
3294
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

PAPER

Register File Size Reduction through Instruction Pre-Execution
Incorporating Value Prediction

Yusuke TANAKA†∗, Nonmember and Hideki ANDO††a), Member

SUMMARY Two-step physical register deallocation (TSD) is an ar-
chitectural scheme that enhances memory-level parallelism (MLP) by pre-
executing instructions. Ideally, TSD allows exploitation of MLP under an
unlimited number of physical registers, and consequently only a small reg-
ister file is needed for MLP. In practice, however, the amount of MLP ex-
ploitable is limited, because there are cases where either 1) pre-execution
is not performed; or 2) the timing of pre-execution is delayed. Both are
due to data dependencies among the pre-executed instructions. This pa-
per proposes the use of value prediction to solve these problems. This
paper proposes the use of value prediction to solve these problems. Evalu-
ation results using the SPECfp2000 benchmark confirm that the proposed
scheme with value prediction for predicting addresses achieves equivalent
IPC, with a smaller register file, to the previous TSD scheme. The reduction
rate of the register file size is 21%.
key words: microarchitecture, microprocessor, instruction pre-execution,
value prediction, register file

1. Introduction

Supporting many in-flight instructions allows aggressive
exploitation of instruction-level parallelism (ILP) and
memory-level parallelism (MLP), leading to enhanced per-
formance. The exploitation of MLP is especially effective
in memory-intensive programs. Providing support for many
in-flight instructions, however, requires a large register file,
which, in turn, adversely affects the clock cycle time due to
the longer access time. Although this adverse effect can be
alleviated by pipelining, this complicates the bypass logic.
In addition, having a deep pipeline increases the branch mis-
prediction penalty, lowering IPC. Since it is difficult to re-
move the adverse effect of a large register file completely, it
is important to reduce the register file size without degrading
the performance.

Two-step physical register deallocation (TSD) is a
novel register renaming scheme [1], [2], that allows the pre-
execution of instructions that cannot be executed due to
the lack of a physical register in the conventional renam-
ing scheme, thereby exploiting MLP aggressively. The TSD
can exploit a large amount of MLP under an infinite number

Manuscript received March 12, 2010.
Manuscript revised July 12, 2010.
†The author is with the Department of Computational Sci-

ence and Engineering, Nagoya University, Nagoya-shi, 464–8603
Japan.
††The author is with the Department of Electrical Engineering

and Computer Science, Nagoya University, Nagoya-shi, 464–8603
Japan.

∗Presently, with Denso Corp.
a) E-mail: ando@nuee.nagoya-u.ac.jp

DOI: 10.1587/transinf.E93.D.3294

of physical registers, independently of the actual physical
register count. Thus, a large register file is not required for
exploiting MLP, keeping a high clock frequency.

The TSD deallocates physical registers in two phases:
1) temporal deallocation, which allows the physical register
to be allocated to another instruction; and 2) final dealloca-
tion, which allows the result write to be granted. The TSD
completely removes the pipeline stall in the rename stage,
caused by a shortage of physical registers, by deallocating a
physical register temporarily and allocating it to an instruc-
tion. Such instructions are inserted into the instruction win-
dow. While waiting for the temporarily allocated physical
register to become available, these instructions are executed
(pre-execution) if their source operands are available; the re-
sult is not written to the physical register. Instead, the result
of a pre-executed instruction is passed to its dependent in-
structions via the bypass logic. Pre-execution can, therefore,
be performed continuously, which ensures as early mem-
ory accesses as possible in the case of an infinite number
of physical registers. Thus, many memory accesses can be
overlapped. Later, when the temporarily allocated physical
register actually becomes available, the instruction is noti-
fied, and executed again (main execution). At this time, the
result is written to the physical register, as in a normal pro-
cessor. During the main execution, a load obtains data from
the cache, which, without pre-execution, would instead have
resided in main memory.

Although the TSD is effective, in some cases instruc-
tions are either not pre-executed or not pre-executed early
enough, as a result of the following two problems. First, be-
cause the result of a pre-executed instruction is passed only
by the bypass logic, a consumer cannot be pre-executed un-
less the producer and its consumer are issued back-to-back.
Second, if multiple cache misses occur successively in a par-
ticular data dependence chain, the latency of the later misses
cannot be avoided sufficiently in the main execution. This is
because pre-execution of later loads is delayed.

Both problems stem from data dependences. We intro-
duce value prediction to solve these problems [3]–[5]. We
apply value prediction to pre-execution candidate instruc-
tions whose physical register is only temporarily allocated.
This allows instructions to be pre-executed independently of
any precedent instructions. Loads, that would not have been
pre-executed or not pre-executed early enough in the con-
ventional TSD, can be pre-executed early enough, thereby
improving MLP. As a result, we can further reduce the reg-
ister file size. Note that, although our approach requires ex-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



TANAKA and ANDO: REGISTER FILE SIZE REDUCTION THROUGH INSTRUCTION PRE-EXECUTION
3295

tra hardware, we aim to reduce critical path length by invest-
ing the hardware to off-critical paths.

The study of value prediction was originally aimed at
enhancing ILP. Our study differs in that our aim is to en-
hance MLP. Since pre-execution does not update the state,
the proposed scheme does not require recovery from mis-
prediction, unlike the ILP-oriented schemes.

The remainder of this paper is organized as follows.
Section 2 describes related work. In Sect. 3, the previously
proposed TSD scheme is explained. Section 4 discusses
the effect of value prediction when used for instruction pre-
execution in the TSD. Evaluation results are presented in
Sect. 5, and finally our conclusions are given in Sect. 6.

2. Related Work

2.1 Instruction Pre-Execution

A number of studies focusing on pre-execution have been
carried out [6]–[12]. These schemes extract, either statically
or dynamically, the instructions necessary to generate mem-
ory accesses as a thread. Then they spawn this thread at a
certain point in the program execution to a different context
of the processor. Unlike these schemes, the TSD does not
require a multithreaded environment such as simultaneous
multithreading [13] or chip multiprocessors.

To the best of our knowledge, the only pre-execution
scheme that does not need a multithreaded environment is
runahead execution [14]. This scheme enters a special mode
called a runahead when an L2 cache miss occurs. In this
mode, the architectural state is checkpointed, and instruc-
tions following the missed load are executed until the trig-
gered miss is resolved. If another L2 cache miss occurs
while in the runahead mode, the missed line is prefetched.

2.2 Enhancing ILP with Value Prediction

Originally, value prediction was employed to enhance ILP
by breaking data dependences and executing instructions de-
pendent on the predicted instruction speculatively [15]–[17].
If the prediction is found to be correct, the speculation in-
creases ILP, resulting in speedup. If not, the state must be
recovered, and the penalty thereof degrades performance. A
basic recovery method squashes all instructions succeeding
to the mispredicted instruction, and restarts execution from
the mispredicted instruction. More elaborately, an alterna-
tive method reissues only those instructions dependent on
the mispredicted instruction from the instruction window.
Although the squashing recovery is simple, the penalty is
large. On the other hand, the penalty for reissue is small, but
the mechanism complicates the instruction window. This is
because those instructions that depend on the predicted in-
struction must be selectively controlled. That is, the mecha-
nism must ensure that they are not removed from the instruc-
tion window after issue, but are removed after the prediction
has been validated.

Reinman et al. examined in detail the effectiveness of

value prediction (load-result and load-address predictions)
with the squash and reissue recovery schemes [18]. Their
evaluation results indicate that, because the prediction accu-
racy is not very high, simple squash recovery achieves only
limited speedup; reissue is necessary for solid speedup by
reducing the misprediction penalty.

Basically, ILP-oriented value prediction and our
scheme are orthogonal, since our scheme is applied only
to the instruction pre-execution. However, compared with
ILP-oriented value prediction, our scheme has an advantage
in that it does not require recovery from misprediction.

2.3 Enhancing MLP with Value Prediction

There are studies similar to ours that use value prediction to
enhance MLP rather than ILP.

Zhou et al. advocated the use of value prediction to
prefetch data [19]. They remove data dependencies (if pos-
sible), and prompt instruction execution. Unlike the conven-
tional use of value prediction, the register is not updated, but
data is moved from memory to the cache if a speculatively
executed load causes a cache miss. Unfortunately, although
MLP is improved, the effect is limited. Unlike their study,
we advocate value prediction to accelerate instruction pre-
execution. In their scheme, instructions are stalled at the
rename stage due to a shortage of physical registers, but this
does not occur in ours. Therefore, our scheme increases
MLP to a greater degree.

Mutlu et al. introduced value prediction in the runa-
head execution [20]. To the best of our knowledge, this is
the only study that has incorporated value prediction with
instruction pre-execution. The study uses value prediction
so that instructions that depend on the triggered L2 missed
load can be pre-executed. A new value prediction scheme
called address-value delta (AVD) was introduced. It pre-
dicts the load data from its reference address. Although the
study uses value prediction in instruction pre-execution, it
is used to remove only a special type of data dependence
(that is, the dependence on the triggered L2 missed load).
Thus, the AVD predictor is useful only in runahead execu-
tion, where the reference address of the load is known. On
the other hand, where general data dependences must be re-
solved, as is in the case in our study, the reference address
of loads is unknown, and thereof the AVD is useless.

2.4 Reducing Register File

Several studies have focused on reducing the size of register
files, in an attempt to reduce the occupation time of phys-
ical registers by late allocation [21], [22] or early dealloca-
tion [23]–[25].

Early deallocation schemes deallocate registers specu-
latively by predicting the last consumer, and allocate them
at the rename stage. Shortcomings of such schemes include
the large penalty imposed by misspeculation recovery, and
the requirement of a large checkpointing register file that in-
cludes shadow storage.



3296
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Late allocation schemes do not allocate registers at
the rename stage; instead, they are allocated later in the
pipeline. The virtual-physical register scheme [21] allocates
registers at the write-back stage. This scheme is similar
to the TSD in that instructions are executed even if phys-
ical registers have failed to be allocated, thereby realizing
pre-execution. Unfortunately, this scheme has the com-
plication of avoiding deadlock due to out-of-order physi-
cal register allocation. To avoid deadlock, a scheme called
DSY (on-demand with stealing from younger) has been pro-
posed [22]. Although this scheme is feasible, it is still com-
plicated. Furthermore, it imposes a considerable cycle count
penalty due to register reallocation, completely eliminating
any potential benefit from late register allocation [2].

3. Instruction Pre-Execution through TSD

TSD is based on the following register renaming scheme:
1) a register file contains committed values and temporary
values for instructions that have been completed but not yet
committed; and 2) a map table translates the logical register
number into a physical one. This type of register renaming
is, for example, implemented in the MIPS R10000 [26] and
the Digital Equipment Alpha 21264 [27]. In this section,
we present the TSD scheme [1], [2] that forms the basis of
our study. First we illustrate the effect of TSD, and then
explain the scheme by describing both the basic TSD and its
extension for pre-execution.

3.1 Effect of TSD

Figure 1 illustrates the effect of TSD. An example of the
execution timing of two dependent instruction sequences in
a conventional processor, where load1 and load2 incur a
cache miss, is shown in Fig. 1 (a). Figure 1 (b) shows the ex-
ecution timing of the same instruction sequences with TSD.
As illustrated by this figure, pre-execution starts earlier than
in conventional execution because it is not stalled by a short-
age of physical registers. Thus, the two cache misses occur
earlier. Handling the cache misses moves data to the up-

Fig. 1 Effect of TSD.

per level in the memory hierarchy. As a result, in the main
execution, two loads hit the L1 data cache, resulting in a
speedup. Note that in the pre-execution, MLP is improved
by overlapping the memory accesses. This further improves
the timing of the data fetch in the main execution.

3.2 Basic TSD Scheme

First-step deallocation. The first-step of deallocation is
performed at the rename stage. Besides the map table and
free list, a table called the deallocation table (DAT) is pre-
pared. Each entry in the DAT is associated with a physical
register. It holds the number of the reorder buffer (ROB)
entry, where the instruction that finally (in the second step)
deallocates the corresponding physical register is placed.

The process is as follows. First, when an instruction
reaches the rename stage, the physical register that is cur-
rently allocated to the same logical destination register of
the instruction is temporarily deallocated. Then it is ap-
pended to the free list. At the same time, the number of
the ROB entry, to which the instruction has been allocated,
is written into the DAT entry associated with the deallocated
physical register. In addition, an available physical register
is obtained from the free list, and newly allocated to the log-
ical destination register as in the conventional method. At
this time, by looking up the DAT, we obtain the number of
the ROB entry (ROBP), where an instruction that will finally
deallocate the physical register has been placed. The ROBP
is attached to the renaming instruction as a tag to find the
timing of the second-step deallocation later in the instruc-
tion window.

Using an example, Fig. 2 illustrates the operations de-
scribed above. The table presents an allocated physical reg-
ister, a deallocating physical register, and an allocated ROB
entry number, for each instruction in the first column. Fig-
ure 2 (a) illustrates the operations when instructions i0 and
i1 have already been renamed, and i2 is being renamed.
First, physical register 36, currently allocated to logical des-
tination register r2, is deallocated, and appended to the free
list (mark (1) in Fig. 2 (a)). At the same time, the allocated
ROB entry number 13 is written into the 36th entry of the
DAT (mark (2)).

Next, Fig. 2 (b) illustrates the operations when instruc-
tion i3 is being renamed. Physical register 36 that was deal-
located by instruction i2 is allocated to this instruction. Af-
ter the deallocation and allocation of the physical registers
as described, we obtain, by referring to the DAT (mark (3) in
Fig. 2 (b)), the ROB entry number 13, containing instruction
i2 that will finally deallocate the allocated physical register
36 (in the second-step deallocation).

This number is attached to the renaming instruction i3
as an ROBP tag. Then it will be written into the instruction
window along with the destination register tag (dtag) and
two source register tags (stagl and stagr) (mark (4)).

Second-step deallocation. The renamed instruction is
inserted in the instruction window, and waits for the second-
step deallocation of its destination physical register, which



TANAKA and ANDO: REGISTER FILE SIZE REDUCTION THROUGH INSTRUCTION PRE-EXECUTION
3297

is performed at the commit stage. The deallocated physi-
cal register at this time is the one that was previously allo-
cated to the logical register as is the case in the conventional
scheme. The scheme differs, however, in that it broadcasts
the number of the committed ROB entry, ROBP, to the in-
struction window. If the broadcasted ROBP matches the
ROBP tag of an instruction waiting in the instruction win-
dow, the result write is granted. Then, instructions are issued
as per normal.

In the example shown in Fig. 2, the second-step deal-
location of physical register 36 is performed when instruc-
tion i2 is committed. The ROB entry number 13 is then
broadcast to the instruction window. It is matched with the
ROBP tag of instruction i3, allowing the result write of this
instruction to be granted.

3.3 Extension for Instruction Pre-Execution

In the previous section, we mentioned that instructions wait-
ing in the instruction window are not allowed to be issued
until their writes have been granted. However, it is possi-
ble for such instructions to be executed if both ready flags
are set. Although the execution result is not written, it can
be passed on to dependent instructions via the bypass logic.
These instructions form a pre-execution stream, which pro-
ceeds earlier than the main execution stream since it exploits
ILP and MLP, where there are no resource constraints on
physical registers.

Note that the ready flags of a pre-executed instruction,

(a) At renaming of instruction i2

(b) At renaming of instruction i3

Fig. 2 First-step deallocation.

which were set by preceding pre-executed instructions, are
reset after its issue, and the instruction is not removed from
the instruction window. Later, an ROBP tag is matched, and
both ready flags are set again. Then, the instruction is re-
executed and the result is written into the destination physi-
cal register, as described in Sect. 3.2.

4. Use of Value Prediction

4.1 Problems

The TSD suffers from two problems that prevent (early) pre-
execution, as described in Sect. 1. These problems are illus-
trated in Fig. 3, where the nodes and edges represent instruc-
tions and dependences, respectively. Figure 3 (a) highlights
the first problem, which we call the bypass problem, where
instruction i2 is not selected to be issued in the next cycle
after instruction i1 has been issued. In this case, instruction
i1 cannot pass on the result to instruction i2, because result
passing relies on the bypass logic in the pre-execution †.

The second problem arises from the difference in
throughput between the pre-execution and main execution.
Throughput of the pre-execution is lower than that of the
main execution, because cache misses occur in the pre-

(a) Bypass problem

(b) Successive cache miss problem

Fig. 3 Problems in TSD.

†Actually, the TSD resets the ready flag that was set by a pre-
ceding pre-executed instruction in the previous cycle, so that an
instruction like i2 is not issued [1], [2].



3298
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

execution whereas they can be avoided in the main execu-
tion. If multiple cache misses occur successively in a par-
ticular data dependence chain in the pre-execution, the la-
tency of the later misses cannot be avoided sufficiently in the
main execution. We call this problem the successive cache
miss problem, and it is illustrated in Fig. 3 (b). Assume that
load1 and load2 cause cache misses. The latency of load1
can be avoided sufficiently, because it is pre-executed early
enough compared with the main execution. However, due
to the cache miss of load1, the pre-execution of load2 is
delayed. As a result, the latency of load2 cannot be avoided
sufficiently in the main execution.

4.2 Using Value Prediction

We propose the use of value prediction to solve the above
problems. Value prediction can break up an instruction se-
quence by cutting data dependences. For the bypass prob-
lem illustrated in Fig. 3 (a), 1) we can pre-execute instruc-
tion i2 if its reference address (in the case that i2 is a load)
can be predicted; or 2) we can pre-execute the instructions
following i2 if i2’s result can be predicted. In the succes-
sive cache miss problem illustrated in Fig. 3 (b), load2 can
be pre-executed early enough, if either its reference address
or the result of any preceding instructions can be predicted.

Note that our utilization of value prediction does not
require recovery from misprediction, because our scheme
does not update the state. Our scheme pollutes the cache
slightly with misprediction, but this loss is significantly out-
weighed by the benefit arising from the increase in pre-
executed instructions.

4.3 Result Prediction vs. Address Prediction

In general, there are two ways of using value prediction:
predicting an instruction’s result and predicting the refer-
ence address of a load.

In result prediction, a load that potentially causes a
cache miss is pre-executed by executing successive con-
sumers of the predicted instruction. Because prediction can
be applied to any instruction with a destination register,
in theory, more data dependences are removed and conse-
quently more instructions are expected to be pre-executed,
compared with address prediction. However, any succes-
sive dependent instructions between the predicted instruc-
tion and the load must be pre-executed to obtain the pre-
execution benefit. Therefore, the bypass problem remains
partially unsolved.

On the other hand, in address prediction, the pre-
dicted load can access memory immediately without requir-
ing other instructions to be executed, which is not the case in
result prediction. Thus, the bypass problem can be solved.
However, unlike result prediction, there is no chance of pre-
execution if the reference address is unpredictable.

Although an implementation incorporating result pre-
diction in the pre-execution mechanism differs from that of
the conventional method, it is merely a simple extension of

(a) Result prediction case.

(b) Address prediction case

Fig. 4 Incorporation of value prediction.

the conventional implementation (see Fig. 4 (a)). In the con-
ventional method, the predicted value is stored in the desti-
nation physical register of the predicted instruction. Since
pre-executed instructions do not have a destination physical
register writable, we prepare a small buffer, called the pre-
dicted value cache, to hold predicted values. Depending on
the required hit rate, the predicted value cache can be con-
figured with a direct mapped, set-associative, or fully asso-
ciative organization, indexed or keyed by a physical register
number. If the result of an instruction has been predicted
in the front-end, it is written into the predicted value cache,
and is inserted into the instruction window with marked as
predicted. Such an instruction outputs an issue request, and
issued if granted. Although it is not executed actually, it
broadcasts the destination tag to the instruction window. As
a result, a dependent instruction is issued subsequently, and
then it consults the predicted value cache. If its source reg-
ister value is found, it is pre-executed using this value. If
not found, the issue fails, and the associated instruction is
invalidated.

On the other hand, an implementation incorporating
address prediction in the pre-execution mechanism is iden-
tical to that of the conventional method (see Fig. 4 (b)). That
is, a load is first split into an address calculation instruc-
tion and a memory access instruction in the front-end (we
assume a split load/store architecture). Then, the reference
address of the memory access instruction is predicted. The
memory access instruction is inserted into the load/store
queue (LSQ) with the predicted address. Finally, the mem-
ory access instruction is scheduled normally in the LSQ, and
the data cache is accessed if issued. Note that this mech-
anism differs from data prefetch in that instructions that
depend on the predicted load are issued, and thus instruc-
tion pre-execution continues, which is not the case in data
prefetch.



TANAKA and ANDO: REGISTER FILE SIZE REDUCTION THROUGH INSTRUCTION PRE-EXECUTION
3299

Table 1 Statistics of cache and memory accesses.

cache miss rate main memoryprogram
L1 data L2 access rate

ammp 11.0% 31.6% 3.5%
applu 4.3% 48.9% 2.1%
apsi 0.3% 23.3% 0.1%
art 59.2% 46.1% 27.3%

equake 2.9% 24.6% 0.7%
mesa 0.2% 11.6% 0.0%
mgrid 2.4% 25.0% 0.6%
swim 12.0% 31.8% 3.8%

Table 2 Base processor configuration.

Pipeline width 8-instruction wide for each of
fetch, decode, issue, and commit

ROB 128 entries
LSQ 64 entries
Instruction window 64 entries
Function unit 8 iALU, 4 iMULT/DIV, 4 Ld/St,

6 fpALU, 4 fpMULT/DIV/SQRT
L1 I-cache 64 KB, 2-way, 32 B line
L1 D-cache 64 KB, 2-way, 32 B line, 4 ports,

2-cycle hit latency, non-blocking
L2 cache 2 MB, 4-way, 64 B line,

12-cycle hit latency
Main memory 300-cycle min. latency,

8 B/cycle bandwidth
Branch prediction 6-bit history gshare,

8 K-entry PHT,
512-entry, 4-way BTB
10-cycle misprediction penalty

5. Evaluation Results

5.1 Environment

To evaluate our scheme, we built a simulator based on
the SimpleScalar Tool Set version 3.0a. The instruction
set is SimpleScalar/PISA, which is an extension of the
MIPS R10000 ISA. We used eight programs from the
SPECfp2000, compiled using gcc ver.2.7.2.3 with options -
O6 -funroll-loops. Table 1 lists the benchmark programs and
their memory statistics during execution on the base proces-
sor, configuration of which is described below.

We evaluated the following three models: the TSD
model, that pre-executes instructions with the conventional
TSD; the TSD-respred model, that uses result prediction in
the TSD; and the TSD-addrpred model, that uses address
prediction in the TSD.

The configuration of the base processor for the three
models is summarized in Table 2.

In the TSD-respred and TSD-addrpred models, we
use a stride value predictor [28] with a 1024-entry direct-
mapped value history table (VHT), as shown in Fig. 5. The
VHT is indexed by the PC, and each entry has a tag (the
same as a cache tag), an immediately previous value, a stride
value, and a confidence flag. The value predictor output a
predicted value by adding the immediately previous value
and the stride value, if the confidence flag is set. The confi-

Fig. 5 Stride predictor.

Fig. 6 IPC when varying number of physical registers.

dence flag is set if the immediately previous prediction was
correct.

In the TSD-respred model, we assume a predicted
value cache of the same size as the register file. Although it
is preferable for the size to be small, we make this assump-
tion to find the maximum benefit of result prediction. In
this assumption, the instruction that uses a predicted value
always hits the predicted value cache.

5.2 Reduction of Physical Registers

Figure 6 shows the geometric mean of IPC for each model,
with the number of physical registers varying from 34 to 112
(with equal numbers of integer and floating-point registers).
The TSD model achieves the same IPC as the base proces-
sor, with fewer physical registers. The result is enhanced by
using value prediction.

Here, we attempt to quantify the reduction rate of the
physical registers by obtaining a representative value. Intu-
itively, the effectiveness of the TSD is sensitive to the bal-
ance between the ROB size and the number of physical reg-
isters. For balancing, we use the following equation:



3300
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Table 3 Percentage of dynamic instructions categorized by type of
destination register.

type of destination registerprogram
int fp other none

ammp 24% 55% 1% 20%
applu 60% 31% 1% 8%
apsi 59% 22% 9% 10%
art 37% 39% 2% 22%

equake 58% 16% 0% 26%
mesa 48% 21% 4% 27%
mgrid 43% 55% 1% 2%
swim 48% 48% 0% 4%
AVG 47% 36% 2% 15%

Npregs = ROBsize + Nlregs (1)

where Npregs and Nlregs are the total number of physical
and logical registers, respectively. The ROB size and the
number of physical registers determined by Eq. (1) are bal-
anced with the following reasons. 1) the ROB size gives
the number of supported in-flight instructions, where each
of most in-flight instructions of ROBsize requires a physical
register; and 2) each committed logical destination register
requires a physical register. Because the default ROB size
is 128, we obtained 192 (128 + 64) as the number of phys-
ical registers. We then divided the total number of physi-
cal registers equally between integer and floating-point reg-
isters. This is because there is roughly the same number
of dynamic instructions with either integer or floating-point
destination registers in the benchmark programs. Table 3
lists the percentage of dynamic instructions categorized by
the type of the destination register in the baseline processor.
Therefore, there are 96 physical registers each for integer
and floating-point values. We call this number the baseline
number of physical registers.

From Fig. 6, we see that the TSD and TSD-addrpred
models can, with 64 and 48 physical registers, respectively,
achieve equivalent IPC to the base processor with the base-
line number of physical registers. With detailed evaluation
for preciseness, the number of physical registers where the
TSD and TSD-addrpred model barely outweigh the base
with 96 registers in IPC is 62 and 49, respectively. The
reduction rate in physical registers is 35% for the conven-
tional TSD, and 49% using address prediction. Compared
with the conventional TSD without address prediction, ad-
dress prediction reduces the number of physical registers by
21%.

Note that reducing the register file size is important de-
spite the increase in hardware due to the VHT. This is be-
cause the register file is on the processor’s critical path, as
described in the Sect. 1.

Unfortunately, the effect of address prediction deterio-
rates as the number of physical registers increases. This is
because the potential for instruction pre-execution decreases
as the number of physical registers increases, and conse-
quently, the chance of using address prediction decreases
accordingly.

In contrast to the TSD-addrpred model, the TSD-

(a) Address prediction

(b) Result prediction

Fig. 7 Breakdown of prediction utilization.

respred model is less effective, despite having a predicted
value cache of the maximum size. A qualitative reason for
this is discussed in Sect. 4.3. We further analyze the TSD-
respred model in the following subsection.

5.3 Breakdown of Prediction Utilization

This section gives the breakdown of prediction utilization
with regard to the correctness of prediction and whether or
not the predicted value is used for pre-execution. Figure 7
shows the result. The data in figures (a) and (b) were col-
lected with 49 physical registers in the TSD-addrpred and
TSD-respred models, respectively. This configuration gives
equivalent IPC to the base processor in the TSD-addrpred
model as described before. Each bar is partitioned into
five portions. Dynamic candidate instructions for prediction
(instructions with a destination register in the TSD-respred
model, and load instructions in the TSD-addrpred model)
are categorized into the following classes:

• useful: prediction is correct, and the predicted instruc-
tion is pre-executed.
• harmful: prediction is incorrect, but the predicted in-

struction is pre-executed.
• useless: prediction is correct, but predicted instruction

is not pre-executed.
• not-harmful: prediction is incorrect, and the predicted

instruction is not pre-executed.
• not-predicted: no prediction is made due to low confi-

dence.

Here, the reason that a predicted instruction is not pre-



TANAKA and ANDO: REGISTER FILE SIZE REDUCTION THROUGH INSTRUCTION PRE-EXECUTION
3301

Table 4 Average of prediction coverage rate and accuracy.

model coverage accuracy
TSD-addrpred 69% 93%
TSD-respred 43% 88%

executed is following either case: 1) its destination regis-
ter is deallocated in the second-step deallocation and it thus
becomes a non-candidate for pre-execution; or 2) in result
prediction, its source registers become available, or in ad-
dress prediction, the associated address calculation instruc-
tion is performed and the reference address becomes avail-
able. Therefore, the predicted result or address is unneces-
sary.

Table 4 summarizes the average of the prediction cov-
erage rate and accuracy, calculated from Fig. 7. The cover-
age rate is the ratio of the number of predicted instructions
to the number of candidate instructions for prediction. On
the other hand, the accuracy is the ratio of the number of
correctly predicted instructions to the number of predicted
instructions. The equations expressed with reference to the
classes defined above are as follows:

coverage = useful + harmful + useless + not–harmful

= 1 − not–predicted

accuracy =
useful + useless

coverage

In the TSD-addrpred model, the coverage rate is fairly
high in most programs, as shown in Fig. 7 and Table 4. Also,
not surprisingly, many loads with predicted addresses are
pre-executed in most programs, because such loads are is-
sued with little wait in the LSQ.

In contrast, the coverage rate is low in the TSD-
respred model, preventing the expected benefit, discussed
in Sect. 4.3, from being obtained. This, together with the
fact that the bypass problem is only partially solved, makes
the TSD-respred model ineffective.

In the subsequent sections, we only present evaluation
results for the TSD-addrpred model, as the TSD-respred
model is far inferior and thus further analysis has no value.

5.4 Pre-Execution Rate

As inferred from Fig. 7 (a), the pre-execution rate of loads,
that is, the number of loads that are pre-executed relative to
the total number of dynamic loads, is expected to increase.
Figure 8 shows the pre-execution rate of loads for the TSD
and TSD-addrpred models. As in Sect. 5.3, the data were
collected using 49 physical registers.

As shown in the graph, the TSD-addrpred model
achieves a higher rate than the TSD model for all program.

5.5 Increase of MLP Exploitation

An increase in MLP is expected as the pre-execution rate
of loads increases. As an example, Fig. 9 shows the distri-
bution of the number of concurrent unresolved loads whose

Fig. 8 Pre-execution rate of loads.

Fig. 9 Distribution of number of unresolved loads whose resolution
takes more than or equal to 300 cycles exist simultaneously in art.

cache miss resolution takes 300 (minimum memory latency)
or more cycles in art. The horizontal-axis represents the
number of unresolved loads that exist simultaneously. The
vertical-axis represents the ratio of the cycle count for each
of the concurrent unresolved loads relative to the total cycle
count. We assume 49 physical registers.

As illustrated in this figure, the distribution peaks at a
very small number of loads (1–3 loads) for the base proces-
sor. This implies that MLP is only slightly exploited. In the
TSD model, the distribution is shifted towards the right, in-
dicating that more MLP is exploited. The distribution, how-
ever, still peaks at one unresolved load. In contrast, the dis-
tribution of the TSD-addrpred model is shifted significantly
to the right, and the rate for less than 3 unresolved loads is
lower. This indicates that the TSD-addrpred model exploits
MLP to a high degree.

5.6 IPC

This section discusses how value prediction affects IPC.
Figures 10 and 11 show, respectively, the load latency re-
duction rate and the speedup of the TSD-addrpred model
relative to those of the TSD model. Once again we as-
sume 49 physical registers. The load latency is signifi-
cantly reduced (22% on average), and consequently speedup
is considerable (17%). Not surprisingly, the speedup cor-



3302
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Fig. 10 Load latency reduction rate of TSD-addrpred model relative to
TSD model.

Fig. 11 Speedup of TSD-addrpred model over TSD model.

Table 5 Evaluation standards of items that contribute to speedup.

item – + ++

mem <1% 1–3% >3%
pred <50% 50–80% >80%

pexec <20% ≥20% N/A
speedup <10% 10–20% >20%

relates strongly with the latency reduction rate, although
the amount of speedup differs greatly for each program.
Speedup is related to the following three aspects as given
in Table 5.

• Memory access rate (mem): the ratio of the number of
loads that access main memory to the total number of
dynamic loads in the base processor.
• Value prediction effective accuracy † (pred): the ratio

of correct predictions relative to the total number of
dynamic loads in the TSD-addrpred model.
• Non-attainment rate of pre-execution (pexec): the rate

of loads that are not pre-executed relative to the total
number of dynamic loads in the TSD model.

As listed in Table 5, we represent how much each item con-
tributes to the effectiveness by “–,” “+,”and “++” denoting
a weak to strong contribution, respectively. Table 6 summa-
rizes the results of our analysis. Based on this table, we can
discuss the effectiveness as follows.

In ammp, our scheme achieves a significant speedup,
because mem, pred, and pexec evaluate to more than “+.” In
art and swim, there appears to be little room for improve-

Table 6 Cause analysis of effectiveness.

program mem pred pexec speedup
ammp ++ + + +

applu + – + ++

apsi – + + –
art ++ ++ – ++

equake – – + –
mesa – – + –
mgrid – ++ – ++

swim ++ ++ – ++

ment because pexec evaluates to “–,” yet these programs are
considerably memory-intensive, as indicated by mem eval-
uating to “++.” Also, pred evaluates to “++.” For these
reasons, our scheme achieves a significant speedup despite
a pexec of “–.” In applu, although pred evaluates to “–,”
the effective prediction accuracy is not very low (42%). As
both mem and pexec evaluate to “+,” the possibility of and
scope for IPC improvement is high. Therefore, our scheme
is effective.

In apsi, equake, mesa, and mgrid, it is less likely that
pre-execution will be effective, because these programs are
not memory-intensive, as indicated by mem evaluating to
“–.” However, in mgrid, a significant speedup is achieved.
This is because, although we have not yet mentioned this,
the TSD has a positive effect on memory disambiguation
by pre-executing load address calculation instructions [1],
[2]. Accelerating pre-execution augments this effect. In
fact, under the assumption of perfect memory disambigua-
tion, which excludes this effect, the speedup is decreased to
only 4%. This particular result is only seen in mgrid by our
evaluation with perfect memory disambiguation.

5.7 Discussion of Contribution Breakdown

As described in Sect. 4.1, using value prediction has two ef-
fects. One is that the bypass problem is solved, and the other
is that the successive cache miss problem is solved. This
section discusses the contribution of each effect, by compar-
ing the effect of value prediction in a processor with perfect
bypass logic to that with real bypass logic. Perfect bypass
logic is hypothetical logic that can pass the result of a pro-
ducer to its consumers at any time (i.e., consecutive clock
cycle timing is not necessary to pass the result). Assuming
perfect bypass logic eliminates the bypass problem, there-
fore exposing the effect of solving the successive cache miss
problem.

Figure 12 shows the correlation between the speedup
of the TSD-addrpred model compared to that of the TSD
model under both perfect bypass logic (vertical axis) and
real bypass logic (excerpted from Fig. 11) (horizontal axis).
The basis of each speedup is the IPC of the TSD model with
perfect bypass logic on the vertical axis, and real bypass
logic on the horizontal axis. We assume 49 physical regis-
ters.

†Note that the definition of effective accuracy differs from that
of accuracy in Table 4 in that the denominator is different.



TANAKA and ANDO: REGISTER FILE SIZE REDUCTION THROUGH INSTRUCTION PRE-EXECUTION
3303

Fig. 12 Correlation between speedup of TSD-addrpred model with
perfect bypass logic and that with real bypass logic.

As a program with particular characteristics, swim
achieved only a small speedup in the case of perfect by-
pass logic, despite a large speedup in the case of real bypass
logic. Therefore, the speedup is mostly due to solving the
bypass problem. In contrast, the speedup of ammp with per-
fect bypass logic is equivalent to that with real bypass logic.
Also, in art, the former is large compared with the latter.
These results indicate that the effect of solving the succes-
sive cache miss problem contributes much more than that
of solving the bypass problem for these programs. In ap-
plu, the speedup in the case of perfect bypass logic is half of
that in the case of real bypass logic. This implies that the ef-
fects of the two solutions contribute equally. As described in
Sect. 5.6, in mgrid, the speedup is obtained by accelerating
load address calculation. Since this effect is not eliminated
by perfect bypass logic, the speedup in the case of perfect
bypass logic is equivalent to that in the case of real bypass
logic. Because the speedups of the other programs are small,
they are not worth discussing here.

6. Conclusions

This paper proposes the use of value prediction to promote
pre-execution in the TSD. Our utilization of value predic-
tion aims to increase MLP rather than ILP. Our evalua-
tion using the SPECfp2000 benchmark programs shows that
our proposed scheme with address prediction exploits more
MLP, and significantly reduces the register file size with lit-
tle IPC loss.

Acknowledgment

The authors thank T. Inagaki and K. Ichihara for their help
to collect evaluation data. This work was partially supported
by the Ministry of Education, Culture, Sports, Science and
Technology Grant-in-Aid for Scientific Research (C) (No.
19500041 and 22500045).

References

[1] A. Yamamoto, Y. Tanaka, H. Ando, and T. Shimada, “Data prefetch-
ing and address pre-calculation through instruction pre-execution

with two-step physical register deallocation,” Proc. 8th Workshop
on Memory Performance: Dealing with Applications, Systems and
Architectures, pp.41–48, Sept. 2007.

[2] A. Yamamoto, Y. Tanaka, H. Ando, and T. Shimada, “Two-step
physical register deallocation for data prefetching and address pre-
calculation,” IPSJ Trans. Advanced Computing Systems, vol.1, no.2,
pp.34–46, Aug. 2008.

[3] Y. Tanaka and H. Ando, “Increasing the effectiveness of instruction
pre-execution with physical register deallocation via value predic-
tion,” IPSJ SIG Technical Reports, pp.3–8, Oct. 2008.

[4] Y. Tanaka and H. Ando, “Reducing register file size through instruc-
tion pre-execution with value prediction,” Proc. 2009 Symposium
on Advanced Computing Systems and Infrastructures, pp.335–343,
May 2009.

[5] Y. Tanaka and H. Ando, “Reducing register file size through in-
struction pre-execution enhanced by value prediction,” Proc. 27th
IEEE International Conference on Computer Design, pp.238–245,
Oct. 2009.

[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt, “Simultane-
ous subordinate microthreading (SSMT),” Proc. 26th Annual Inter-
national Symposium on Computer Architecture, pp.186–195, May
1999.

[7] C. Zilles and G.S. Sohi, “Master/slave speculative parallelization,”
Proc. 35th Annual International Symposium on Microarchitecture,
pp.85–96, Nov. 2002.

[8] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A study of slip-
stream processors,” Proc. 33rd Annual International Symposium on
Microarchitecture, pp.269–280, Dec. 2000.

[9] A. Roth and G.S. Sohi, “Speculative data-driven multithreading,”
Proc. 7th Annual International Symposium on High Performance
Computer Architecture, pp.37–48, Jan. 2001.

[10] J.D. Collins, D.M. Tullsen, H. Wang, Y. Lee, D. Lavery, J.P. Shen,
and C. Hughes, “Speculative precomputation: Long-range prefetch-
ing of delinquent loads,” Proc. 28th Annual International Sympo-
sium on Computer Architecture, pp.14–25, July 2001.

[11] J.D. Collins, D.M. Tullsen, H. Wang, and J.P. Shen, “Dynamic spec-
ulative precomputation,” Proc. 34th Annual International Sympo-
sium on Microarchitecture, pp.306–317, Dec. 2001.

[12] C.B. Zilles and G.S. Sohi, “Execution-based prediction using specu-
lative slices,” Proc. 28th Annual International Symposium on Com-
puter Architecture, pp.2–13, July 2001.

[13] D.M. Tullsen, S. Eggers, and H.M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” Proc. 22nd Annual
International Symposium on Computer Architecture, pp.392–403,
June 1995.

[14] O. Mutlu, J. Stark, C. Wilkerson, and Y.N. Patt, “Runahead execu-
tion: An effective alternative to large instruction windows,” Proc.
9th Annual International Symposium on High-Performance Com-
puter Architecture, pp.129–140, Feb. 2003.

[15] M.H. Lipasti and P.J. Shen, “Exceeding the dataflow limit via value
prediction,” Proc. 29th Annual International Symposium on Micro-
architecture, pp.226–237, Dec. 1996.

[16] F. Gabbay and A. Mendelson, “The effect of instruction fetch band-
width on value prediction,” Proc. 25th Annual International Sympo-
sium on Computer Architecture, pp.272–281, July 1998.

[17] Y. Sazeides and J.E. Smith, “The predictability of data values,”
Proc. 30th Annual International Symposium on Microarchitecture,
pp.248–258, Dec. 1997.

[18] G. Reinman and B. Calder, “Predictive techniques for aggressive
load speculation,” Proc. 31st Annual International Symposium on
Microarchitecture, pp.127–137, Dec. 1998.

[19] H. Zhou and T.M. Conte, “Enhancing memory level parallelism
via recovery-free value prediction,” Proc. 17th Annual International
Conference on Supercomputing, pp.326–335, June 2003.

[20] O. Mutlu, H. Kim, and Y.N. Patt, “Address-value delta (AVD) pre-
diction: Increasing the effectiveness of runahead execution by ex-
ploiting regular memory allocation patterns,” Proc. 38th Annual



3304
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

International Symposium on Microarchitecture, pp.223–244, Nov.
2005.

[21] A. González, J. González, and M. Valero, “Virtual-physical regis-
ters,” Proc. Fourth Annual International Symposium on High Per-
formance Computing, pp.175–184, Feb. 1998.

[22] T. Monreal, A. González, M. Valero, J. González, and V. Viñals,
“Delaying physical register allocation through virtual-physical reg-
isters,” Proc. 32nd Annual International Symposium on Microarchi-
tecture, pp.186–192, Nov. 1999.

[23] M. Moudgill, K. Pinagli, and S. Vassiliadis, “Register renaming and
dynamic speculation: An alternative approach,” Proc. 26th Annual
International Symposium on Microarchitecture, pp.202–213, Dec.
1993.

[24] D. Balkan, J. Sharkey, F. Ponomarev, and A. Aggarwal, “Address-
value decoupling for early register deallocation,” Proc. 2006 Inter-
national Conference on Parallel Processing, pp.337–346, Aug. 2006.

[25] S.T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual flow pipelines,” Proc. 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pp.107–119, Oct. 2004.

[26] K.C. Yeager, “The MIPS R10000 superscalar microprocessor,”
IEEE Micro, vol.16, no.2, pp.28–40, April 1996.

[27] R.E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro,
vol.19, no.2, pp.24–36, March 1999.

[28] T.F. Chen and J.L. Baer, “Effective hardware-based data prefetch-
ing for high-performance processors,” IEEE Trans. Comput., vol.44,
no.5, pp.609–623, May 1995.

[29] P. Shivakumar and N.P. Jouppi, “CACTI 3.0: An integrated cache
timing, power, and area model,” WRL Research Report 2001/2, Dec.
2001.

[30] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger, “Clock
rate versus IPC: The end of the road for conventional microarchi-
tecture,” Proc. 32nd Annual International Symposium on Computer
Architecture, pp.248–259, June 2000.

Appendix: Performance Comparison under the Same
Cost

This appendix evaluates the performance of the base and
TSD-addrpred models under the same cost. This evaluation
is requested by the reviewer and associated editor of this
paper. Specifically, they requested us to evaluate the perfor-
mance comparison between the following two models:

• The TSD-addrpred model with 49 physical registers
• The base processor with a register file enlarged by us-

ing the transistors for the VHT and DAT in the TSD-
addrpred model.

We refer to the latter model as the reviewer’s model. From
our assumption of the VHT and DAT, the register file can
have 1,420 entries for each of integer and floating-point in
the reviewer’s model.

We first evaluated the access times of the register files
with 49 and 1,420 entries under the assumption of 35 nm
technology, using CACTI [29] we modified. The major
modification is that we introduced the real wire parame-
ters [30], instead of parameters scaled from those in 800 nm
the original CACTI uses. The evaluation results show that
the access times of the register files with 49 and 1,420 en-
tries are 59 ps and 322 ps, respectively.

We then evaluated IPC for the both models. After that,

Fig. A· 1 Performance (committed instructions per ns) of TSD-addrpred
model and base with a register file enlarged by using the transistors for the
VHT and DAT.

we calculated instruction throughput (committed instruc-
tions per ns) as performance, which is derived by the IPC
divided by the clock cycle time. Here, we simply assume
that the access time of the register file determines the clock
cycle time, because the register file is on a critical path. The
results are shown in Fig. A· 1. As shown in the figure, the
performance of the TSD-addrpred model is 4.3 times larger
than that of the reviewer’s model on average.

Pipelining the register file access may alleviate the
degradation of the clock cycle time. In the reviewer’s model,
the register file must be pipelined to 6 stages to equalize
the pipeline stage delay to that in the TSD-addrpred model.
However, this in turn complicates the bypass logic, as de-
scribed in Sect. 1. Specifically, the fanin of the multiplexer
at a function unit’s input is 24 in the TSD-addrpred model,
while it is 104 in the reviewer’s model. This simply in-
creases the delay of the multiplexer due to the parasitic ca-
pacitance of the transistors. Furthermore, it lengthens the
wire of the control signal of the multiplexer and increases
the fanout of its driver, according to the number of fanin
of the multiplexer. This increases the delay significantly.
In addition, the number of comparators of operand tags to
control bypassing unrealistically increases. It is 512 in the
TSD-addrpred model, while 3,072 in the reviewer’s model.
This considerably increases the delay of the bypass con-
trol; the delay is likely to exceed a single cycle, because
the number of the comparators is 3 times larger than that in
the issue queue. In summary, the complicated bypass logic
degrades the clock cycle time seriously. Finally, having a
deep pipeline increases the branch misprediction penalty,
and thereby lowering IPC.



TANAKA and ANDO: REGISTER FILE SIZE REDUCTION THROUGH INSTRUCTION PRE-EXECUTION
3305

Yusuke Tanaka was born in 1984. He re-
ceived his B.E. and M.E. degrees from Nagoya
University, Nagoya, Japan in 2007 and 2009, re-
spectively. Since 2009, he has been with Denso
Corp.

Hideki Ando received his B.S. and M.S. de-
grees in electronic engineering from Osaka Uni-
versity, Suita, Japan in 1981 and 1983, respec-
tively. He received his Ph.D. degree in infor-
mation science from Kyoto University, Kyoto,
Japan in 1996. From 1983 to 1997 he was with
Mitsubishi Electric Corporation, Itami, Japan.
From 1991 to 1992 he was a visiting scholar
at Stanford University. In 1997 he joined the
faculty of Nagoya University, Nagoya, Japan,
where he is currently a professor in the depart-

ment of electrical engineering and computer science. In 1998 and 2002, he
received the IPSJ best paper awards. His research interests include com-
puter architecture and compilers.


