
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.11 NOVEMBER 2005
2989

PAPER Special Section on Concurrent/Hybrid Systems: Theory and Applications

Integration between Scheduling and Design of Batch Systems Based
on Petri Net Models

Takashi ITO†, Nonmember, Susumu HASHIZUME†a), Member, Tomoyuki YAJIMA†b), Nonmember,
and Katsuaki ONOGI†c), Member

SUMMARY A batch process is a discontinuous and concurrent process
which is suitable for multi-product, small-sized production. The distinctive
feature of a batch process is that various decision making processes, such as
scheduling, design, operation, etc. are strongly connected with each other.
Interaction among these processes is necessary to dynamically and flexibly
cope with a variety of unplanned events. This paper aims at presenting a
batch scheduling technique based on Petri net models and showing the pos-
sibilities of integration between scheduling and design of batch processes.
For this purpose, it first views the behavior of a batch operating system as a
discrete event system and presents a Petri net model to be used for schedul-
ing, design and operation. It next formulates batch scheduling problems
based on Petri net partial languages, proposes their solution technique and
last discusses the integration between scheduling and design of batch sys-
tems.
key words: scheduling, batch process, concurrent system, Petri net, inte-
gration

1. Introduction

A batch process is a discontinuous process from which the
output product appears in discrete batches or quantities. It is
also a concurrent process which consists of many interact-
ing units to carry out tasks in parallel on several batches at
the same time. A batch operating system provides for batch
production by controlling variables in the regulatory control,
discrete control and sequential control domains [1]. Since
multiple processing functions are often performed in one
batch unit, batch processes are suitable for multi-product,
small-sized production. To fully exhibit the ability of batch
processes, a batch operating system must also be flexible
enough to cope with a variety of unplanned events, such as
arrival of new orders, change of production plans, alteration
of control strategies, etc. To develop consistent and flexible
batch operating systems, it is desired that scheduling, de-
sign and operation are mutually performed in close cooper-
ation. Integration between scheduling, design and operation
makes the dynamic and flexible batch production possible.
However, integration is not only achieved through sharing of
information, but also through utilization of common mod-
els used for scheduling, design and operation. Such models

Manuscript received March 30, 2005.
Manuscript revised June 6, 2005.
Final manuscript received July 11, 2005.
†The authors are with the Department of Chemical Engineer-

ing, Nagoya University, Nagoya-shi, 464-8603 Japan.
a) E-mail: hashi@nuce.nagoya-u.ac.jp
b) E-mail: yajima@nuce.nagoya-u.ac.jp
c) E-mail: onogi@nuce.nagoya-u.ac.jp

DOI: 10.1093/ietfec/e88–a.11.2989

must, at least, clearly and correctly describe the behavior of
a batch process. The final goal of our study on batch sys-
tems is to develop a methodology for integration between
scheduling, design and operation based on common mod-
els.

Systematic approaches to design of batch systems have
not made the remarkable progress. A major difficulty in
treating batch processes is the lack of modeling techniques.
Although ISA’s SP88 Committee leads a significant amount
of work around standards for batch control in the interna-
tional arena, it intends only to establish the frameworks
called S88 standards for batch control [2], [3]. Recently,
some work on batch controller synthesis based on Discrete
Event System Theory was done. Sanchez applied the Su-
pervisory Control Theory to batch control. He did not, how-
ever, deal with concurrent nature in batch processes, because
his model was based on formal languages and automata
[4]. Tittus also applied the Supervisory Control Theory to
synthesis of hierarchical batch controllers, but the problem
how to generate a control specification was not solved [5].
Although Viswanathan et al. developed a framework for
synthesizing control procedures for batch processes, their
model, Grafchart, could not explicitly represent the states
of batch processes [6], [7]. Owing to both modeling power
and decision power, a Petri net is a candidate for a common
model of batch system. Wang et al. developed a method
of generating batch control procedures on the basis of Petri
nets. They, however, separated batch control problem from
batch scheduling problem [8]. We formulated a discrete
event system design problem based on Petri net partial lan-
guages and applied it to batch system design problem [9]–
[12]. We also proposed a fault detection technique for batch
systems described by Petri nets [13], [14].

The large number of raw materials and products, the
short lead times of product orders, and the constraints im-
posed on production equipment and quality considerations
make batch scheduling difficult. Batch production requires
greater scheduling opportunities than does continuous pro-
duction. In addition, it creates the need to reschedule be-
cause of various unplanned events [1]. Much work has been
done on batch scheduling and various techniques, mathe-
matical programming based, simulation based, knowledge
based techniques, have been applied [15], [16]. In order
to dynamically and flexibly cope with unplanned events,
a batch scheduling system is directly connected with other
systems including process control, process monitoring, fault

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



2990
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.11 NOVEMBER 2005

detecting systems, etc. Utilization of common models
makes this possible. In this paper we present a batch
scheduling technique based on Petri net common models
and show the possibilities of integration between schedul-
ing and design of batch systems.

First, we present a common model of batch system in
Sect. 2 and show batch operation using it in Sect. 3. Next, we
formulate batch scheduling problems based on the model in
Sect. 4 and propose their solution technique in Sect. 5. Last,
we show an example and discuss the possibilities of integra-
tion in Sect. 6 and in Sect. 7.

2. Modeling of Batch Operating System

2.1 Specification of Batch System

To easily cope with the frequent changes of product orders,
production plans, control strategies, etc. information neces-
sary to design of batch operating systems must be managed
in a systematized manner. Being conformable to the S88
standards for batch control stated in Sect. 1, we classified
the information into the following three categories [12]:

(1) Process information
The process information called a recipe contains the

knowledge about process-related tasks to define the pro-
duction requirements for a specific product, but not the
knowledge about a plant to be used.

(2) Plant information
The plant information includes a potentially avail-

able piece of processing/storage equipment which is used
for batch production. It contains the knowledge about op-
erations of processing units, storage vessels and actuators.

(3) Schedule information
The schedule information called a production plan

contains the long-term schedule information as when or
in what order the products are to be produced, and what
equipment is to be used. It links the process information
to the plant information.

Since batch control handles logical aspects of opera-
tions, the behavior of a batch operating system cannot be
described by differential equations. If we view that arrival
of raw material, start of processing, completion of process-
ing, discharge of product, etc. are events, the evolution of
a batch system can be regarded as a discrete event sys-
tem. In the previous papers we defined process and plant
specifications as partially ordered sets of tasks and opera-
tions, respectively [12]–[14]. Each specification is a set of
graphs associated with one another in a hierarchical manner
as shown in Fig. 1. Every graph consists of nodes represent-
ing tasks (operations) and arcs representing precedence re-
lations among the tasks (operations). A graph at higher level
defines the rough outline of major tasks (operations), such
as reaction, separation, heating, filtration, drying, etc. A
high-level task (operation) may be developed into a partially
ordered set of low-level tasks (operations). Every low-level

(a) Process specification.

(b) Plant specification.

t11 �→ o5 t21 �→ o3

t12 �→ o7 t22 �→ o9

t13 �→ o6 t23 �→ o8

t14 �→ o1 t24 �→ o2

t25 �→ o4

(c) Schedule specification.

Fig. 1 Specification.

graph defines the refinement of a high-level task (operation).
In Fig. 1(a) the recipe r1 implies that two tasks t1 and

t2 are sequentially carried out and again t1 is carried out.
The recipe r2 implies that after the execution of task t11 two
tasks t12 and t13 are concurrently carried out and then t14

is carried out. The recipes r2 and r3 are the refinements of
tasks t1 and t2, respectively. Figure 1(b) shows an example
of plant specification.

Tasks described in process specifications are carried
out by operations described in plant specifications. We de-
fined schedule specification as a correspondence from a set
of tasks to that of operations. Figure 1(c) shows an example
of schedule specification. For example, t11 �→ o5 indicates
that the task t11 is carried out by the operation o5.

2.2 Common Model of Batch System

Since a Petri net is a useful modeling tool to describe a dis-
crete event system with interacting concurrent components,
we applied it to representation of the above specifications.
Grabowski argued that a partial language could correctly de-
scribe the concurrent behavior of a Petri net [17]. A partial



ITO et al.: INTEGRATION BETWEEN SCHEDULING AND DESIGN OF BATCH SYSTEMS BASED ON PETRI NET MODELS
2991

(a) Process model.

(b) Plant model.

Fig. 2 Model.

language is a set of partial words each of which is a partially
ordered multiset over a set of transitions. Based on partial
languages, we investigated the following Petri net construc-
tion problem [9], [10]:

Petri net construction problem:
Given a partial language as a specification, construct a Petri
net whose partial language is consistent with the specifica-
tion.

Process and plant models are obtained from process
and plant specifications, respectively, by solving Petri net
construction problems. The hierarchical Petri nets NR and
NL in Fig. 2 guarantee the desired behavior described in the
process and plant specifications in Fig. 1. Schedule speci-
fication is also transformed into a correspondence Γ which
maps the transitions of NR to those of NL, namely

Γ : T (NR)→ T (NL)

where T (NR) and T (NL) are sets of transitions of NR and that
of NL, respectively.

A common model of batch operating system is con-
structed from process and plant models and a schedule spec-

Fig. 3 Common model of batch operating system.

ification, according to the following procedure. Figure 3
shows a common model N constructed from NR and NL in
Fig. 2 and Γ in Fig. 1(c).

Common model construction procedure:
First, a hierarchical Petri net based process model NR and
a plant model NL are constructed by solving Petri net
construction problems. Second, the correspondence Γ :
T (NR)→ T (NL) is determined using schedule specification.
Then, a Petri net NR ⊕ NL is constructed by piling the corre-
sponding transitions in T (NR) and those in T (NL) according
to Γ. Last, unnecessary transitions, places and arcs are elim-
inated from NR ⊕ NL, in order to obtain a common model N
of batch operating system.

3. Batch Operation Based on Common Model

3.1 Verification of Control Procedure

To transfer the state of a batch process from a specified ini-
tial state to a desired final state, control procedures must be
consistent. We applied the reachability analysis to verifica-
tion of validity of batch system models. If a desired final
marking Mf is reachable from a specified initial marking
M0, then

Mf = M0 + Dx (1)

where D is the incidence matrix of a Petri net common



2992
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.11 NOVEMBER 2005

model N whose entry di j denotes the change of the number
of tokens in the i-th place as the result of firing j-th transi-
tion, and x is a nonnegative integer vector whose entry x j

denotes the number of times that j-th transition must fire to
transform M0 to Mf . Necessary condition for control proce-
dures to be consistent is that Eq. (1) has solutions, in non-
negative integers.

Since all process variables are not always observable,
the final state is not completely specified in advance of batch
production, that is, all the entries of Mf are not necessarily
known. We presented an approach for verifying validity of
common models of batch systems with unobservable pro-
cess variables [12].

3.2 Detection of Process Fault

A Petri net based common model of batch system shown in
Sect. 2 is not only used for design of batch control, but also
for fault detection of batch processes. For any marking M
which is reachable from M0,

tyM = tyM0 (2)

where y is a place-invariant (p-invariant) and ty denotes the
transpose of y. Equation (2) shows a restriction on control
actions. We call this type of constraint expressed by Eq. (2)
an operational constraint. An operational constraint is
a kind of safety interlocks to prevent unsafe operations of
units. As an example of operational constraint, a feed valve
to a reactor must not open when the level in the reactor is
above the specified height. Operational constraints require
process variable monitoring. Every time any process vari-
able is measured, the marking M in Eq. (2) is renewed. Ba-
sic idea of fault detection is to verify if Eq. (2) holds or not
with every renewal of marking. If Eq. (2) does not hold then
a fault may have occurred. We also presented an approach
to fault detection when there existed unobservable process
variables [14].

The set of places corresponding to nonzero entries in a
p-invariant y is called the support of y and denoted by ‖y‖.
If k operational constraints do not hold, we can limit the
causes of fault to the process variables relative to

⋂k
l=1 ‖yl‖,

where yl is the p-invariant associated with the l-th opera-
tional constraint.

4. Batch Scheduling Based on Common Model

4.1 Formulation of Scheduling Problem

Scheduling is needed at different levels. Scheduling at
higher level is often called production planning. Various
mathematical programming techniques can be used for pro-
duction planning, where the horizons may be measured in
weeks or months. On the other hand, at lower level, dy-
namic and flexible scheduling is necessary to cope with un-
planned events. In this paper we investigate the scheduling
problem at lower level, based on the common model used
for operation in Sect. 3.

After this, we are interested in only task routings which
transfer the state of a batch system from a specified initial
state to a desired final state. We call such a task routing a
feasible task routing. A class of batch scheduling problems
we consider is as follows:

Optimal task routing search problem P:
Given an initial state and a set of desired final states of a
batch system, determine optimal feasible task routings and
values of process variables which attain an objective.

Since the Petri net N in Sect. 2 models a batch oper-
ating system which produces specified products according
to process, plant and schedule specifications, its partial lan-
guage represents the task (operation) routings potentially
available to batch production. We call a partial word which
transfers the marking of the net N from a specified initial
marking to a desired final making, a feasible partial word
of N. Then Problem P is transformed into the following
problem:

Optimal partial word search problem Q:
Given an initial marking and a set of desired final markings
of a Petri net common model, determine optimal feasible
partial words and values of decision variables which attain
an objective.

Problem Q is mathematically reformulated as the fol-
lowing optimization problem:

Optimal partial word search problem Q′:

min
pw,u

f (pw, u)

subject to pw ∈ Π(N) and u ∈ Ω
where f is an objective function, pw a feasible partial word
of a Petri net N, Π(N) a set of feasible partial words of N, u
a decision vector, and Ω a feasible region of u.

It should be noted that pw and u are not, in general, in-
dependent to each other. It assumes that decision variables
are associated with transitions of the net N. This implies
that only executions of tasks (operations) affect the objec-
tive of the system. If a decision variable u is associated with
a transition t, an objective function f is evaluated every time
t fires. For example, let t, u and f be a heating task, heating
temperature and the total amount of heat energy consump-
tion, respectively. Then the heat quantity obtained from the
current value of u is evaluated, every time the heating task
is carried out.

4.2 Search of Optimal Task Routing

Problem Q′ can be solved, in principle, by finding all fea-
sible partial words. Various graph search algorithms, such
as the shortest directed path algorithm, etc. are applied to
Problem Q′, according to the types of problems.

To show how to solve Problem Q′, we consider the
Petri net N1 shown in Fig. 4. The transitions of the net N1

represent the tasks. The processing times of each task are



ITO et al.: INTEGRATION BETWEEN SCHEDULING AND DESIGN OF BATCH SYSTEMS BASED ON PETRI NET MODELS
2993

Fig. 4 Petri net model.

Table 1 Task and its processing time.

Task Processing time
a 2
b 1
c 5
d u1(≥ 3)
e u2(≥ 2)
f 4

Fig. 5 Feasible partial words of N1.

given as shown in Table 1, where two processing times, u1

and u2 are variable. The problem to be solved is as follows:

Example 1:
Given an initial marking M0 and a set of desired final mark-
ings, F(N1) = {Mf } as shown in Fig. 4, find optimal feasible
partial words and values of u1 and u2 which minimize the
duration time required to transform M0 to Mf .

Figure 5 shows a set of feasible partial words of N1,
Π(N1). Every feasible partial word is a directed acyclic
graph with the source node a and the sink node f . The real
number representing processing times is assigned to each
node. The total processing time associated with a directed
path is defined by the completion time of the last task in the
path. We call a directed path from a source node to a sink
node with the maximum total processing time, a critical
path. The duration time associated with pw is determined

Table 2 Feasible task routing and its duration time.

Feasible task routing Duration time
pw1 14
pw2 14
pw3 11
pw4 15
pw5 15
pw6 13

by searching the critical path of pw. Therefore, the optimal
solution of Example 1 can be obtained by seeking the crit-
ical paths of each feasible partial word. Table 2 shows the
duration times of task routings denoted by each feasible par-
tial word in Fig. 5. The optimal solution is given by pw3 and
3 ≤ u1 ≤ 5, regardless of u2.

The solution technique stated above is based on the
enumeration of feasible partial words. The number of feasi-
ble partial words, however, increases as the scale of a batch
system increases. To overcome these difficulties, an efficient
solution technique is necessary. We will present a method of
solving Problem Q′ in Sect. 5.

4.3 Execution of Optimal Task Routing

Once the optimal task routing is determined, it next must be
carried out. One of the aims of this paper is to present the
possibilities of integration between scheduling and design
based on Petri net common models. To perform the optimal
task routing, we must avoid the executions of undesired task
routings by use of logic controllers. Since places of a Petri
net represent conditions necessary for firings, an addition
of new places, in general, restricts the behavior of the net.
Therefore, the executions of undesired task routings may be
avoided by suitably introducing additional places into the
original net. The problem how to introduce additional places
is formulated as the following problem:

Control logic synthesis problem S:
Given a Petri net N and its optimal feasible partial word
p∗w, construct a Petri net N∗ which satisfies the following
conditions:

(1) N∗ generates p∗w, but not undesired feasible partial
words in Π(N).

(2) N is a subnet of N∗.

Let NC be a net satisfying

N∗ = N ⊕ NC (3)

then the subnet NC represents the synthesized control logics.
The solution techniques for Petri net construction problem
in Sect. 2 can be used for the solution to Problem S [11].

For example, in order to perform the optimal task rout-
ing described by pw3 in Fig. 5, we must prohibit firing b.
The sequence of transitions firings ad transforms the initial
marking M0 of the net N1 to M1 shown in Fig. 6. Two tran-
sitions c and b are enabled at M1. The prohibition of firing b
is achieved by introducing a new place Pc connected with b
and c into the net N1 as shown in Fig. 6. The part of the net



2994
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.11 NOVEMBER 2005

Fig. 6 Control logic synthesis.

N∗1 depicted by a heavy line represents a new control logic.
The transition b never fires due to the place Pc. In this way,
design of control systems is performed based on the same
model used for scheduling.

5. Batch Scheduling Algorithm

As stated above, the number of feasible task routings may
become large even a simple system. It is, however, seriously
reduced with a few devices. A bounding process has the ef-
fect of reducing a search space. It eliminates the unpromis-
ing solutions from further consideration but still preserves
all possible solutions.

An example of search process is illustrated in Fig. 7. A
partial word generated by a Petri net model is assigned to
each node of the search tree. We denote the partial word
assigned to node i by σi. The node label σi represents a set
of the partial words PWi such that

PWi = {p | σi ∈ pPREF}
where pPREF is a set of prefixes of partial word p. For exam-
ple,

PW4 =





t1� t4 , t1� t4� t3 , t1� t4� t5 ,

t1
���
���

t4
t5
, · · ·





The proposed algorithm for finding optimal solutions
of Problem Q′ is as follows:

Optimal partial word search algorithm:
Branching continues until a feasible partial word is ob-
tained. If, in the process, a partial word assigned to a node
yields a deadlock marking, branching stops at the node. If
a new feasible partial word is found having a value of the
objective function f less than the current best value, then
this value is stored as the new best value. To avoid the ex-
cessive branching, a lower bound of f is estimated at ev-
ery node. The lower bound may be obtained by relaxing
the constraints of Problem Q′ and solving the resulting re-
laxed problem. If the lower bound is smaller than the current
best value of f , branching continues. Otherwise, the further
branching from the current node is not performed and back-
tracking to one of the promising nodes is carried out. When
the backtracking takes us no promising nodes, the search is

Fig. 7 Search tree.

complete. The strategy for estimation of lower bounds must
be worked out according to the types of the problems.

6. Integration between Scheduling and Design

In this section we show an example of integration between
scheduling and design.

Problem description:
We consider the mixing equipment illustrated in Fig. 8

which is a custom-designed experimental plant installed in
our laboratory. It consists of three feed tanks, three stirred
mixing tanks and an automated line change-over apparatus.
The line change-over apparatus used there is the Toyo Engi-
neering Corporation’s original patented ‘XY Router.’ It is
composed of two sub-blocks, each of which incorporates
a hose, traveling head and automatic positioning driving
mechanism. Each of the traveling heads contains a coupling
and docking device. The device of the lower sub-blocks
moves in direction-X, and the device of the upper sub-blocks
moves in direction-Y . These two devices are positioned to
face each other at a crossing point and then interlocked to
build a flow passage. Simultaneous supply on two or more
mixing tanks from one feed tank, or simultaneous supply
on one mixing tank from two or more feed tanks cannot be
performed. Multiple flow passages can, however, be built
in parallel. For example, three flow passages, Ta–T2, Tb–T1

and Tc–T3 are simultaneously built as shown in Fig. 8.
The problem to be considered is as follows:

Example 2:
Using the equipment shown in Fig. 8, three products are pro-
duced according to the recipe in Table 3. The problem is to
find the optimal task routings and outlet flow rate from the
feed tank Tc which minimize the completion time of the last
task, provided that every product is produced without an in-
terruption.

Common model:
The process model representing the recipe in Table 3 is

shown in Fig. 9(a). It implies that all tasks can be carried out



ITO et al.: INTEGRATION BETWEEN SCHEDULING AND DESIGN OF BATCH SYSTEMS BASED ON PETRI NET MODELS
2995

Fig. 8 Mixing equipment.

Table 3 Recipe.

Raw material
A B C

P 4 2 6
Product Q 6 2 –

R 3 8 3

The numbers represent the amount of
each row material. [l]

independently to each other. The plant model representing
the equipment in Fig. 8 is also shown in Fig. 9(b). It im-
plies that some sets of flow passages can be built in parallel
and some not. If the raw materials, A, B and C are stored
in the tanks, Ta, Tb and Tc, respectively, and the products,
P, Q and R are produced in the tanks, T1, T2, and T3, re-
spectively, then the schedule specification is given by the
correspondence in Fig. 9(c). Figure 10 shows the common
model obtained from such models and specification. The
initial marking M0 represents that the production of P, Q and
R can start, and the final marking Mf that the production of
all products is complete.

Optimal solution:
The Petri net shown in Fig. 10 generates about 7300

feasible partial words. Several feasible partial words are
presented in Fig. 11. By applying the optimal partial word
search algorithm proposed in Sect. 5 to the net, the number

(a) Process model.

(b) Plant model.

tAP �→ o1a tBP �→ o1b tCP �→ o1c

tAQ �→ o2a tBQ �→ o2b

tAR �→ o3a tBR �→ o3b tCR �→ o3c

(c) Schedule specification.

Fig. 9 Model and specification.

of feasible partial word evaluations can be reduced to one-
sixtieth. The optimal task routing is shown in Fig. 12 by the
way of a Gantt chart. The chart suggests that two or three
tasks are carried out in parallel to produce all products more
efficiently. The value of u is adjusted not to interrupt contin-
uous productions.

To solve this problem, we estimated a lower bound LBi

at node i by the equation

LBi = min
u

f (σi, u) +min
τ j ,u

f (τ j, u) (4)

The concatenation σi ·τ j is a partial word σi followed by τ j.
To efficiently exhibit the effect of bounding, the feasibility of
the partial word τ j is not necessarily needed. The first term
in the right hand side of Eq. (4) is estimated by use of linear
programming approach. On the other hand, the second term
is estimated by assuming that the remaining tasks in τ j are
to be carried out in parallel as soon as possible.

Control logic synthesis:



2996
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.11 NOVEMBER 2005

Fig. 10 Petri net common model.

Fig. 11 Feasible partial word.

We realize the optimal task routing obtained above by
solving Control logic synthesis problem S defined in Sect. 4.
The only part of the net depicted by a heavy line in Fig. 13
represents additional logics to control the equipment accord-
ing to the optimal task routing. There is no measure of
time in a Petri net but the tasks (operations) represented
by transitions take variable amounts of time in real-world.

Fig. 12 Optimal task routing.

Fig. 13 Controller synthesis.

Therefore, lapse of time is necessary for controller synthe-
sis. The actual controllers are constructed using the Condi-
tion/Event net based Sequence Controller Synthesis Support
Tool, CESeC which we had developed [11].

7. Discussion

Scheduling of batch processes needs various information
flows. The production planning process attempts to opti-
mize the overall long-term resource allocation based on or-
ders, due dates, resource requirements, etc. Decisions made
at this higher planning level affect the lower level schedul-
ing process. After a production plan has been generated, it is
necessary to determine short-term schedules including pro-
duction orders, lot sizing, control strategies, etc. This lower
level scheduling process must interact with other decision
making processes, such as control, operation, etc. A distinc-
tive feature of batch processes is that each decision making
process is strongly connected with other processes. Interac-
tion among these decision making processes is necessary to



ITO et al.: INTEGRATION BETWEEN SCHEDULING AND DESIGN OF BATCH SYSTEMS BASED ON PETRI NET MODELS
2997

dynamically and flexibly cope with unplanned events.
The design of a large system proceeds to successively

lower levels of the system. A hierarchical design approach
involves first specifying a rough outline of a system and then
successively refining the outline. In this case, scheduling is
also carried out in a hierarchical manner. The master prob-
lem at higher level generates a solution corresponding to a
rough overall schedule. The subproblems at lower level re-
ceive the overall schedule from the master problem, gen-
erate their solutions corresponding to refined subschedules
and send them to the master problem. The master problem
again generates a solution by considering the sent subsched-
ules. The iteration proceeds until a satisfactory solution is
obtained.

The algorithm for searching optimal partial words in
Sect. 5 is a kind of branch and bound algorithm. To effi-
ciently shrink a search space we must appropriately estimate
a lower bound of an objective function at every stage. A
lower bound is often obtained from a solution to a relaxed
problem without imposing that solution candidates be feasi-
ble. Equation (4) in Sect. 6 is such an example. The second
term in the right hand side of Eq. (4) ignores the feasibility
of a solution.

Empirical knowledge is also useful for the efficient re-
duction of a search space. For actual batch processes, flexi-
bility of schedules may be important at the cost of optimality
to some extent. In such cases, heuristics about understand-
ing of bottlenecks, due dates, etc. may restrict the possible
solutions to those that are not only possible but reasonable.

8. Conclusion

Scheduling, design, and operation of batch processes are
strongly connected with each other. Integration among these
decision making processes is important to manage batch
production effectively. Integration for batch production is
not only achieved through sharing of information, but also
through utilization of common models used for various de-
cision making processes. In this paper, we have formulated
batch scheduling problems based on Petri net based com-
mon models and presented their solution technique. We
have also shown the possibilities of integration for batch
production. We conclude that the approach stated in this pa-
per will provide a framework for dynamic and flexible batch
production.

Acknowledgments

The authors gratefully acknowledge partial financial support
from the Japan Society for the Promotion of Science through
a Grant-in Aid for Scientific Research (B) (No. 16360394).

References

[1] T.G. Fisher, Batch Control Systems: Design, Application, and Im-
plementation, Instrument Society of America, North Carolina, 1990.

[2] SP88 Committee, Batch Control Part 1: Models and Terminol-
ogy, ISA—The Instrumentation, Systems, and Automation Society,

North Carolina, 1995.
[3] SP88 Committee, Batch Control Part 2: Data Structures and Guide-

lines for Languages, ISA—The Instrumentation, Systems, and Au-
tomation Society, North Carolina, 2001.

[4] A. Sanchez, Lecture Notes in Control and Information Sciences 212,
Springer-Verlag, London, 1996.

[5] M. Tittus and B. Lennartson, “Hierarchical supervisory control for
batch processes,” IEEE Trans. Control Syst. Technol., vol.7, no.5,
pp.542–554, 1999.

[6] S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubrama-
nian, and K.E. Arzen, “Automating operating procedure synthesis
for batch processes: Part I. Knowledge representation and planning
framework,” Computers and Chemical Engineering, vol.22, no.11,
pp.1673–1685, 1998.

[7] S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubrama-
nian, and K.E. Arzen, “Automating operating procedure synthesis
for batch processes: Part II. Implementation and application,” Com-
puters and Chemical Engineering, vol.22, no.11, pp.1687–1698,
1998.

[8] Y.F. Wang, H.H. Chou, and C.T. Chang, “Generation of batch oper-
ating procedures for multiple material-transfer tasks with Petri nets,”
Computers and Chemical Engineering, vol.29, no.8, pp.1822–1836,
2005.

[9] S. Hashizume, T. Suzuki, K. Onogi, and Y. Nishimura, “A con-
struction problem of condition/event-nets and its solvability,” Trans.
SICE, vol.28, no.5, pp.632–639, 1992.

[10] S. Hashizume, Y. Mitsuyama, Y. Matsutani, K. Onogi, and Y.
Nishimura, “Construction of Petri nets from a given partial lan-
guage,” IEICE Trans. Fundamentals, vol.E79-A, no.12, pp.2192–
2195, Dec. 1996.

[11] K. Onogi, S. Hashizume, and Y. Nishimura, “Design of sequential
control systems based on condition/event nets,” Proc. International
Symposium on Design, Operation and Control of Next Generation
Chemical Plants (PSE Asia 2000), pp.261–266, Kyoto, Japan, Dec.
2000.

[12] T. Yajima, S. Hashizume, K. Onogi, and Y. Nishimura, “Establish-
ment of operational procedures for batch control,” Kagaku Kogaku
Ronbunshu, vol.28, no.3, pp.262–267, 2002.

[13] S. Hashizume, T. Yajima, T. Ito, and K. Onogi, “Synthesis of operat-
ing procedures and procedural controllers for batch processes based
on Petri nets,” Proc. International Symposium on Design, Operation
and Control of Chemical Processes (PSE Asia 2002), pp.253–258,
Taipei, Taiwan, Dec. 2002.

[14] T. Yajima, T. Ito, S. Hashizume, H. Kurimoto, and K. Onogi, “Con-
trol of batch processes based on hierarchical Petri nets,” IEICE
Trans. Fundamentals, vol.E87-A, no.11, pp.2895–2904, Nov. 2004.

[15] A.E. Nisenfeld, Batch Control: Practical Guides for Measurement
and Control, Instrument Society of America, North Carolina, 1996.

[16] X. Lin and C.A. Floudas, “Design, synthesis and scheduling of mul-
tipurpose batch plants via an effective continuous-time formulation,”
Computers and Chemical Engineering, vol.25, pp.665–674, 2001.

[17] J. Grabowski, “On partial language,” Fundamenta Informaticae,
vol.4, no.2, pp.427–498, 1981.



2998
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.11 NOVEMBER 2005

Takashi Ito received B.E. and M.E. degrees
in chemical engineering from Nagoya Univer-
sity in 2001 and 2003, respectively. He is
currently a doctor course student at Graduate
School of Engineering, Nagoya University. His
research interests include batch control system
framework and scheduling of real-time systems.
He is a member of IPSJ and SCEJ (Society of
Chemical Engineers, Japan).

Susumu Hashizume received B.E., M.E.
and Dr.(Eng.) degrees in systems engineer-
ing from Toyohashi University of Technology
in 1986, 1988 and 1992, respectively. From
1992 to 1998, he was a reseach associate at the
Department of Productin System Engineering,
Toyohashi University of Technology. He is cur-
rently an assistant professor at the Department
of Chemical Engineering, Nagoya University.
His research interests include design of hybrid
systems and control of discrete event systems.

He is a member of SICE, IPSJ and SCEJ (Society of Chemical Engineers,
Japan).

Tomoyuki Yajima received B.E., M.E. and
Dr.(Eng.) degrees in chemical engineering from
Nagoya University in 1989, 1991 and 1994, re-
spectively. He is currently a reseach associate at
the Department of Chemical Engineering, Na-
goya University. His research interests include
design of batch control systems and simulation
of macroreactor. He is a member of SICE and
SCEJ (Society of Chemical Engineers, Japan).

Katsuaki Onogi received B.E., M.E. and
Dr.(Eng.) degrees in chemical engineering from
Nagoya University in 1973, 1975 and 1980, re-
spectively. From 1978 to 1980, he was a re-
seach associate at the Department of Chemical
Engineering, Nagoya University. From 1980 to
1996, he was an assistant professor, associate
professor and professor at the Department of
Productin System Engineering, Toyohashi Uni-
versity of Technology. Since 1996, he has been
a professor at the Department of Chemical En-

gineering, Nagoya University. His research interests include control of dis-
crete event systems and design of batch control systems. He is a member
of SICE, ISCIE and SCEJ (Society of Chemical Engineers, Japan).


