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Noisy Speech Recognition Based on Integration/Selection of
Multiple Noise Suppression Methods Using Noise GMMs
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SUMMARY To achieve high recognition performance for a wide va-
riety of noise and for a wide range of signal-to-noise ratio, this paper
presents methods for integration of four noise reduction algorithms: spec-
tral subtraction with smoothing of time direction, temporal domain SVD-
based speech enhancement, GMM-based speech estimation and KLT-based
comb-filtering. In this paper, we proposed two types of combination meth-
ods of noise suppression algorithms: selection of front-end processor and
combination of results from multiple recognition processes. Recognition
results on the CENSREC-1 task showed the effectiveness of our proposed
methods.
key words: noisy speech recognition, noise suppression method selection,
CENSREC-1

1. Introduction

In recent years, the performance of automatic speech recog-
nition has been improved drastically by applying statistical
approaches. However, most speech recognizers still have
the serious problem that their recognition performance de-
grades in noisy environments. It is necessary to realize ro-
bust speech recognition under noisy environments for the
improvement of recognition accuracy of systems. A vari-
ety of noise suppression methods have been proposed as a
front-end of speech recognition. The effect of these methods
greatly depends on the noise condition.

There are strong and weak points by the kind and SNR
of the noise. In general, it is thought that there are no meth-
ods which can effectively suppress various noises over a
wide range of SNRs. Therefore, it may be effective to se-
lect an appropriate method to each noise condition. This
selection seems to be achieved by the noise environment de-
tection.

Some kinds of detection/identification of acoustical
events or environments using Gaussian Mixture Models
(GMM) have been investigated. In this paper, we propose
a method to select an appropriate noise suppression method
using GMM for each speech input. The use of GMMs in
noisy environments has also been investigated. Lee et al.
applied a GMM-based verification of noise and voice sig-
nals in a dialog system. Nishimura et al. [2] used GMM to
recognize the kind of noise to reflect the behavior of a di-
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alog system. Considering such simple and powerful noise
environment classification ability, we first propose a method
to select a noise suppression method suitable for a certain
noise condition based on GMM likelihood [3]. The front-
end processor first selects a suppression method, applies the
method to input speech, and sends the feature to the back-
end recognizer.

Our above-described solution uses only one recog-
nition procedure, but we can combine several models in
parallel to achieve better performance. Fiscus proposed
a first voting-based multiple recognizer output combina-
tion, ROVER [4]. ROVER and its variations [5]–[7] have
achieved good word error reduction. Parallel decoding is
also implemented on parallel computation systems to keep
computational efficiency as single decoding systems [8].

From the viewpoint of noise robust speech recogni-
tion, a method for dealing with diversity of noise SNR us-
ing Multi-SNR models [10] has been proposed. Matsuda
et al. [9] realized the parallel decoding system considering
noise environments, in which multiple acoustic models for
various noise environments and multiple speech features are
used in parallel and decoded on a parallel computational
system.

A hypothesis combination method which combines hy-
potheses generated by multiple recognition systems using
feature streams obtained from multiple noise suppression
methods [11] has been proposed. But while some of these
methods may be very good at suppressing a certain noise,
others may not. Furthermore, they involve huge computa-
tional cost. In this paper, we incorporate the GMM likeli-
hood to improve the performance considering the individ-
ual performance of the methods on the target noise [12]. We
also reduce the computational cost while keeping the advan-
tage of a hypothesis combination method.

We used CENSREC-1 (which is also called AURORA-
2J [20]) for evaluation of our method. The CENSREC-1 is
a Japanese version of AURORA-2 [13], a common evalua-
tion framework for the noisy connected English digit speech
recognition task.

2. Noise Environment Detection Based on GMM

In this paper, we present noise suppression techniques for a
speech recognizer for mobile equipment which is used un-
der various noise conditions. To address such a difficult sit-
uation, we propose to select noise suppression method(s)
suitable for the condition of each recognition process. We
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use noise GMMs for the selection. In this section, we first
introduce an evaluation framework for noisy speech recog-
nition which matches our supposed situation. Then, we give
brief summaries of noise suppression methods which are the
choices of our noise selection method and the possibility
of the performance improvement by our method using this
framework and the individual methods. Finally, we explain
the training procedure of noise GMMs.

2.1 Evaluation Framework

We used the CENSREC-1 (AURORA-2J [20]) for evalua-
tion of our method. This evaluation framework includes
various noise, some known and some unknown. This frame-
work was constructed considering the same situation we
suppose.

The CENSREC-1 is a Japanese version of AURORA-
2 [13], a common evaluation framework for the noisy con-
nected English digit speech recognition task. Two training
conditions (clean condition/multi-condition) and three test-
ing sets (sets A/B/C) are defined by the CENSREC-1. The
sampling rate is 8 kHz. The training data consists of 8440
utterances. The clean-condition training has acoustic mod-
els trained by clean speech only. Because a clean speech is
not contaminated with noise, the noise suppression methods
are not applied to clean training data. The multi-condition
training has models trained by a corpus consisting of both
clean and noisy speech. In the multi-training set, speech
data is contaminated with four kinds of noises (subway, bab-
ble, car, exhibition) at every SNR in five variations (clean,
20 dB, 15 dB, 10 dB, 5 dB). The noise suppression methods
are applied to the multi-training data as well as the test data.
The testing set A includes four different types of noise which
were used in the multi-condition training, while the testing
set B includes another four different types of noise not used
in the multi-condition training. The testing set C then in-
cludes noise types from both sets A and B, plus additional
convolutional noise. Speech is analyzed using 25 ms frames
with a shift of 10 ms. Each word-based HMM had 18 states
and 20 Gaussian mixtures per state. The feature vectors con-
sist of MFCC features, energy, their delta and their acceler-
ation (MFCC E D A) of dimension 39.

Relative performance is defined in the CENSREC-1
framework using the accuracy of the target method Xm and
the accuracy of the baseline Xb (that is, without suppres-
sion), respectively, as follows:

Relative performance =
Xm − Xb

100.0 − Xb
× 100. [%] (1)

In the original setting of CENSREC-1, Cepstral Mean
Normalization (CMN) is not used, and thus the baseline re-
sults shown in the following sections are obtained without
CMN. But it is well known that the CMN is very effective,
so we use it in any other conditions after applying noise sup-
pression methods.

In CENSREC-1, evaluation categories were designed
to show how much the user’s method modified the baseline

Table 1 Summary of noise suppression algorithms used in the experi-
ments.

SS SVD GMM KLT
Feature Power Waveform Log Mel- Waveform
domain spectrum filterbank
Assumption Stationarity Whiteness Non- Whiteness
about noises stationarity

system except for the change of the front-end process, for
example, the adaptation process, model topology, and de-
coder. Users have to declare the category to which their
methods belong. Our methods proposed in this paper be-
long to the following categories:
Category 0. No changes to the back-end HTK scripts.
Changes to only front-end processing, i.e. to feature vectors,
can be included in this category.
Category 5. Any process with any computational cost will
be allowed.

2.2 Noise Suppression Methods and the Potential of
Method Selection

In this paper, as noise suppression methods, spectral sub-
traction with smoothing of time direction (SS) [14], the tem-
poral domain SVD-based speech enhancement (SVD) [16],
GMM-based speech estimation (GMM) [16], [18], and pitch
synchronous KLT (KLT) [19] are used †. The above four
methods are used individually, or combined sequentially: a
single method is applied to the input speech and the same
or another method is also applied. Sequential uses are de-
noted as, for example, SS-GMM. Thus, there are totally
21 varieties of noise suppression method including 4 single
methods, 16 sequential combinations, and the case without
noise suppression.

The algorithms are explained below, and the feature do-
mains in which the compensation is performed and the as-
sumptions about the noises are summarized in Table 1.

Spectral subtraction with smoothing of time direc-
tion [14]

The observation signal x is assumed to be the sum of
speech signal s and noise n, namely, x = s + n. Spectral
subtraction [15] in the power spectral domain is defined as
below:

|S̃ i(t)|2 = |Xi(t)|2 − α|Ñi|2, (2)

where |S̃ i(t)|2 and |Xi(t)|2 are the i-th components of the es-
timated power spectrum of speech and the power spectrum
of observed signals at the time t, respectively, while |Ñi|2 is
the i-th component of a priori estimated power spectrum of
noise, and α is the overestimation factor. We can express
|Xi(t)|2 as:

|Xi(t)|2 = |S i(t)|2 + |Ni(t)|2 + 2|S i(t)||Ni(t)| cos θi(t), (3)
†We selected these four methods becaus we could obtain the

software for the respective methods. Thus, the selection of these
particular methods has no special meaning. We can adopt arbitrary
methods for our selection/integration methods.



KITAOKA et al.: INTEGRATION/SELECTION OF MULTIPLE NOISE SUPPRESSION METHODS
413

where |S i(t)| and |Ni(t)| are the true values for speech and
noise, and θi(t) is the phase difference between speech and
noise. We suppose that the speech and the noise do not cor-
relate with each other. The definition of Eq. (2) rests on the
fact that the expectation value of cos θi(t) in Eq. (3) equals
zero. However, considering cos θi(t) as a random variable
ranging −1 to 1 and assuming that θi(t) distributes uni-
formly, the probability density function (pdf) of φ = cos θi(t)
becomes f (φ) = 1/(π

√
1 − φ2), a concave function with sole

minimum at φ=0. Therefore, the term including cos θi(t) in
Eq. (3) cannot be removed even if the noise power can be
accurately estimated.

Here, we define the smoothing method as follows [14]:

|Xi(t)|2 =
∑

r

βr |Xi(t − τ)|2, (4)

where τ = 0,1,. . . ,T-1,
∑

r βr = 1. Using (2) and (3), it be-
comes:

|Xi(t)|2 =
∑

r

βr{|S i(t − τ)|2 + |Ni(t − τ)|2

+ 2|S i(t − τ)||Ni(t − τ)| cos θi(t − τ)|}. (5)

Assuming that phase differences between speech and noise
of successive frames do not correlate with one another, the
pdfs of φ has the peak at zero and the variance of this term
becomes smaller than the original one. Thus, we can assume
the third term of (5) is almost zero, and (5) becomes

|Xi(t)|2 ≈ |S i(t)|2 + |Ni(t)|2. (6)

Replacing |Xi(t)|2 in (2) with |Xi(t)|2, (2) becomes

|S̃ i(t)|2 ≈ |S i(t)|2 + |Ni(t)|2 − α|N̄i|2. (7)

Therefore, we can estimate the speech signal more accu-
rately if we can estimate |Ñi| accurately.

In our experiments in Sect. 5, we used T = 3, βtau =

1/3 for t = 0, 1, 2, and α = 1.8.

Temporal domain SVD-based speech enhancement [16]
At the i-th windowed short time frame, the observed

noisy speech signal xi(t) is assumed to consist of a clean
speech signal, si(t), and an additive noise, ni(t), as follows:

xi(t) = si(t) + ni(t). (8)

Therefore, (8) can be represented as (9) in terms of N × M
Toeplitz matrices where N and M − 1 are an interval length
and a maximum delay, respectively:

Xi = S i + Ni. (9)

By applying SVD to Xi, Xi is decomposed into three matri-
ces and reconstructed as Xi = UiΣiVT

i . As a result, a sin-
gular value matrix is obtained. Here, the singular value can
be represented as (10) under the assumption that si(t) is not
correlated with ni(t):

σXi
m = σ

S i
m + σ

Ni
m , (10)

where m = 0, . . . ,M − 1. In (10), if ni(t) is white noise,

it can be assumed that the distribution of σNi
m is uniform.

Therefore, σS i
m can be estimated as (11):

σ̂S i
m = σ

Xi
m − σ̄Ni . (11)

By using estimated σ̂S i , the Toeplitz matrix Ŝ i is estimated
as in the following [17]:

Ŝ i = UiWiΣiV
T
i , (12)

Wi = diag

(
σXi

m − σ̄Ni

σXi
m

)
. (13)

In (10), if it can be assumed that the singular values of clean
speech σS i

m vanish for a sufficiently large index of m(m ≥
R), the remaining singular values can be handled as singular
values of the noise. Thus:

σNi
m � σXi

m (m ≥ R). (14)

From this fact, the averaged singular value is estimated as:

σ̄Ni =
1

M − R

M−1∑
m=R

σXi
m . (15)

In Sect. 5, we used M = 28 and N = 173, and R was
set as if the cumulative contribution rate up to R-th singular
value was beyond 90%.

GMM-based speech estimation [16], [18]
At the i-th frame, the logarithmic output energy of a

Mel filter bank of observed noisy speech is represented as
follows:

Xlog(i) = log[exp(S log(i)) + exp(Nlog(i))]

= S log(i) + log[1 + exp(Nlog(i) − S log(i))]

= S log(i) +Glog(i), (16)

Glog(i) = log[1 + exp(Nlog(i) − S log(i))], (17)

where Xlog(i), S log(i) and N(i) denote the vectors that have
logarithmic output energy of a Mel filter bank of observed
noisy speech, clean speech and noise, respectively. In (16),
Glog(i) is equivalent to the mismatch factor between Xlog(i)
and S log(i).

First, suppose that S log(i) can be modeled by GMM
with K mixture distributions,

p(S log(i)) =
K∑

k=1

P(k)N(S log(i); μS ,k, σS ,k), (18)

where p(S log(i)) denotes the output probability of S log(i),
and P(k), μS ,k and σS ,k denote the mixture distributions as
well as S log(i). When GMM of S log(i) is given, Xlog(i) is also
represented by GMM using the following description. Let
μN denote the mean vector of Nlog(i), which is estimated us-
ing the first 10 frames of the observed noisy speech, Xlog(i).
The mean vector of Xlog(i) at the k-th Gaussian distribution
is then estimated as follows based on (16) and (17):

μX,k � μS ,k + log[1 + exp(μN − μS ,k)] = μS ,k + μG,k.

(19)
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On the other hand, the covariance matrix of Xlog(i) can be
estimated as (20):

ΣX,k � ΣS ,k. (20)

In (19), μG,k corresponds to the mean vector of the mismatch
factor at k-th Gaussian distribution. Therefore, the expecta-
tion of Glog(i) is estimated as the weighted average of μG,k

using a posterior probability P(k|Xlog(i)) as follows:

Ĝlog(i) =
K∑

k=1

P(k|Xlog(i))μG,k, (21)

P(k|X(i)) =
P(k)N(Xlog(i); μX,k,ΣX,k)∑K

k′=1 P(k′)N(X(i); μX,k′ ,ΣX,k′)
. (22)

From the above-described procedure, the clean speech
Ŝ log(i) is estimated by subtracting Ĝlog(i) from Xlog(i) as
(23):

S log(i) = Xlog(i) − Ĝlog(i). (23)

Here, we set K = 512.

KLT-based comb-filtering [19]
In KLT-based comb-filtering, each sample of the clean

speech s(t) of the t-th frame is reconstructed from the esti-
mation of (2T + 1) dimensional vectors S p(t, i) at the t-th
frame:

S p(t, i) = (s((t − T − 1)K + i),

. . . , s((t + T − 1)K + i))T , (24)

where i is from 1 to L, which is the frame length, K is the
pitch period, and T is set to 3 in the experiments in Sect. 5
Assuming that noise is additive, we have the noisy input
signal:

Xp(t, i) = S p(t, i) + Np(t, i), (25)

where Np(t, i) is a (2T + 1) dimensional noise vector. Now,
let H be a (2T + 1) × (2T + 1) linear estimator of the clean
speech vector as follows:

Ŝ p = HXp. (26)

The error signal obtained in this estimation is given by

r = Ŝ p − S p = (H − I)S p + HNp = rS + rn, (27)

where rs = (H − I)S p represents signal distortion and rn =

HNp represents residual noise. We define the energies of

signal distortion ε2
S and residual noise ε2

n, respectively, as
follows:

ε2
S = trE{rS rT

S } = tr{(H − I)RS (H − I)T }, (28)

ε2
n = trE{rnrT

n } = tr{HRnHT }, (29)

where Rs and Rn are covariance matrices of the clean signal
and the noise vector, respectively. Now, assuming Rs and Rn

are provided, the linear estimator is obtained from

min
H
ε2

S , sub ject to :
1
K

min
H
ε2

n ≤ σ2
n, (30)

where σ2
n is a positive constant. H is a stationary feasible

point if it satisfies the gradient equation of the Lagrangian

LH(H, μ) = ε2
S + μ(ε

2
n − Kσ2

n), (31)

μ(ε2
n − Kσ2

n) = 0 f or μ ≥ 0, (32)

where μ is the Lagrange multiplier. From (27), (28), we
obtain:

H = RS (RS + μRn)−1. (33)

Now, let the eigenvalue decomposition of RS be defined as
follows:

RS = UΛS UT , (34)

whereΛS is a diagonal (2T+1)×(2T+1) matrix that contains
clean signal covariance matrix eigenvalues and U contains
its eigenvectors. U is called the inverse KLT and the unitary
UT is called KLT. Substituting (33) into (32), we obtain

H = UΛS (ΛS + μU
T RnU)−1UT . (35)

Assuming that noise is white, we can rewrite the estimator
as

H = UGUT , (36)

where

G = diag(gt(1),gt(2), . . . , gt(2T + 1)), (37)

gt(i) = λ
i
S /(λ

i
S + μλn), (38)

where λi
S and λn are the i-th diagonal component of ΛS and

the variance of the noise, respectively. The signal Ŝ p = HXp

is obtained by applying the KLT to the noisy signal.
Yamada et al. [21] showed the effectiveness of the se-

lection algorithms from various noise suppression methods
and their combinations heavily depend on noise conditions.

Table 2 shows the word recognition accuracy based on
a baseline system, and Table 3 shows the recognition perfor-
mance based on the manual selection. In this experiment, a
noise suppression method is selected for each noise condi-
tion (a combination of a kind of noise and SNR) from the 21
variations of the noise suppression methods as shown in Ta-
ble 4. In this table, SS, SVD, GMM, and KLT are described
as S, T, G, and K, respectively, and their sequential uses are
described using ‘-’. A, B, and C express the kind of test sets.
The average absolute word accuracy and the relative perfor-
mance in the clean training and the multi-training are shown
in the tables.

Table 3 shows the relative performance of the manual
selection in the clean training and the multi-training, and

Table 2 Word accuracy by baseline system (%).
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Table 4 Manually selected the best method for each noise condition.

(a) Clean training.

Noise set A B C (with convolutional noise)
Noise Subway Babble Car Exhibition Restaurant Street Airport Station Subway Street
clean G-G T-G K-G G-G G-G T-G K-G G-G G-G G
20 dB T-K G-K K-G G-K G-K K-G G-K G-K G-k G-K
15 dB G-K G-K T-G G-K G-K G-K G-K G-K G-K K-G
10 dB G-K G-K K-G G-K G-K K-G G-K S-G T-K K-G
5 dB K-K G-K S-G G-K G-K K-G G-K S-G T-K K-G
0 dB K-K G-K S-G T-G G-K K-G S-G S-G K-K T-G
−5 dB K-K G-K S-G T-G G-K K-K G-S S-G K-K T-G

(b) Multi-training.

Noise set A B C (with convolutional noise)
Noise Subway Babble Car Exhibition Restaurant Street Airport Station Subway Street
clean S S-G T S-G S S-G T S-G S G-G
20 dB G-G G-G S-G S S-T S-G S-T S-T S S-G
15 dB T S-G S S T-S G-G S T-G G G-S
10 dB G-K S S-G G-G K-S K-G T-S S-T G-G G-G
5 dB T-K K-T S-G T-G K-S K-G S-S S-G T-G S
0 dB T-K S-T S-T T-G K-S K-G S-G S S S
−5 dB K S-S S-T K S-S S S S-S T-G S

Table 3 Result by selecting the best method for each noise condition
(%).

(a) Relative performance.

(b) Word accuracy.

Table 5 Result by GMM-KLT, which achieved the best performance in
clean training condition (%).

(a) Relative performance.

(b) Word accuracy.

Table 5 shows the relative performance of a method (GMM-
KLT; the sequential combination of GMM and KLT), whose
relative performance was the highest in clean training. Ta-
ble 6 shows the relative performance of the method (SVD-
GMM), whose relative performance was the highest in the
multi-training. From comparing these performances as
shown in Tables 3, 5, and 6, the best method is selected
for each noise condition. Thus, instead of applying a sin-

gle method for the best performance, an improvement is ob-
tained.

2.3 Noise GMM Training for Automatic Noise Environ-
ment Detection

Here, we explain how to train GMMs to evaluate the likeli-
hood of noise environments, which are used to select noise
environments in the methods explained in the following sec-
tions. The speech data were contaminated with four kinds of
noises by five variations of SNRs. Thus there are 20 kinds of
noise conditions in the training data†. The best suppression
method for each noise condition is applied to all the speech
under each condition. Table 7 shows the best method for
each condition in the multi-training data set. The suppres-
sion method applied to noisy speech is selected by using
GMMs. Figure 1 shows the procedure of the GMM train-
ing. In the experiments, we used the first 10 frames of each
speech file in the CENSREC-1 training data as the noise
data. We gathered all the noise data of the noise condi-
tions for which a certain suppression method worked best
and trained a GMM corresponding to the suppression meth-
ods using the noise data. In the recognition stage, the system
compared the GMM likelihoods of the noise preceding the
speech.

†Strictly speaking, the number of noise conditions are 17 = 4
(kinds of noises) * 4 (SNRs) + 1 (clean). In CENSREC-1, the
clean data for four kind of noises are different from each other and
so the recognition accuracy obtained from the sets is also slightly
different. In our experiment, we treated the conditions of these sets
as 4 different conditions and thus we had totally 20 conditions. The
performance for clean data of these suppression methods, however,
was not so different, and so this treatment had little effect on the
final results.
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Table 6 Result by SVD-GMM, which achieved the best performance in
multi-training condition (%).

(a) Relative performance.

(b) Word accuracy.

Table 7 The best method for each condition under multi-training.

Subway Babble Car Exhibition
20 dB GMM GMM-GMM SS-GMM SS
15 dB SVD SS-GMM SS SS
10 dB GMM-KLT SS SS-GMM GMM-GMM
5 dB SVD-KLT KLT-SVD SS-GMM SVD-GMM

Fig. 1 Training procedure of GMMs for selecting noise suppression
methods including no suppression and the sequential use of the methods.

3. Automatic Selection of Noise Suppression Methods
for Front-end Processing

3.1 Speech Recognition Based on Automatic Selection of
Noise Suppression Methods

Based on the noise decision, we propose a method of select-
ing the best noise suppression method in the front-end. After
selecting one of the suppression methods corresponding to
the GMM with the maximum likelihood. The system ap-
plies the method to the input speech and then recognizes it.
We used GMMs with 64 diagonal covariance matrices. The
first 10 frames of each speech data were used as the noise.
Each noise feature consisted of 12 dimensional MFCC and
a log energy. The performance of the noise environment de-
tection is 54% when considering the selection correct if the
best method for training data is selected. This performance

Fig. 2 Recognition procedure using automatic selection of noise sup-
pression methods.

does not seem so good, but the method with a performance
tendency similar to the ‘best’ tends to be selected. And, even
if a selection error occurs, a method other than the best one
also has some level of recognition performance, and thus the
error does not lead to serious degradation.

Figure 2 describes the procedure of the noise suppres-
sion using the selection of noise suppression methods. In
this figure, SS is selected as the best method by way of ex-
ample.

The advantage of this method is to be able to select an
appropriate suppression method robustly even if the noise
is unknown. GMM is trained only using the noises in the
training data. Thus, the noise that does not exist in the train-
ing data is an unknown noise. We expect that the system
selects a method for known noises similar to unknown ones
and that the method may be effective for the noise. With this
method, the back-end recognizer needs only one HMM set
and does not need any special processing. Therefore, this
method can be applied to distributed speech recognition.

3.2 Iterative Training of Acoustic Model

The proposed method is for the noise suppression only by
the front-end and we do not modify the back end except for
acoustic models. In clean training condition, the suppres-
sion methods are applied only to the test data. Therefore,
there is no modification of the acoustic models even if the
front-end applies a different method to each input speech.
However, the acoustic models can be retrained using the
training data compensated by various suppression methods
in the multi-training condition. Retraining tends to improve
recognition performance, but the appropriate method for ev-
ery noise condition (i.e. Table 7) may change because of the
retraining. So we select the best suppression method for
each noise condition after each iteration and make GMM
again (for each noise condition group). Then we can ob-
tain new acoustic models from the training data to which
the selected noise suppression method by the new GMMs
is applied. We iterate this procedure and stop it when all
the correspondences between noise conditions and suppres-
sion methods are fixed. Figure 3 shows the procedure of the
iterative training.
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Fig. 3 Iterative training procedure for acoustic model.

First we use appropriate acoustic models (HMMs) as
initial models. We conduct recognition experiments on
training data for all the suppression methods with these
HMMs, and then select a method with the best accuracy
for each noise condition. The GMM for each suppression
method is trained according to the recognition result. The
recognition experiments are conducted with these HMMs,
and the best suppression method for each noise condition
is selected again. If all the correspondences between noise
conditions and the suppression method are the same as the
correspondence just before the last HMM training, the it-
eration terminates. If not, we conduct the above procedure
again.

4. Integration of Recognition Results
—Integration in Back-end—

4.1 Front-end Processing vs. Back-end Processing

The integration of the suppression methods in the front-end
obtains the accuracy improvement to some degree without
increasing computational cost on the back-end processing.
On the other hand, the integration of the noise suppression
methods in the back-end has been proposed [11]. The in-
tegration is done by voting. The recognizer corresponding
to each noise suppression method votes for the hypothesis
obtained by the recognizer, and the hypothesis which gets
majority vote is selected as a final result (voting method).
This method showed a significant improvement in accuracy.
However, the computational cost was huge. So, we investi-
gate a method to improve the recognition accuracy with less
computational cost using the GMM-based selection of noise
suppression method.

Fig. 4 Voting procedure using GMMs.

4.2 Integration of Recognition Results Using GMM

To reduce the computational cost of a voting method, the
system first selects some effective suppression methods
which are performed in parallel. Then one votes for the
results. In this strategy, GMMs are used as the case with
the method in the front-end. Figure 4 shows the voting al-
gorithm procedure using GMMs. The training procedure
of GMM is similar to Sect. 5. The noise feature is in-
putted to each GMM, the likelihood of 21 suppression meth-
ods is obtained, and the N-best noise suppression meth-
ods are selected. Then, recognition procedures using se-
lected noise suppression methods are performed in parallel.
The hypotheses obtained from these procedures are voted,
and the digit sequence hypothesis with maximum vote is
adopted as the final result. When the number of votes is
the same for plural hypotheses, or when all the hypothe-
ses are different from each other, the hypothesis generated
by the method with the highest likelihood of noise-GMM
is adopted. Moreover, because there are differences among
the effects of the suppression methods, it is natural to assign
priorities to the methods according to the noise conditions.
Therefore, we use a weighted voting method based on the
likelihood (or priority) of GMMs.

5. Experiment

5.1 Front-end Processing Results

We evaluated the method described in Sect. 4 on the
CENSREC-1. The whole noise suppression procedure is
done in the front-end, and all methods are categorized as
category 0 [20].

5.1.1 Result of Clean Training

We evaluated three noise suppression methods: GMM-KLT,
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Fig. 5 Performance under clean training condition (%).

which was the best single (sequential) suppression method
among all under clean training condition, the proposed
method, and the manual selection of the best suppression
method for each noise condition (ideal result). The selec-
tion accuracy of noise suppression methods by GMMs was
about 54% both under clean and multi-conditions. Figure 5
shows the results in word accuracy and improvement rela-
tive to the baseline.

The proposed method obtained the relative perfor-
mance improvement of 67.7% as compared to the baseline,
which was better than “GMM-KLT” (64.8%). That is to
say, we could obtain better performance with the proposed
method than all the individual methods included in the se-
lection of the proposed method. The improvement of the
recognition accuracy of test set B (speech contaminated with
unknown noises) is not so inferior to the improvement of the
recognition accuracy of test set A (with known noise). This
proved that our proposed method could suppress not only
known but also unknown noises robustly.

Unfortunately, our method could not improve the accu-
racy of test set C to which convolutional noise was added.
The method to compensate for channel distortion such as
CMN was not applied to the features for evaluating noise
GMMs, and thus the noise environment selection did not
work well on the Set C.

5.1.2 Result of Multi-Training

We evaluated three noise suppression methods: SVD-
GMM, which was the best single (sequential) suppression
method among all under multi-training condition, the pro-
posed method, and the manual selection of the best sup-
pression method for each noise condition (ideal result).
We used the HMMs trained from the speech applied with
“SVD-GMM,” which is the best combination method for
multi-condition training among the 21 methods. We used
the GMM obtained by the training method described in
Sect. 3.2. Figure 6 shows the result of the acoustic mod-
els obtained at every iteration step. The bars and the lines
show the word accuracies and the relative performance im-
provement to the baseline, respectively. The changes of the

Fig. 6 Performance improvement by iterative training (%).

Fig. 7 Recognition performance of multi-condition training (%).

correspondences between noise conditions and the suppres-
sion method decreases as the process were iterated, and no
change occurred after the fifth iteration. The best perfor-
mance was obtained by the HMMs trained at the fourth it-
eration, after which we obtained the absolute word accu-
racy improvement of 0.2%. The word accuracy was 85.93%
when the noise was not suppressed (baseline). Figure 7
shows the recognition results for the SVD-GMM, the pro-
posed method, and the ideal method. The proposed method
obtained the relative performance improvement of 30.5% as
compared to the baseline. Compared with the SVD-GMM,
the improvement of relative improvement was 5.4% from
“SVD-GMM” (30.5% from 25.1%). Hence, the proposed
method could obtain better relative performance than all the
individual methods. This method worked well even for un-
known noises from the result on test set B.

The noise environment detection rate of noise GMM
was about 54%. The ideal result assumed that the detec-
tion rate was 100%, and thus the difference of this detection
performance results in a difference in the recognition per-
formance of the ideal and proposed methods in Figs. 5 and
7.
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5.2 Integration in Back-end Processing

We evaluated the integration method in the back-end. In this
method, we modified the back-end processing and thus this
method is categorized as category 5 [20]. The advantage of
this method is that it allows one to use noise suppression
method-dependent HMMs, so we evaluated this method un-
der the multi-training condition.

In our method, the noise suppression methods were dy-
namically selected on the fly. For comparison, we also con-
ducted the voting by fixed N methods. These N methods
were selected a priori by overall recognition performance
on the training data. We conducted the recognition experi-
ment by the voting method with N noise suppression meth-
ods with N = 1, 5, 10, 15 and 21 (used all suppression meth-
ods) on the multi-condition training. We could use multiple
hypotheses for voting, so we tested the 1-best and 5-best
hypotheses per noise suppression method. Figure 8 shows
the results. In Fig. 8 ‘baseline’ describes the method with
the fixed N noise suppression methods and ‘proposed’ de-
scribes the method with dynamically selected N noise sup-
pression methods. The recognition accuracy of the proposed
method was higher than that of baseline. Because all meth-
ods were used, the recognition accuracy was the same when
using N = 21 for both voting methods. When using N = 1,
‘baseline’ was the best single method, and ‘proposed’ se-
lected a suitable method for every noise condition by using
GMM. We found the absolute improvement of 0.34% (2.4%
relative) when using N = 5.

All the accuracy was slightly improved using the 5-
best hypotheses for voting and we observed almost same
tendency as was in the case of 1-best. Utterance-wise selec-
tion works well, and thus the performance of our integration
method with N = 5 was superior to the manual selection for
each noise condition shown in Table 3.

Table 8 shows the results in word accuracy and string
accuracy. We tested the improvement of the method with 5
dynamically selected methods from the fixed 5 methods in
string accuracy using sign test and proved that there was a
significant improvement with the significance level of 1%.

This method requires a computational cost almost di-
rectly proportional to the number of selected methods, and
so Fig. 8 shows the relation between computational cost and
performance. In light of the two lines indicating 1-best re-
sults in Fig. 8, dynamic noise suppression method selection
obtains comparable performance at less computational cost
than using fixed N noise suppression methods. For example,
almost the same performance as 10 noise suppression meth-
ods can be obtained by dynamic 7 or 8 method selection.
This means a 20–30% cost reduction. It does not cost much
to obtain N-best candidates from each recognition process.
From the viewpoint of computational cost, the recognition
performance reached saturation at about ten times the com-
putational cost. Adopting the N-best candidate slightly im-
proves the performance without increasing the computa-
tional cost. Recently, parallel decoding on multiple proces-

Fig. 8 Recognition accuracy for voting method with N noise suppression
methods (%). Comparison between the method with fixed N methods and
the method with dynamically selected N method.

Table 8 Comparison of proposed methods and baseline.

Word acc. String acc.
Fixed 5 methods 90.79% 81.23%
Dynamically selected 5 methods 91.15% 82.41%
Voting without weight (21 methods) 91.97% 84.38%
Weighted voting by GMM (21 methods) 92.20% 84.60%

sors has been proposed [8], [9]. Our method takes almost the
same process time as conventional single decoding when us-
ing such implementation. Also, our method can balance the
computational cost and recognition performance by control-
ling the number of selected methods according to the num-
ber of available processors.

We also evaluated the weighted voting method. We
used 1.5 and 0.5 as the weights for the 1/3 of suppression
methods with high likelihoods of noise GMMs and for the
1/3 with low likelihoods, respectively. Results are shown in
Table 8, and we proved that a significant improvement was
achieved with the weighted voting method with the signifi-
cance level of 1% by a sign test [22]. We obtained the word
accuracy improvement of 0.23% (the relative performance
improvement of 1.63%) and the string accuracy improve-
ment of 0.22% by the voting with weight.

6. Conclusion

We proposed the automatic selection of noise suppression
method using GMM corresponding to each noise suppres-
sion method. We also proposed an iterative training of
HMMs and GMMs for multi-conditional training. We
first proposed to apply the method selection to the front-
end processing. We evaluated the proposed method using
CENSREC-1 Japanese noisy connected digit speech recog-
nition task and obtained better recognition performance than
all the individual methods including the sequential combi-
nations in both clean and multi-training. Then, we proposed
the integration method in which noise suppression methods
were dynamically selected using GMM in back-end. We
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found the absolute improvement of 0.36% as compared to
the method with fixed N noise suppression methods when
using N = 5 with 5-best hypotheses per suppression meth-
ods.

We proved that our method could manage multiple
noise suppression methods efficiently to complement each
other. Our method, of course, can adopt other suppression
methods to achieve further improvement.
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