feature of this scheme that is different
to other pre-execution based schemes is that the TSD real-
izes prefetching within a single thread context with a modest
amount of simple hardware. The TSD removes the pipeline
stall in the rename stage that is due to a shortage of physi-
cal registers, by deallocating a physical register temporarily
and allocating it to an instruction. Such instructions are in-
serted into the instruction window. While waiting for the
temporarily allocated physical register to be actually avail-
able, these instructions are executed (pre-execution) if their
source operands are available, although the result is not writ-
ten to the physical register. Instead, the result of a pre-
executed instruction is passed to its dependent instructions
by the bypass logic or a small buffer called the forwarding
buffer [6], and thus pre-execution can be performed contin-
uously. If the pre-executed load incurs a cache miss, the re-
quested data is moved from memory to a cache, thus realiz-
ing data prefetching. Later, when the temporarily allocated
physical register has actually been available, the instruction
is notified, and is executed again (main execution). At this
time, the result is written to the physical register, as in a
normal processor. In the main execution, a load will hit the
cache, which would have been a miss without the prefetch
in the earlier pre-execution.

Although TSD can reduce load latency, the previous
study did not take into account energy consumption. The
TSD attempted to pre-execute as many instructions as possi-
ble for maximal performance improvement. The instruction
that can, however, potentially contribute to reducing load
latency are those that are directly or indirectly related to a
load causing a cache miss. Since pre-execution consumes
extra energy of the execution core (the instruction window,
function units, D-caches, etc.), to improve energy efficiency,
only instructions that contribute greatly to performance im-
provement should be selectively pre-executed.

In this paper, we propose a scheme that achieves selec-
tive pre-execution for TSD [7]–[9]. Our scheme comprises
the following two steps:

1. The scheme finds a delinquent load [10], and then
searches for instructions on which the load depends,
either directly or indirectly.

2. It optimizes the length of the instruction sequence ob-
tained to achieve high energy efficiency.
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In the first step, the scheme finds delinquent loads by
measuring the frequency of the L2 cache misses for each
load. Here, delinquent loads are those that cause frequent
L2 cache misses. It is well known that a small number of
loads are responsible for the majority of L2 cache misses.
Next, the scheme stores the instructions preceding the delin-
quent load in a buffer, and then searches for the instructions
on which the load depends, either directly or indirectly us-
ing dataflow analysis. We call such instructions transitive
producers or TP instructions. The delinquent load and the
TP instructions are marked, and become the initial set for
the next optimization.

In the second step, the scheme attempts to shorten the
TP-instruction sequence as much as possible for high energy
efficiency by learning. Specifically, for the delinquent load
obtained, the scheme measures precedence cycles, which
indicate how many cycles earlier the pre-execution of the
delinquent load is performed relative to the main execution
of the load. The scheme then prunes enough TP instruc-
tions from the head of the sequence, as long as the number
of precedence cycles is not reduced.

In this paper, we propose a scheme based on TSD.
However, conventional thread-based pre-execution schemes
have the same problem, and our scheme (at least, the basic
concept) is applicable to them as well.

The remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 explains the
original TSD scheme proposed previously. Sections 4 and 5
describe the first and second steps of our scheme, respec-
tively. Section 6 explains applicability of our scheme to
other pre-execution schemes. Evaluation results are pre-
sented in Sect. 7, and our conclusions are stated in Sect. 8.

2. Related Work

A number of prefetch studies based on pre-execution have
been carried out [3], [10]–[15]. Most of these schemes ex-
tract the instructions necessary for prefetching statically as
a thread, and then spawn this thread at a certain point in the
program execution to a different context of the processor.
An energy-aware thread selection scheme proposed by Pet-
ric et al. [16] estimates performance benefit and energy con-
sumption analytically, and then selects threads with good
performance/energy tradeoff. The disadvantage of these
schemes, including Petric’s scheme, is that they require
a multithreaded environment such as simultaneous multi-
threading [17] or chip multiprocessors. Even in such an en-
vironment, a disadvantage arises in that the context is con-
sumed; it may be more profitable to allocate other threads
to the context for a better throughput. Furthermore, static
thread extraction and thread selection requires recompila-
tion.

Among the multithreaded pre-execution schemes, a
scheme in which pre-execution instructions are extracted dy-
namically is, to our knowledge, only the scheme proposed
by Collins et al [18]. Like our scheme, this scheme also fo-
cuses on delinquent loads for energy efficiency, but unlike

our scheme, it greedily extracts pre-execution instructions
for high performance and thus does not optimize the length
of the pre-execution instruction sequence for energy saving.

The only pre-execution scheme, to our knowledge, that
does not need a multithreaded environment is runahead ex-
ecution [19], which attempts to exploit memory-level par-
allelism (MLP) when an L2 cache miss occurs. Mutlu et
al. proposed several schemes to improve energy efficiency,
for example, by suppressing ineffective runahead execution
based on past history [20]. Yet, they neither focus on delin-
quent loads nor optimize the length of the runahead (i.e.,
pre-executed) instruction sequence, unlike in our scheme.

3. Instruction Pre-Execution through TSD

The TSD assumes a register renaming scheme, in which a
register file contains committed values and temporary values
for instructions that have been completed but not yet com-
mitted, and a map table translates the logical register number
into a physical one. In this section, we shortly present the
TSD scheme that forms the basis of our study. See [4], [5]
for more details. First we illustrate the effect of TSD, and
then explain the scheme, by describing both the basic TSD
and the extension for pre-execution.

3.1 Effect of TSD

Figure 1 illustrates the effect of TSD. An example of the
execution timing of four dependent instructions in a conven-
tional processor, where load incurs a cache miss, is shown
in Fig. 1 (a), while Fig. 1 (b) shows the execution timing of
the same instructions with TSD. As illustrated by the figure,
pre-execution starts earlier than in conventional execution
because it is not stalled by a shortage of physical registers.
Thus, the cache miss of load occurs earlier. Handling this
cache miss moves data to the upper level in the memory hi-
erarchy. As a result, in the main execution, load hits the L1

Fig. 1 Effect of TSD.
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data cache, resulting in a speedup.

3.2 Basic TSD Scheme

First-step deallocation. The first-step of deallocation is
performed at the rename stage. Besides the map table and
free list, a table called the deallocation table (DAT) is pre-
pared. Each entry in the DAT is associated with a physical
register, and holds the number of the ROB entry, where the
instruction that finally (in the second step) deallocates the
corresponding physical register is placed.

The operations are as follows. First, when an instruc-
tion reaches the rename stage, the physical register that is
currently allocated to the same logical destination register of
the instruction is temporarily deallocated, and is appended
to the free list. At the same time, the number of the ROB
entry, to which the instruction has been allocated, is written
into the DAT entry associated with the deallocated physical
register. In addition, an available physical register is ob-
tained from the free list, and is newly allocated to the log-
ical destination register as in the conventional method. At
this time, by looking up the DAT, we obtain the number of
the ROB entry (ROBP), where an instruction that will finally
deallocate the physical register has been placed. The ROBP
is attached to the renaming instruction as a tag to find the
timing of the second-step deallocation later in the instruc-
tion window.

Second-step deallocation. The renamed instruction is
inserted in the instruction window, and waits for the second-
step deallocation of its destination physical register, that
is performed at the commit stage. The deallocated physi-
cal register at this time is the one that was previously allo-
cated to the logical register as is the case in the conventional
scheme. The scheme differs, however, in that it broadcasts
the number of the committed ROB entry, ROBP, to the in-
struction window. If the broadcasted ROBP matches the
ROBP tag of an instruction waiting in the instruction win-
dow, the write of the result is granted. Then, instructions are
issued as per normal.

3.3 Extension for Instruction Pre-Execution

In the previous section, we mentioned that instructions wait-
ing in the instruction window are not allowed to be issued
until their writes have been granted. However, it is possi-
ble for such instructions to be executed if both ready flags
are set; although the execution result is not written, it can
be passed to dependent instructions via the bypass logic
or forwarding buffer [6], which is a small fully-associative
buffer that stores recent results. These instructions form a
pre-execution stream, that proceeds faster than the main ex-
ecution stream because it exploits the instruction level par-
allelism, where there are no resource constraints with regard
to physical registers.

Note that the ready flags of a pre-executed instruction
are reset after its issue, and the instruction is not removed
from the instruction window. Later, after an ROBP tag is

matched, and both ready flags are set again, the instruction
is re-executed and the result is written into the destination
physical register, as described in Sect. 3.2.

4. Selecting Pre-Executed Instructions

This section explains the first step of our scheme; that is,
finding a delinquent load and then searching for the TP in-
structions of the load.

4.1 Finding Delinquent Loads

Delinquent loads are those that incur L2 cache misses fre-
quently. To find delinquent loads, we count the L2 cache
misses for each load in a given interval. We prepare a ta-
ble called the miss count table (MCT), which is indexed by
the load PC. Each entry in this table contains the following
fields:

• a valid flag (V flag)
• a counter that counts L2 cache misses
• a flag that indicates whether or not the search for TP

instructions has been performed (C flag)

When a load causes an L2 cache miss, it reads the
corresponding entry in the MCT. If the entry is valid, the
counter in the entry is incremented. Otherwise, the entry
is initialized by setting the counter to 1, clearing the C flag,
and setting the V flag. The MCT is reset at constant intervals
by clearing all the V flags. If a load increments the counter
value, which then reaches a predetermined threshold with
the C flag not set, we determine that the load is delinquent,
and start the search for its TP instructions (as described in
Sect. 4.2).

Note that the energy consumed by the MCT accesses
is small, because the MCT is accessed when an infrequent
L2 cache miss occurs and a delinquent load is decoded (as
described in Sect. 4.2). We give a quantitative evaluation of
the energy consumption in Sect. 7.6.

4.2 Dynamic Search of TP Instructions

In the search for the TP instructions of a delinquent load
(referred to as a TP search), we prepare a FIFO buffer called
the retired instruction buffer (RIB). A TP search involves
two steps.

The first step stores committed instructions (precisely,
the PC and the designation numbers of the destination and
source registers of the committed instructions) in the RIB.
The RIB normally sleeps (dropping or stopping the power
supply), but is activated to append committed instructions.
The activation is triggered when an instruction marked as a
trigger is decoded. In our implementation, the trigger in-
struction is a delinquent load. When a delinquent load is
found by the MCT, it is marked as a trigger. To denote the
mark, we add a flag called the TG flag to each instruction in
the I-cache. If a trigger instruction is decoded, the MCT is
consulted. If the C flag in the corresponding entry is not set,
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this indicates that a TP search has not yet been performed in
the current interval. In this case, the trigger instruction ac-
tivates the RIB, and the committed instructions are sequen-
tially appended to the RIB until the trigger instruction (i.e.,
delinquent load) is committed.

The second step starts when the trigger instruction is
committed. The TP instructions of the delinquent load are
searched for using dataflow analysis by reading the instruc-
tions of the RIB from tail to head. This analysis conceptu-
ally traverses the edges of dataflow graph in a reverse direc-
tion from the node of the delinquent load.

Figure 2 gives the algorithm, which is similar to live
register analysis. First, the source register sreg of the delin-
quent load is assigned as the initial element in the set LIVE
(1st line). Next, instructions are read from the RIB from tail
to head, and the following procedure performed until LIVE
is empty. If the destination register dreg of the instruction
read is a member of LIVE, the instruction is marked as a TP
instruction (5th line). Then, the dreg is removed from LIVE
(6th line), and the sreg(s) added to LIVE (7th line).

We represent the LIVE set with a bit vector. That is,
if register i is a member of LIVE, the i-th bit is set. This
implementation allows set operations to be carried out by
bit-wise logical operations, thus simplifying the hardware.

Note that a flag called the TP flag is prepared for each
instruction in the I-cache to denote the TP mark. Instruc-
tions with their TP or TG flag set are pre-executed, if possi-
ble (this control is modified later as stated in Sect. 5).

After finishing the TP search, the C flag in the MCT
entry corresponding to the delinquent load is set. This pre-
vents the TP search for the associated delinquent load from
being performed again in the current interval. Also, the RIB
switches to sleep mode to minimize energy consumption.

All TP and TG flags are cleared at the end of each in-
terval. This keeps track of the transitions in the program
execution phases.

Although we define a delinquent load as a trigger in-
struction, which instruction should be the trigger is a perfor-
mance issue. However, the ideal case, in which a sufficiently
large RIB (1K entries in this evaluation) is always active,
improves performance by only 0.5% (we assume that the
TP search consumes no clock cycles independently of the
RIB size in this evaluation, unlike the evaluation in Sect. 7).
Therefore, our trigger timing is early enough. On the other
hand, an early trigger may extract more TP instructions than
is necessary, but unnecessary TP instructions are pruned in
the later optimization, which is described in the next section.

Fig. 2 Algorithm of TP search.

5. Optimizing the Length of TP-Instruction Sequence

The effectiveness of the prefetch depends on the precedence
cycles of a pre-executed delinquent load, where precedence
cycles of an instruction are the number of cycles by which
the instruction is pre-executed earlier than its main execu-
tion. In TSD, precedence cycles are obtained by removing
the resource constraint with respect to physical registers.
However, there are instructions that does not receive such
benefit (e.g., instructions whose data dependence constraint
is more severe). Apparently, their pre-execution is energy-
inefficient. This motivates our optimization of the length of
the TP-instruction sequence†.

5.1 Optimization Algorithm

The adjustment to the length of the TP-instruction sequence
prunes the appropriate number of TP instructions from the
head of the sequence. Specifically, pruning inhibits pre-
execution of the specified number of instructions from the
head instruction (HD instruction) of the sequence, even if
such instructions are TPs. Note that pruned instructions are
executed normally, and the following dependent TP instruc-
tions are pre-executed using the results. To implement this,
we first define an extra flag per instruction in the I-cache,
which we call the HD flag, to represent an HD instruction.
Next, we prepare a table called the TP pruning table (TPPT).
Each entry in the TPPT is associated with an HD instruc-
tion and contains three fields: nprune, max pcy, and ntp.
N prune is the number of pruning instructions, max pcy is
the maximum of the precedence cycles of the delinquent
load associated with the HD instruction obtained from past
executions, and ntp is the number of TP instructions in-
cluded in the TP sequence.

When a TP search finishes, we initialize the entry in
the TPPT associated with the HD instruction of the searched
TP-instruction sequence. That is, nprune and max pcy are
reset to 0, and ntp is set to the number of searched TP in-
structions.

The number of pruned instructions is determined by

Fig. 3 Learning algorithm for pruning TP instructions.

†We use the term sequence, but, of course, TP instructions are
not necessarily contiguous instructions. Remember that they are
the instructions on which a delinquent load depends, either directly
or indirectly.
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learning. The algorithm is given in Fig. 3. When the execu-
tion of a delinquent load terminates, the precedence cycles,
pcy, are obtained (1st line). If pcy is smaller than or equal to
the current max pcy, the algorithm evaluates by how much
pcy has decreased compared to max pcy. If the decrease is
smaller than the predetermined threshold PCYth (3rd line),
the algorithm predicts that pruning more instructions will
not affect the precedence cycles. Then, nprune is increased
by the predetermined constant value Δt (4th line). Other-
wise, the algorithm learns that too many instructions were
pruned in the past. Therefore, nprune is decreased by Δt

(6th line). If pcy is larger than max pcy (7th line), the algo-
rithm detects a move of the baseline for pruning, and thus it
attempts to transfer the algorithm to the initial state slowly.
That is, nprune is decreased to Δt (8th line). Also, it updates
max pcy (9th line). Note that the fluctuation in max pcy
is mostly caused by a fluctuation in the instruction latency
(e.g., cache misses).

5.2 Confirming Validity

The evaluation of the precedence cycles in the optimization
is valid, only if the control of execution traverses the same
path as that covered by the TP search. If the control of ex-
ecution reaches a delinquent load by taking a different path,
some dependence edges in the TP-instruction sequence are
cut. Due to this, a TP instruction will wait for main execu-
tion of a non-TP instruction, as a result, the precedence cy-
cles are reduced. To confirm the validity in a simple manner,
we use heuristics to monitor the number of TP instructions
fetched starting with the HD instruction and ending with the
delinquent load. The optimization algorithm given in Fig. 3
is performed, only if this number matches the number of TP
instructions found during the TP search, and which is stored
in the TPPT as ntp.

6. Applicability to Thread-Based Schemes

Although we proposed our scheme as one strongly con-
nected to TSD, it (at least, the basic concept) is applicable to
conventional thread-based pre-execution schemes. First, fo-
cusing on delinquent loads allows good power/performance
threads to be extracted, compared to most previous schemes
which do not have an effective policy for extracting power-
efficient threads. From our evaluation results, load latency
can be significantly reduced with only a small number of
threads related to delinquent loads. Delinquent loads can be
found in a dynamic scheme using our scheme. In a static
scheme, they can be found by profiling at compile time. Fo-
cusing on delinquent loads also suppresses code inflation in
a static scheme, because the number of static threads is re-
duced.

Second, our pruning algorithm of the TP-instruction se-
quence is an effective and simple way to optimize the length
of a thread, particularly for dynamic schemes. In these, it is
difficult to find the minimum length of a thread while still
obtaining maximal performance gain. This is because hard-

ware does not have a global view of data dependence infor-
mation, and thus it is difficult to calculate how much each
instruction in the thread contributes to load latency reduc-
tion.

7. Evaluation Results

To evaluate our scheme, we built a simulator based on the
SimpleScalar Tool Set version 3.0a [21]. The instruction set
is SimpleScalar/PISA, which is an extension of the MIPS
R10000 ISA. We use eight programs from SPECfp2000.
The programs are compiled using gcc ver.2.7.2.3 with op-
tions -O6 -funroll-loops. Table 1 lists the benchmark pro-
grams and their memory statistics during execution on the
base processor, whose configuration is described later. Note
that the L2 miss rate and the memory access rate do not in-
clude the accesses by the stride prefetcher.

We evaluate the energy consumption as follows. The
energy consumed by a structure is derived by multiplying
the energy consumed by a single operation on the structure
by the total number of operations on the structure. The num-
ber of operations on each structure is obtained from the Sim-
pleScalar simulation. To obtain the energy consumed by a
single operation on an array and CAM structure, we used
the CACTI [22] modified by us to use the real wire parame-
ters [23] instead of the scaled parameters used in the original
CACTI. This modification is important to estimate the pre-
cise energy consumption. Furthermore, we used the models
from the Wattch [24] as combinational structures, and scaled
their energy for the assumed technology. We assume the
70 nm technology and a supplied voltage of 1.0 V.

We evaluated the following two models. The first is
the full model, which attempts to pre-execute all instructions
through TSD as far as possible. The second is the energy-
efficient model, which selectively pre-executes instructions
based on the scheme described in this paper.

The configuration of the base processor for the two
models is summarised in Table 2. Not to overestimate the
prefetch effect of the TSD, we introduce a stride prefetcher
using a per-load stride predictor [25], and a stream buffer [1]
between the L1 data cache and the L2 unified cache to avoid
pollution of the L1 data cache. Also, we assume perfect
memory disambiguation. We have not yet mentioned this,
but the TSD has a positive effect on memory disambiguation
by pre-executing load address calculation instructions [4],
[5]. For fair evaluation, instead of implementing memory

Table 1 Statistics of cache and memory accesses.

miss rate memoryprogram
L1 D-cache stream buffer L2 access rate

ammp 9% 59% 29% 1.59%
applu 5% 68% 29% 0.96%
apsi 1% 20% 3% 0.00%
art 48% 31% 85% 12.79%

equake 4% 31% 22% 0.29%
mesa 1% 18% 10% 0.02%
mgrid 3% 3% 9% 0.01%
swim 13% 59% 13% 1.03%
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Table 2 Base configuration.

Pipeline width 4-instruction wide for each of
fetch, decode, issue, and commit

Branch prediction 6-bit history gshare, 8K-entry PHT,
512-entry, 4-way BTB
10-cycle misprediction penalty

ROB 128 entries
LSQ 64 entries
Instruction window 64 entries
Physical registers 168 (int 84, fp 84)
Function unit 4 iALU, 2 iMULT/DIV, 4 fpALU,

2 fpMULT/DIV/SQRT
L1 I-cache 64 KB, 2-way, 32 B line
L1 D-cache 64 KB, 2-way, 32 B line, 2 ports,

2-cycle hit latency, non-blocking
L2 cache 2 MB, 4-way, 64 B line, 12-cycle

hit latency
Main memory 300-cycle min. latency, 8 B/cycle

bandwidth
Data prefetcher stride prefetcher, incremental

prefetching [25]
Stream buffer 8-way, 4 KB each, 32 B line, 1-cycle

hit latency
Mem. disambiguation perfect

dependence predictors in our base simulator, we assume per-
fect memory disambiguation to exclude the effects thereof.

As intuitively found, the effectiveness of the TSD is
sensitive to the balance between the ROB size and the num-
ber of physical registers. For balancing, we used the follow-
ing equation:

N pregs = α × ROBsize + Nlregs (1)

where N pregs and Nlregs are the total number of physical
and logical registers, respectively. The coefficient α is the
ratio of dynamic instructions that have integer or floating-
point destination registers to the total number of dynamic
instructions. The ROB size and the number of physical reg-
isters determined by Eq. (1) are balanced in that 1) the ROB
size gives the number of supported in-flight instructions,
where each in-flight instruction of α × ROBsize requires a
physical register, and 2) each committed logical destination
register requires a physical register. Next, we divided the to-
tal number of physical registers equally between integer and
floating-point registers. This is reasonable as the number of
dynamic instructions with destination registers being either
integer or floating point is roughly equal in the benchmark
programs we used. Table 3 lists the percentage of dynamic
instructions categorized by the type of the destination regis-
ter in the baseline processor. From the table, we obtain 0.83
as α. Since the ROB size is 128 by default, we obtain 170
(128×0.83+64) as the number of physical registers. Finally,
we round the number to the nearest multiple of 8, giving us
168 physical registers.

The specific default parameters for the full and energy-
efficient models are listed in Table 4. We also conservatively
assume that the TP search consumes 10 cycles per entry in
the RIB. During the search, the scheme accesses the I-cache
to set the TP flags. Therefore, we also conservatively as-
sume that the instruction fetch is stalled during the search

Table 3 Percentage of dynamic instructions categorized by type of des-
tination register.

type of destination registerprogram
int fp other none

ammp 24% 55% 1% 20%
applu 60% 31% 1% 8%
apsi 59% 22% 9% 10%
art 37% 39% 2% 22%

equake 58% 16% 0% 26%
mesa 48% 21% 4% 27%
mgrid 43% 55% 1% 2%
swim 48% 48% 0% 4%
AVG 47% 36% 2% 15%

Table 4 Configuration of full and energy-efficient models.

common 8-entry, fully-associative forwarding buffer
1024-entry tagless MCT. 64-entry RIB. Threshold

energy- of miss count to identify delinquent load is 16.
efficient Reset interval of MCT and TP, TG, and HD flags
model is 1 M cycles. 128-entry tagless TPPT. PCYth is

30 cycles. Δt is 3 cycles.

Fig. 4 Pre-executed instruction rate.

for TP instructions, regardless of whether or not a TP flag is
written.

7.1 Pre-Executed Instruction Rate

Figure 4 shows the pre-executed instruction rate, the ratio
of pre-executed instructions to committed instructions, for
both the full and energy-efficient models. As seen in the
figure, the energy-efficient model significantly reduces the
pre-executed instruction rate (76% reduction on average).
As expected, the reduction rate of the pre-executed instruc-
tions correlated negatively to the memory access rate (see
Table 1). For example, the reduction rates of apsi, mesa, and
mgrid are more than 90%, while the memory access rates of
these programs are very low. In contrast, the reduction rate
of art is not as high (51%), but the memory access rate is
very high.
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Fig. 5 IPC.

7.2 Performance

Figure 5 depicts IPC for the base, full, and energy-efficient
models, and show that the degradation of the energy-
efficient model relative to the full model is small (2% on av-
erage). There are three possible reasons for this performance
degradation. First, our scheme cannot hide the latency of
loads that incur L2 cache misses infrequently. The impact of
this on the performance is small as seen in Fig. 9 shown be-
low. The difference in performance degradation for a thresh-
old between 1 and 64 that detects delinquent loads is negli-
gibly small (note that loads that rarely incur L2 cache misses
are selected for pre-execution when the threshold is 1). Sec-
ond, our scheme does not hide most L1 cache miss penal-
ties. Third, our scheme hardly receives any benefit from
the removal of true dependence between an address calcula-
tion and load, which is part of the TSD’s ability. Although
we have not explained this ability, the TSD pre-executes ad-
dress calculation instructions, and the results are written into
the LSQ (we assume a split load/store, where the load/store
operation is split into an address calculation and a memory
access). A dependent load then uses the calculated address
in the main execution, without having to await its calcula-
tion [4], [5]. This removes the true dependence between an
address calculation and a load. Our scheme loses most of
this benefit. We believe that most of the performance degra-
dation is due to the latter two reasons.

Although the performance of the energy-efficient
model is slightly inferior to that of the full model, it is still
15% higher than the base model.

Figure 6 shows the IPC of the three models, while vary-
ing only the total number of the physical registers. As the to-
tal number of physical registers increases, the improvement
rate of the two TSD models over the base model decreases.
However, the energy-efficient model still exhibits 7% bet-
ter performance over the base model even with 232 physical
registers (38% more than the default number).

Fig. 6 IPC when only total number of physical registers is varied.

Fig. 7 Effect of TP-instruction sequence length optimization.

7.3 Effect of TP-Instruction Sequence Length Optimiza-
tion

Figure 7 shows the effect of the optimizing the TP-
instruction sequence length. The line and bars represent re-
spectively, the pre-executed instruction reduction rate and
performance degradation of the optimized model, relative to
the model without the optimization. The rightmost values
of the graph are the arithmetic mean and geometric mean of
the pre-executed instruction reduction rate and performance
degradation, respectively. As shown in the figure, the op-
timization is very effective in reducing the number of pre-
executed instructions (21% reduction on average), while the
adverse effect on performance is only slight (1% degrada-
tion on average).

7.4 Sensitivity to RIB Size

Figures 8 (a) and (b) show, respectively, the pre-executed
instruction rate of the energy-efficient model and its per-
formance degradation relative to that of the full model, for
varying RIB sizes. Note that the meaningful maximum size
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Fig. 8 Sensitivity to RIB size.

of the RIB is the ROB size (i.e., 128). The left bar for each
RIB size represents the average of all benchmark programs,
and the right bar represents the average of only memory-
intensive programs (ammp, applu, art, equake, and swim).

As expected, the pre-execution instruction rate in-
creases as the RIB size increases. As this rate increases,
the prefetch timeliness improves, and consequently, the per-
formance degradation decreases. These characteristics are
seen more clearly in memory-intensive programs.

7.5 Sensitivity to Threshold of Delinquent Load Detection

Figures 9 (a) and (b) show, respectively, the pre-executed
instruction rate of the energy-efficient model and its per-
formance degradation relative to that of the full model,
for varying thresholds for detecting delinquent loads. In
general, as the threshold increases, the detected delinquent
loads decreases and the learning time for the detection in-
creases. This leads to greater performance degradation, but
lower pre-executed instruction rates, as illustrated by the
two figures. An oddity is observed in that the performance
improves for a threshold of between 1 to 16, though the dif-
ference is only slight. This is because the cycles of instruc-
tion fetch stall during the TP search decreases as the thresh-
old increases, and this benefit outweighs the disadvantage of
a decrease of the prefetch.

7.6 Energy Consumption

Our scheme reduces the pre-executed instruction rate, and
thus reduces the energy consumed by the execution re-
sources, such as the instruction window, D-cache, and func-
tion units. The scheme, however, requires additional hard-

Fig. 9 Sensitivity to threshold of delinquent load detection.

Table 5 Size and operation rate of MCT, RIB, and TPPT.

MCT RIB TPPT
size 0.8 KB 0.4 KB 0.3 KB

operation rate 6.3% 0.9% 5.4%

ware, which consumes extra power. Most of the extra power
is consumed by the three flags of the I-cache, MCT, RIB,
and TPPT. In our CACTI simulation, the three flags in-
crease the energy consumption by only 6% over that of an
I-cache access. For each of the MCT, RIB, and TPPT, Ta-
ble 5 gives the size and operation rate, which specifies how
many cycles out of the total number of execution cycles the
respective hardware operates. As shown in the table, the size
of all hardware is small, and the operation rate is also small.
Therefore, we expect the consumed energy to be small.

Table 6 lists the evaluated average energy consumed
by the components related to the TSD scheme, for the base,
full, and energy-efficient models. The components are cat-
egorized to the execution core, TSD overhead, and energy-
efficient scheme overhead. The energy of each component
is normalized by the execution core energy of the base.

As seen in Table 6, although the energy consumed by
the execution core of the energy-efficient model is still 4%
larger than that of the base, it is reduced by 7% compared
with that of the full model. Not surprisingly, the overhead
energy of our scheme is negligibly small, being only 2% of
the execution core energy.

The overhead energy of the TSD is 12% of the exe-
cution core energy in the full and energy-efficient models.
Reducing this overhead is required to further improve the
energy efficiency. This is our work in progress. Specifically,



2194
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.11 NOVEMBER 2009

Table 6 Energy consumption normalized by execution core energy (EE
stands for “energy-efficient model”).

modelcategory component
base full EE

instruction window 0.32 0.36 0.34
LSQ 0.07 0.08 0.07

execution register files 0.09 0.10 0.10
core function units 0.28 0.31 0.29

D-cache 0.23 0.27 0.24
D-TLB 0.00 0.01 0.01
total 1.00 1.12 1.04
DAT 0.05 0.05

TSD ROBP broadcast/match 0.06 0.06
overhead forwarding buffer 0.00 0.00

total 0.12 0.12
I-cache flags 0.01

EE MCT 0.01
scheme RIB 0.00
overhead TPPT 0.00

total 0.02

we are investigating a scheme that makes the TSD mecha-
nism work only when it is necessary.

7.7 Access Time Overhead to I-Cache

Our scheme adds a three-bit flag for the TG, TP, and HD to
each instruction in the I-cache. This may increase the access
time for the I-cache. We evaluated the access time using
our CACTI simulator, and the result show that the wordline
delay of a data array increases by 2% of the cache access
time. The critical path of the cache access, however, is the
tag array access path, and this increase does not affect the
cache access time.

8. Conclusions

In this paper, we proposed a scheme to improve the energy
efficiency of the TSD previously proposed. Our scheme se-
lectively pre-executes only those instructions that contribute
significantly to performance improvement. The evaluation
results using the SPECfp2000 benchmark programs show a
significant reduction in the number of pre-executed instruc-
tions, leading to a reduction in energy consumption, with
only a modest performance degradation, compared to the
original TSD.
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