
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004
2895

PAPER Special Section on Concurrent Systems and Hybrid Systems

Control of Batch Processes Based on Hierarchical Petri Nets

Tomoyuki YAJIMA†a), Takashi ITO†, Nonmembers, Susumu HASHIZUME†b), Member,
Hidekazu KURIMOTO††c), and Katsuaki ONOGI†d), Nonmembers

SUMMARY A batch process is a typical concurrent system in which
multiple interacting tasks are carried out in parallel on several batches at
the same time. A major difficulty in designing a batch control system is the
lack of modeling techniques. This paper aims at developing a method of
constructing batch control system models in a hierarchical manner and op-
erating batch processes using the constructed models. For this purpose, it
first defines process and plant specifications described by partial languages,
next presents a procedure for constructing hierarchical Petri net based mod-
els, and states the verification of models based on reachability analysis. It
also discusses the detection of faults and conflicts in batch processes based
on place-invariant analysis.
key words: batch control, discrete event system, concurrent system, hier-
archical Petri net

1. Introduction

Procedural control directs equipment-oriented actions to
take place in an ordered sequence to carry out a process-
oriented task. It is realized according to operating proce-
dures to accomplish the task of a complete process. To
carry out various tasks, it is necessary to design a procedu-
ral control system for efficiently sharing an available piece
of equipment, utilities and production resources. Procedural
control system design, however, takes considerable time and
effort and is error prone as the complexity of a controlled
system increases. A major difficulty in designing a procedu-
ral control system is the lack of modeling techniques.

A process whose output product appears in discrete
batches or quantities is called a batch process. A batch pro-
cess is a discontinuous process. Since the main objective of
batch control is to sequence the process through a series of
distinct states, procedural control plays an important role in
batch processes. A batch plant consists of multiple interact-
ing units to carry out tasks in parallel on several batches at
the same time. One task may be carried out simultaneously
with other tasks. In this situation, the two tasks are causally
independent (i.e. a task may be carried out before, after or

Manuscript received April 5, 2004.
Manuscript revised June 14, 2004.
Final manuscript received July 9, 2004.
†The authors are with the Department of Chemical Engineer-

ing, Nagoya University, Nagoya-shi, 464-8603 Japan.
††The author is with the Department of Computer Science and

Mathematical Informatics, Nagoya University, Nagoya-shi, 464-
8601 Japan.

a) E-mail: yajima@nuce.nagoya-u.ac.jp
b) E-mail: hashi@nuce.nagoya-u.ac.jp
c) E-mail: kurimoto@nuce.nagoya-u.ac.jp
d) E-mail: onogi@nuce.nagoya-u.ac.jp

in parallel with the other). This concurrent nature creates
some difficult modeling problems. Yamalidou et al. showed
that several new modeling techniques are useful to represent
the concurrent behavior of batch processes [1]. Wonham
et al. gave some general foundations called the Supervisory
Control Theory for the study of control issues for discrete
event systems [2]. Sanchez applied the theory to batch con-
trol [3]. However, he did not deal with concurrent nature
in batch processes, because his control system model was
based on formal languages and automata. Although Tittus
also applied the Supervisory Control Theory to the hierar-
chical batch control synthesis problem on the basis of Petri
net models, the problem how to generate a control specifica-
tion was not presented [4]. Viswanathan et al. developed a
framework for synthesizing operating procedures for batch
processes [5], [6]. Although they used a graphical model-
ing language called Grafchart, it cannot explicitly represent
the states of batch processes. To develop a systematized ap-
proach for design of discrete event systems, we formulated
a discrete event system design problem as that to construct
a Condition/Event net (C/E net) whose net partial language
equals to a given partial language as a specification [7]–[9].
A C/E net is a Petri net in which each place can contain
at most one token. We also applied the C/E net construc-
tion problem to a batch control system design problem [10].
However, the problem how to generate a control specifica-
tion still remained. To solve this problem, we discussed the
information available to operating procedures synthesis and
proposed a method of generating control specifications and
operating procedures [11].

There has been a significant amount of work around
standards for batch control. The ISA’s SP88 Committee
leads this work in the international arena [12], [13]. It is
not the intention of the committee to generate code but to
establish guidelines or a framework for batch control. The
design of a large system proceeds to successively lower lev-
els of the system. A hierarchical design approach involves
first specifying a rough outline of a system and then succes-
sively refining the outline. This begins with a definition of
desired system behavior on the basis of the operating objec-
tives.

This paper aims at developing a method of construct-
ing a batch control system model in a hierarchical manner
and operating batch processes using the constructed model.
In Sect. 2 we present a hierarchical modeling framework
to represent the information about process and plant. In

2896
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

Sect. 3, we develop a method of constructing and verifying
a hierarchical batch control system model. We present how
to operate batch processes using the constructed model in
Sect. 4 and show an example in Sect. 5.

2. Specification of Batch Control

To easily cope with the frequent modifications of products to
be produced and batch plant configurations, a batch control
system must be flexible. As stated above we classified the
available information to batch control system design into the
following three categories and presented a modeling frame-
work for batch control systems [11].

(1) Process specification
The process information called a recipe contains the

knowledge about process-related tasks to define the produc-
tion requirements for a specific product, but not the knowl-
edge about a plant to be used. In this paper, we define a
recipe as a partially ordered set of tasks as shown in Fig. 1.
Roughly speaking, a recipe is described by a graph consist-
ing of a set of nodes representing tasks and a set of arcs
representing precedence relations between two tasks. For
example, a recipe r1 implies that two tasks t1 and t2 are se-
quentially carried out and again t1 is carried out. A recipe
r2 implies that two tasks t11 and t12 are concurrently carried
out and then t13 is carried out.

The recipe at the highest level defines the rough outline
of strategy for carrying out major tasks such as reaction, sep-
aration, heating, filtration, drying, etc. An upper-level task
may be developed into a partially ordered set of lower-level
tasks. Every lower-level recipe defines the refinement of an
upper-level task. In Fig. 1 recipes r2 and r3 are refinements
of tasks t1 and t2, respectively. We call a set of recipes a
process specification.

(2) Plant specification
The plant information includes a potentially available

piece of processing/storage equipment which is used for
production. It contains the information about processing
units, storage vessels, sensors and actuators. Since batch
control handles logical aspects of operations, the behavior
of a batch control system cannot be described by differential
equations. Logical operations are carried out by controlling
execution of operations. In this paper, we define a func-
tion as a partially ordered set of operations. Similar to a
recipe, a function is described by a graph consisting of a set
of nodes representing operations and a set of arcs represent-
ing precedence relations between two operations. We call a
set of functions a plant specification. A plant specification
can also be described in a hierarchical manner as shown in
Fig. 2.

(3) Schedule information
The schedule information contains such information as

when or in what order the products are to be produced, and
what equipment is to be used. The tasks in a recipe are
carried out by executing the operations in a function. The

Fig. 1 Process specification.

Fig. 2 Plant specification.

t11 �→ o5

t12 �→ o3

t13 �→ o4

t21 �→ o6

t22 �→ o2

t23 �→ o7

t24 �→ o8

Fig. 3 Schedule information.

schedule information links the process specification to the
plant specification. An example of schedule information is
shown in Fig. 3. For example, t11 �→ o5 implies that a task
t11 in Fig. 1 is carried out by the execution of an operation
o5 in Fig. 2.

3. Modeling of Batch Control System

3.1 Representation of Process and Plant Models

If we view that the arrival of raw material, start of process-
ing, completion of processing, discharge of product, etc. oc-
cur at asynchronous discrete instants of time, the evolution
of a batch control system can be regarded as a discrete event
system. A Petri net is a useful modeling tool to describe
a discrete event system with interacting concurrent compo-
nents. Therefore, we use a hierarchical Petri net to describe
process and plant models.

YAJIMA et al.: CONTROL OF BATCH PROCESSES BASED ON HIERARCHICAL PETRI NETS
2897

Fig. 4 Process model.

When we describe recipes (functions) by Petri nets,
tasks (operations) are modeled by transitions, and sequences
of tasks (sequences of operations) are modeled by sequences
of transitions. A hierarchical Petri net is an extended Petri
net in which transitions can be developed into more detailed
subnets in a hierarchical manner. An example of hierarchi-
cal Petri net is shown in Fig. 4. A transition t1 in the upper-
level Petri net N1 is developed into a lower-level subnet N2,
and t2 into N3. When the firing of t1 starts, the execution of
N2 starts. When the execution of N2 is complete, the firing
of t1 is complete. The basic motivation of using a hierarchi-
cal Petri net is that it can correctly represent various logical
behavior in a hierarchical manner.

Petri net languages have frequently been used to de-
scribe the behavior of Petri nets but they cannot correctly
describe the concurrent Petri net behavior. The two transi-
tions b and c in Na shown in Fig. 5 can fire concurrently,
while they cannot fire concurrently in Nb. However, the
two nets Na and Nb generate the same Petri net language
{ε, a, ab, ac, abc, acb} (ε : empty word) because Petri net
languages force all transitions into a linear ordering. To de-
scribe the concurrent Petri net behavior, Grabowski applied
partial languages to the description of Petri net behavior
[14]. A partial language is a set of partial words each of
which is a partially ordered multisets over a set of transi-
tions. A set of all partial words generated by a Petri net N
is called a Petri net partial language, denoted by PL(N).

The partial word a ✏✏✶
���

b
c in PL(Na) in Fig. 5 shows the con-

current behavior. Figure 5 shows that the difference of the
behavior of Na from that of Nb can be represented by partial
languages.

The recipes in Fig. 1 and the functions in Fig. 2 are es-
sentially regarded as partial languages. If the desired be-
havior can be specified as a partial language, then it may
possible to construct a Petri net whose partial language is
the specified partial language.

Before showing a Petri net construction problem, we
discuss the properties of Petri net partial languages [9].

i) If a Petri net N generates a partial word p, then it also
generates a set of prefixes of p, pPREF (partial words com-

Fig. 5 Petri net partial languages.

posed of leading transitions of p). For PL(Na) in Fig. 5,

a ✏✏✶
���

b
c ∈ PL(Na), then a, a ✲b, a ✲c ∈ PL(Na).

ii) If N generates a partial word p with n concurrent tran-
sitions {t1, t2, · · · , tn}, then it also generates a set of partial
words each of which is obtained by forcing {t1, t2, · · · , tn}
into a linear ordering. For PL(Na), a ✏✏✶

���
b
c ∈ PL(Na), then

a ✲b ✲c, a ✲c ✲b ∈ PL(Na). The partial word a ✏✏✶
���

b
c is

richest in concurrency. A set of the partial words richest in
concurrency is called an activity of N, denoted by FP(N).
For Na in Fig. 5,

FP(Na) = {ε, a, a ✲b, a ✲c, a ✏✏✶
���

b
c }.

PL(Na) can be known from FP(Na).

In addition to the above two properties, we denote the
restriction of a partial word p over a set of transitions T ′ to
T (⊆ T ′) by p|T . p|T is a set of partial words obtained by
masking the transitions contained in T ′ − T (T ′ − T denotes
a difference set).

Based on the above discussion, we formulated a Petri
net construction problem P(X) in the following form [15].

Petri net construction problem P(X):
Given a partial language X over a set of transitions T as a
specification, construct a Petri net N such that

XPREF = FP(N)|T (1)

where
XPREF =

⋃
p∈X

pPREF

FP(N)|T =
⋃

p∈FP(N)

p|T

It should be noted that XPREF is not equal to FP(N), but to
FP(N)|T . An extra transition which appears in N but does
not in T is called an auxiliary transition. It may be possi-
ble to construct a Petri net such that XPREF = FP(N)|T by
using auxiliary transitions even if we cannot construct a net
such that XPREF = FP(N). The problem P(X) implies that

2898
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

Fig. 6 Solutions of P(r3).

Fig. 7 Plant model.

we construct a Petri net which preserves only the sequen-
tiality and concurrency written in the specification X when
masking auxiliary transitions.

We showed the solvability of P(X) and its solution
techniques [7]–[9], [15]. The basic idea of solving the prob-
lem P(X) is that we first divide X into small specification
pieces, then construct subnets based on the divided pieces
and last obtain a solution net by composing the subnets. The
solution net of P(X) is not always determined uniquely. For
the recipe r3 and the transition set {t21, t22, t23, t24} in Fig. 1,
both of the Petri nets, N3 and N′3 shown in Fig. 6 are solu-
tions of the problem P(r3). As shown in Fig. 6, N3 and N′3
guarantee the specified behavior r3 if we mask the auxiliary
transitions ε2 and ε3.

The nets N1 and N2 in Fig. 4 also guarantee r1 and r2,
respectively. Thus the hierarchical Petri net in Fig. 4 is a
process model for the process specification in Fig. 1. The
hierarchical Petri net in Fig. 7 is similarly a plant model for
the plant specification in Fig. 2.

3.2 Construction of Batch Control System Model

As stated above, the linking of a process model to a plant
model is done by deciding what equipment is to be used to
execute the specific recipe. Since tasks are carried out by op-
erations, the correspondence between tasks and operations
defines batch control execution. Let NR be a Petri net based
process model and NF a Petri net based plant model. The
schedule information about equipment assignment is repre-
sented by the correspondence Γ from the transitions in NR

to those in NF , namely

Γ : T (NR)→ T (NF) ,

where T (NR) and T (NF) are the sets of transitions in NR and
NF , respectively.

A batch control system model is constructed as fol-
lows:

Batch control system model construction procedure:
Step 1: Construct a hierarchical Petri net based process

model NR and a plant model NF by solving Petri net
construction problems.

Step 2: Decide the correspondence Γ : T (NR) → T (NF)
using schedule information about equipment assign-
ment.

Step 3: Construct a Petri net NR ⊕ NF by piling the corre-
sponding transitions in T (NR) and those in T (NF),
where ⊕ stands for merging the transitions in NR and
NF according to Γ.

Step 4: Eliminate unnecessary transitions, places and arcs
from NR ⊕ NF .

Step 5: Add subnets representing schedule information
about production order, resource constraints, etc. to
the hierarchical Petri net obtained in Step 4.

Let NC be a hierarchical Petri net based batch control
system model obtained in Step 5. A system model NC con-
structed from the process model in Fig. 4, the plant model
in Fig. 7 and the schedule information in Fig. 3 is shown in
Fig. 8.

3.3 Verification of Batch Control System Model

To correctly accomplish tasks written in recipes, verification
of batch control system models is necessary. Execution of
consistent operating procedures transfers the state of a batch
process from a specified initial state to a desired final state.
The state of a Petri net is given by its marking. To check
the logical consistency of batch control, we apply the Petri
net reachability analysis to the verification of batch control
system models.

If a desired final marking M f is reachable from a spec-
ified initial marking M0, then

M f = M0 + Dx (2)

where D is the incidence matrix of a Petri net based control

YAJIMA et al.: CONTROL OF BATCH PROCESSES BASED ON HIERARCHICAL PETRI NETS
2899

Fig. 8 Batch control system model.

system model NC whose entry di j denotes the change of the
number of tokens in the i-th place as the result of firing j-th
transition, and x is a nonnegative integer vector whose en-
try x j denotes the number of times that j-th transition must
fire to transform M0 to M f . The existence of solutions, in
nonnegative integers, of Eq. (2) is a necessary condition for
reachability in NC . The contraposition of this provides the
following sufficient condition for nonreachability;

“If Eq. (2) has no solutions in nonnegative inte-
gers, then M f is not reachable from M0.”

To start of batch productions, the initial state of a batch
plant is specified. However, its desired final state is not nec-
essarily specified in advance of batch productions. In this
situation, all the entries of M f are not necessarily known.
By partitioning M f in the form

M f =

(
M f 1

M f 2

)

Eq. (2) becomes(
M f 1

M f 2

)
=

(
M01

M02

)
+

(
D1

D2

)
x (3)

where M f 2 is an unknown constant vector, and M01, M02,
M f 1, D1 and D2 are known constant vectors and matrices.

The solution x of Eq. (3) is obtained by solving the follow-
ing homogeneous equations

(
D1 0 M01 − M f 1

D2 −I M02

)
x

M f 2

1

 = 0 (4)

where I is the identity matrix. Martinez’s method can be
used to find the solutions, in nonnegative integers, of Eq. (4).
The consistency of the batch control system model NC is
verified by checking if Eq. (4) has a solution in nonnegative
integers or not [11].

4. Control of Batch Processes

4.1 Synthesis of Procedural Controllers

A hierarchical Petri net has its own advantages as compared
with the conventional procedural control programming lan-
guages such as Ladder diagrams, SFCs (Sequential Func-
tion Chart), decision tables, etc. It can explicitly describe
the procedural control strategies and the hierarchical con-
trol structures. We presented a procedural controller syn-
thesis method and developed C/E net based sequence con-
troller synthesis support tool, CESeC [16]. Procedural con-
trollers are synthesized by directly implementing a hierar-

2900
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

chical Petri net based batch control system model NC in per-
sonal computers.

A batch control system model NC is executed by the
synchronization of the controlled plant with the procedural
controllers. A procedural controller sends control signals
to the plant as a corresponding transition fires. It also en-
ables a transition to fire as it receives sensor signals from
the plant. There is no measure of time in a Petri net but
tasks and operations represented by transitions take variable
amounts of time. Therefore, information about lapse of time
is necessary for synthesis of procedural controllers. In ad-
dition, information about input/output devices is also nec-
essary for synthesis of controllers. CESeC helps a designer
utilize time and input/output information.

4.2 Fault Detection of Batch Processes

A Petri net based system model NC is not only used for batch
control but also used for fault detection. For the incidence
matrix D in Eq. (2), a nonnegative column integer vector
such that

tyD = 0 (5)

is called a place-invariant (p-invariant). A p-invariant y sat-
isfies that

tyM = tyM0 (6)

where M0 is an initial marking and M is any reachable
marking from M0. Every time any process variable is mea-
sured, the marking M in Eq. (6) is renewed. Basic idea of
fault detection is to verify if Eq. (6) holds or not with ev-
ery renewal of marking. A set of places corresponding to
nonzero entries in y is called a support of y. If Eq. (6) does
not hold then a fault which concerns the process variables
corresponding to the support of y, may have occurred. Equa-
tion (6) is regarded as a constraint imposed on multiple pro-
cess variables.

1) Existence of unobservable process variables
All process variables are not necessarily observable.

By partitioning M into MO corresponding to observable
process variables and MU to unobservable ones, namely

M =
(

MO

MU

)
, Eq. (6) becomes

tyO MO + tyU MU = tyM0 (7)

where yO is a part of y corresponding to MO and yU a part
of y corresponding to MU . We assume that M0 is known.
If we estimate the upper and lower bounds of unobservable
process variables, then the inequality,

MU ≤ MU ≤ MU (8)

holds where MU is a vector of upper bounds and MU a vec-
tor of lower bounds. Inequality (8) derives that the first term
in the left hand side of Eq. (7), tyO MO must satisfy

tyM0−tyU MU ≤ tyO MO≤ tyM0−tyU MU (9)

Thus, if there exist unobservable process variables, Ineq. (9)
instead of Eq. (6) is verified every time any observable pro-
cess variable is measured. Faults of batch processes are de-
tected by verification of Ineq. (9).

2) Detection of subsystem conflict
Figure 8 shows that the transitions o3 and o4 in NC2

are developed into the Petri nets NC3 and NC4, respectively.
Applying the p-invariant analysis to NC3 and NC4, we obtain
the following equations.

M(p31) + M(p34) + 2M(p35) + 2M(p36)

+ M(p37) = 2 (10)

M(p41) + M(p42) + M(p43) = 1 (11)

Equations (10) and (11) are the constraints imposed on the
behavior of NC3 and that of NC4, respectively. If Eq. (10)
(Eq. (11)) does not hold then a fault may occur in the sub-
system S 3 (S 4) modeled by NC3 (NC4). Equations (10) and
(11) are useful to detect a fault occurring in each subsys-
tem. However, even if both of S 3 and S 4 are individually
normal, the subsystem S 2 modeled by NC2 which involves
S 3 and S 4 may exhibit abnormal behavior. Therefore, it is
important to clarify the conditions for S 3 and S 4 to normally
behave under the constraint imposed on S 2.

Applying the p-invariant analysis to NC2, we obtain the
following equation.

M(p1) + M(p2) + M(p3) + M(p4) = 1 (12)

As stated in Sect. 3, when the firing of o3 in NC2 starts, the
execution of NC3 starts. When the execution of NC3 is com-
plete, the firing of o3 is complete. A token in p2 moves to
p31 with the start of o3 firing and a token in p34 moves to p3

with the completion of NC3 execution. The move of a token
in p3 is the same as that in p2. Equation (12) indicates that
two transitions o3 and o4 cannot fire at the same instant, that
is two subsystems S 3 and S 4 cannot simultaneously work.
From Eqs. (10)–(12) we obtain the following inequality.

M(p34) + 2M(p35) + 2M(p36) + M(p37)

+ M(p42) + M(p43) ≤ 2 (13)

Inequality (13) is the constraint imposed on the cooperative
behavior of S 3 and S 4. If S 3 and S 4 require common re-
sources we must carefully decide their conflict resolution
strategy. We devloped a method of finding out conflicts
based on subsystem p-invariants.

5. Example

To show an example of batch control system design, we con-
sider the plant shown in Fig. 9 which is often used for the
benchmark plant in the field of process systems engineer-
ing. The details of the plant have been described in the re-
port published by the JSPS’s 143rd Committee on Process
Systems Engineering [17].

YAJIMA et al.: CONTROL OF BATCH PROCESSES BASED ON HIERARCHICAL PETRI NETS
2901

Fig. 9 Controlled plant.

The process information, plant information and sched-
ule information are as follows:

Process information
Two kinds of product, P and Q are produced from two

raw materials, R1 and R2. The outline of processes is as
follows:

Production of P:
1: Mix R1 and R2 to produce the mixture MP.
2: Charge MP to the first polymerization reactor. After heat-

ing and stirring MP, settle it to produce the intermediate
product IP.

3: Charge IP to the second polymerization reactor. Heat and
stir IP to produce the final product P. Then transport P to
a storage tank.

Production of Q:
1: Mix R1 and R2 to produce the mixture MQ.
2: Charge MQ to the first polymerization reactor. Heat and

stir MQ to produce the intermediate product IQ.
3: Charge IQ to the second polymerization reactor filled with

R2. Heat and stir IQ to produce the final product Q. Then
transport Q to a storage tank.

Plant information
The plant for production is illustrated in Fig. 9. It con-

sists of three polymerization subsystems, A, B and C. Each
subsystem has a mixing tank and two polymerization reac-
tors. Every polymerization reactor is furnished with a tem-
perature controller, heater and stirrer. Although the tanks

and reactors carry out tasks in parallel on several batches at
the same time, it is not possible to supply simultaneously
one raw material to multiple tanks.

Schedule information
The raw materials R1 and R2 are stored in the feed tanks

Tank1 and Tank2, respectively. The products P and Q are
produced in the polymerization subsystems A and B, respec-
tively.

Before designing a batch control system, we first built a
plant simulator exhibiting the behavior of the plant in Fig. 9
using Visual Modeler (Omega Simulation Co., Ltd.) which
is a dynamic simulation tool. The plant simulator contains
46 discrete variables, such as on-off state of relay switch,
open-closed state of valve, etc. and 16 continuous variables,
such as temperature, pressure, flow rate, etc.

We next constructed the process and plant models by
solving the Petri net construction problems stated in Sect. 3
and then synthesized a batch control system model accord-
ing to the procedure in Sect. 3. The Petri net based control
system model is composed of 116 places and 84 transitions
and structured with four hierarchical levels. The hierarchi-
cal Petri net in Fig. 10 is a part of the control system model.

1) Verification of control system behavior
To confirm the effectiveness of the proposed design ap-

proach, we examined the behavior of the controlled plant
under the constructed control system model. As shown in
Fig. 11 the control of the plant was executed by the synchro-

2902
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

PP (PQ) : Production of final product P (Q)
MXP (MXQ) : Production of mixture MP (MQ)
RP1 (RQ1, RQ2) : Polymerization reaction in A1 (B1, B2)
HMP (HMQ) : Heating of MP (MQ)
SMP (SMQ) : Stirring of MP (MQ)
Ci, j : Charge of intermediate product from equipment i to equipment j

Fig. 10 Batch control system model.

Fig. 11 Control of polymerization plant.

nization of the control system model with the plant simula-
tor. A part of the control results is shown in Fig. 12. The
chart at the second level shows that the two operations, RQ1

(polymerization reaction in the first reactor B1) and CT2,B2

(charge of raw material R2 to the second reactor B2) are car-
ried out in parallel after the operation MXQ (mixing of R1

and R2 in BM) is complete. The operation RQ1 is roughly di-
vided into three operations, CBM,B1 (charge of mixture MQ

to B1), HMQ (heating of MQ) and SMQ(stirring of MQ). The
chart at the third level shows that CBM,B1 is first carried out
then the two operations HMQ and SMQ start at the same time.
A series of simulation runs were repeatedly executed by set-

YAJIMA et al.: CONTROL OF BATCH PROCESSES BASED ON HIERARCHICAL PETRI NETS
2903

Fig. 12 Control results.

ting various physical quantities and we confirmed that the
designed batch control system worked well.

2) Detection of subsystem conflict
We show an example of subsystem conflict detections

stated in Sect. 4. The operations, MXQ (mixing in BM) and
RQ1 (polymerization reaction in B1) in Fig. 10 are developed
into the detailed nets, respectively. Applying the p-invariant
analysis to the Petri nets at the third level, we obtain the
following equations.

Mixing in BM:

M(p1) + M(p2) + M(p3) + M(p4) = 1 (14)

Polymerization reaction in B1:

2M(p5) + M(p6) + M(p7) + M(p8)

+ M(p9) + 2M(p10) = 2 (15)

Equation (14) indicates that the raw materials must be
charged to BM without interruption and Eq. (15) indicates
that the operations with respect to B1 must be carried out
with every product. Although Eqs. (14) and (15) are inde-
pendent each other, we obtain the following inequality from
them using the p-invariant of the Petri net at the second level.

2M(p2) + 2M(p3) + 2M(p4) + M(p6) + M(p7)

+ M(p8) + M(p9) + 2M(p10) ≤ 2 (16)

Inequality (16) prohibits the simultaneous execution of two
operations, CT1,BM (inflow of raw materials to BM) and
CBM,B1 (outflow of intermediate product from BM). In this
way the control constraints imposed on multiple subsystems
are obtained from individual subsystem constraints by the p-
invariant analysis.

6. Conclusion

A batch process is a discontinuous process with many in-
teracting concurrent components. Although the design of a
batch control system is one of the most important issues in
the field of process systems engineering, it is a cumbersome
and error-prone problem. In this paper, we have developed
a method of constructing batch control system models in
a hierarchical manner and operating batch processes using
the constructed models. To attain correct and efficient batch
managements, it is desired that the plan, design and control
of batch processes are mutually investigated in close coop-
eration under a common model. We have shown that a Petri
net is a candidate for a batch process common model.

References

[1] E.C. Yamalidou, E.P. Patsidou, and J.C. Kantor, “Modeling discrete-
event dynamical systems for chemical process control—A survey
of several new techniques,” Computers and Chemical Engineering,
vol.14, no.3, pp.281–299, 1990

[2] P.J. Ramadge and W.M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol.77, no.1, pp.81–98, 1989.

[3] A. Sanchez, Lecture Notes in Control and Information Sciences 212,
Springer-Verlag, London, 1996.

[4] M. Tittus and B. Lennartson, “Hierarchical supervisory control for
batch processes,” IEEE Trans. Control Syst. Technol., vol.7, no.5,
pp.542–554, 1999.

[5] S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubrama-
nian, and K.E. Arzen, “Automating operating procedure synthesis
for batch processes: Part I. Knowledge representation and planning
framework,” Computers and Chemical Engineering, vol.22, no.11,
pp.1673–1685, 1998.

[6] S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubrama-
nian, and K.E. Arzen, “Automating operating procedure synthesis
for batch processes: Part II. Implementation and application,” Com-
puters and Chemical Engineering, vol.22, no.11, pp.1687–1698,
1998.

[7] S. Hashizume, T. Suzuki, K. Onogi, and Y. Nishimura, “A con-
struction problem of condition/event-nets and its solvability,” Trans.
SICE, vol.28, no.5, pp.632–639, 1992.

[8] S. Hashizume, A. Kaneshige, K. Onogi, and Y. Nishimura, “Con-
trol of discrete events using condition/event net models,” Kagaku
Kogaku Ronbunshu, vol.22, no.5, pp.1070–1078, 1996.

[9] Y. Nishimura, K. Onogi, and S. Hashizume, “Partial languages and
their application to theory of discrete event systems,” Trans. IEE
Japan, vol.118-D, no.2, pp.158–163, 1998.

[10] K. Onogi, S. Hashizume, and Y. Nishimura, “Design of sequential
control systems based on condition/event nets,” Proc. International
Symposium on Design, Operation and Control of Next Generation
Chemical Plants (PSE Asia 2000), pp.261–266, Kyoto, Japan, Dec.
2000.

[11] T. Yajima, S. Hashizume, K. Onogi, and Y. Nishimura, “Establish-
ment of operational procedures for batch control,” Kagaku Kogaku
Ronbunshu, vol.28, no.3, pp.262–267, 2002

[12] SP88 Committee, Batch Control Part 1: Models and Terminology,
ISA-The Instrumentation, Systems, and Automation Society, North
Carolina, 1995.

[13] SP88 Committee, Batch Control Part 2: Data Structures and Guide-
lines for Languages, ISA-The Instrumentation, Systems, and Au-
tomation Society, North Carolina, 2001.

[14] J. Grabowski, “On partial language,” Fundamenta Informaticae,
vol.4, no.2, pp.427–498, 1981.

2904
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.11 NOVEMBER 2004

[15] S. Hashizume, Y. Mitsuyama, Y. Matsutani, K. Onogi, and Y.
Nishimura, “Construction of Petri nets from a given partial lan-
guage,” IEICE Trans. Fundamentals, vol.E79-A, no.12, pp.2192–
2195, Dec. 1996.

[16] S. Hashizume, S. Yomogida, K. Ueda, T. Yajima, K. Onogi, and Y.
Nishimura, “Modular synthesis of sequential control systems based
on condition/event nets,” Kagaku Kogaku Ronbunshu, vol.26, no.3,
pp.443–449, 2000.

[17] 143rd Commitee on Process System Engineering, Technical Report
of WS no.20 for Batch Process Modeling for Production Control,
Japan Society for the Promotion of Science (JSPS), Tokyo, 1999.

Tomoyuki Yajima received B.E., M.E. and
Dr.(Eng.) degrees in chemical engineering from
Nagoya University in 1989, 1991 and 1994, re-
spectively. He is currently a reseach associate at
the Department of Chemical Engineering, Na-
goya University. His research interests include
design of batch control systems and simulation
of macroreactor. He is a member of SICE and
SCEJ (Society of Chemical Engineers, Japan).

Takashi Ito received B.E. and M.E. degrees
in chemical engineering from Nagoya Univer-
sity in 2001 and 2003, respectively. He is
currently a doctor course student at Graduate
School of Engineering, Nagoya University. His
research interests include batch control system
framework and scheduling of real-time systems.
He is a member of IPSJ and SCEJ (Society of
Chemical Engineers, Japan).

Susumu Hashizume received B.E., M.E.
and Dr.(Eng.) degrees in systems engineer-
ing from Toyohashi University of Technology
in 1986, 1988 and 1992, respectively. From
1992 to 1998, he was a reseach associate at the
Department of Productin System Engineering,
Toyohashi University of Technology. He is cur-
rently an assistant professor at the Department
of Chemical Engineering, Nagoya University.
His research interests include design of hybrid
systems and control of discrete event systems.

He is a member of SICE, IPSJ and SCEJ (Society of Chemical Engineers,
Japan).

Hidekazu Kurimoto received B.E., M.E.
and Dr.(Eng.) degrees in chemical engineer-
ing from Nagoya University in 1979, 1981 and
1986, respectively. From 1986 to 1993, he was
a reseach associate at the Department of Chem-
ical Engineering, Nagoya University. He is cur-
rently an associate professor at the Department
of Computer Science and Mathematical Infor-
matics, Nagoya University. His research in-
terests include quality systems architecture and
management based on process thinking. He is a

member of SICE and SCEJ (Society of Chemical Engineers, Japan).

Katsuaki Onogi received B.E., M.E. and
Dr.(Eng.) degrees in chemical engineering from
Nagoya University in 1973, 1975 and 1980, re-
spectively. From 1978 to 1980, he was a re-
seach associate at the Department of Chemical
Engineering, Nagoya University. From 1980 to
1996, he was an assistant professor, associate
professor and professor at the Department of
Productin System Engineering, Toyohashi Uni-
versity of Technology. Since 1996, he has been
a professor at the Department of Chemical En-

gineering, Nagoya University. His research interests include control of dis-
crete event systems and design of batch control systems. He is a member
of SICE, ISCIE and SCEJ (Society of Chemical Engineers, Japan).

