
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008
457

PAPER Special Section on Robust Speech Processing in Realistic Environments

Robust Speech Recognition by Combining Short-Term and
Long-Term Spectrum Based Position-Dependent CMN
with Conventional CMN
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SUMMARY In a distant-talking environment, the length of channel im-
pulse response is longer than the short-term spectral analysis window. Con-
ventional short-term spectrum based Cepstral Mean Normalization (CMN)
is therefore, not effective under these conditions. In this paper, we propose
a robust speech recognition method by combining a short-term spectrum
based CMN with a long-term one. We assume that a static speech segment
(such as a vowel, for example) affected by reverberation, can be modeled
by a long-term cepstral analysis. Thus, the effect of long reverberation
on a static speech segment may be compensated by the long-term spec-
trum based CMN. The cepstral distance of neighboring frames is used
to discriminate the static speech segment (long-term spectrum) and the
non-static speech segment (short-term spectrum). The cepstra of the static
and non-static speech segments are normalized by the corresponding cep-
stral means. In a previous study, we proposed an environmentally robust
speech recognition method based on Position-Dependent CMN (PDCMN)
to compensate for channel distortion depending on speaker position, and
which is more efficient than conventional CMN. In this paper, the concept
of combining short-term and long-term spectrum based CMN is extended
to PDCMN. We call this Variable Term spectrum based PDCMN (VT-
PDCMN). Since PDCMN/VT-PDCMN cannot normalize speaker varia-
tions because a position-dependent cepstral mean contains the average
speaker characteristics over all speakers, we also combine PDCMN/VT-
PDCMN with conventional CMN in this study. We conducted the experi-
ments based on our proposed method using limited vocabulary (100 words)
distant-talking isolated word recognition in a real environment. The pro-
posed method achieved a relative error reduction rate of 60.9% over the
conventional short-term spectrum based CMN and 30.6% over the short-
term spectrum based PDCMN.
key words: robust speech recognition, distant-talking environment, CMN,
long-term spectrum

1. Introduction

Automatic speech recognition (ASR) systems are known to
perform reasonably well when the speech signals are cap-
tured using a close-talking microphone. However, there are
many environments where the use of such microphones is
undesirable for reasons of safety or convenience. Hands-
free speech communication [1]–[3] has become more popu-
lar in special environments such as the office or a car. Unfor-
tunately, in a distant-talking environment, channel distortion
can drastically degrade the speech recognition performance.
This is predominantly caused by the mismatch between the
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real and the training environments.
Compensating an input feature is the main way to re-

duce the mismatch. Cepstral Mean Normalization (CMN) is
a simple and effective way of normalizing the feature space
and thereby reducing channel distortion [4]–[7]. CMN re-
duces the errors caused by the mismatch between test and
training conditions, and it is also very simple to implement.
It has, therefore, been adopted in many current systems. In
order to be effective for CMN, the length of the channel
impulse response needs to be shorter than the short-term
spectral analysis window which is usually 16 ms - 25 ms.
However, the duration of the impulse response of reverbera-
tion usually has a much longer tail in a distant-talking envi-
ronment. Therefore, conventional CMN, in which cepstral
means are estimated from the entire current utterance us-
ing the short-term analysis window, is not effective under
these conditions. Several studies have focused on decreas-
ing the above problem. Raut et al. [8], [9] use preceding
states as units of preceding speech segments, and by esti-
mating their contributions to the current state using a max-
imum likelihood function, they adapt the models accord-
ingly. In this paper, we address the effect of long reverber-
ation by feature-based compensation method that is easier
to be implemented. In [10], [11] a multiresolution channel
normalization based speech recognition front end has been
implemented by subtracting the mean of the log magnitude
spectrum using a long-term spectral analysis window. At
first, they used a long time window (high frequency reso-
lution; 2 seconds) analysis and applied channel normaliza-
tion. Then, they transformed the long-time representation
to a short-time representation. Finally, cepstral domain fea-
tures were computed for speech recognition. In this paper,
we directly normalized the cepstral domain feature based
on long-term spectrum corresponding to static speech signal
and short-term spectrum corresponding to non-static speech
signal for speech recognition in one step.

In this paper, we propose robust speech recognition by
combining a short-term spectrum based CMN with a long-
term spectrum based CMN, which we call Variable-Term
spectrum based CMN (VT-CMN). We assume that static
speech segments (such as vowels, for example) affected by
reverberation can be modeled by a long-term cepstral analy-
sis. Thus, the effect of long reverberation on a static speech
segment may be compensated by the long-term spectrum
based CMN. For speech recognition, short-term and long-
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term cepstral coefficients are extracted a priori. The cep-
stral distance of neighboring frames is used to discriminate
the static and non-static speech segments. A speech seg-
ment with a smaller variance between neighboring frames
is detected as a static speech segment. The cepstra of static
and non-static speech segments are normalized by the cor-
responding cepstral means.

In conventional CMN, the cepstral mean is previously
estimated by averaging along the entire current utterance
and is kept constant during the normalization. However,
this off-line estimation involves a long delay that is likely
to be unacceptable when the utterance is long. If the ut-
terance is short, an accurate cepstral mean cannot be es-
timated. Various window CMN methods have been used
to normalize the feature vectors in an on-line version [6],
[7]. However, a tradeoff exists between delay and recogni-
tion error [7]. Thus, the usual CMN cannot achieve good
recognition performance with a short delay. In our previous
study [12], [13], we proposed a robust speech recognition
method using a new real-time CMN based on speaker po-
sition, which we call Position-Dependent CMN (PDCMN).
In this method, we measure the transmission characteris-
tics (the compensation parameters for position-dependent
CMN) from certain grid points in a room a priori. The sys-
tem then adopts the compensation parameter corresponding
to the estimated position, applies a channel distortion com-
pensation method to the speech (that is, position-dependent
CMN) and performs speech recognition. It is shown in
[13] that PDCMN is more efficient for speech recognition
in a distant-talking environment than conventional CMN. In
this paper, position-dependent cepstral means are estimated
from short-term cepstra using non-static speech segments
and from long-term cepstra using static speech segments.
The cepstra of the static and non-static speech segments
are then subtracted from the corresponding cepstral means
depending on the speaker position. We call this method
Variable-Term spectrum based PDCMN (VT-PDCMN).

PDCMN† or VT-PDCMN can indeed compensate effi-
ciently for the channel transmission characteristics depend-
ing on speaker position, but cannot normalize the speaker
variation because a position-dependent cepstral mean does
not contain speaker characteristics. On the contrary, the con-
ventional CMN can compensate for both the transmission
and the speaker variations, but cannot achieve good recogni-
tion performance for short utterances because the sufficient
phonemics balance cannot be obtained. Both variations per-
form additional operations in the cepstral domain. Thus, the
combination of position-dependent cepstral mean and con-
ventional cepstral mean may simultaneously compensate for
the channel distortion and speaker variation effectively. In
this paper, the sum of weights of position-dependent cep-
stral and conventional cepstral mean is set to 1 because
the transmission characteristics should not be over normal-
ized. In other words, since both the position-dependent cep-
stral mean and the conventional cepstral mean contain the
channel transmission characteristics, the channel distortion
would be normalized twice if each weight is set to 1. Indeed,

we also conducted experiments using the various weights
(the sum of weight was not equal 1) of two kinds of cepstral
mean, the results became worse because the amplitude of
weight-sum of two kinds of cepstral mean mismatched the
real value.

In this paper, we propose a robust distant speech recog-
nition by combining PDCMN/VT-PDCMN with conven-
tional CMN to address the above problems. The a priori
estimated position-dependent cepstral mean is linearly com-
bined with an utterance-wise cepstral mean using the fol-
lowing two combination methods. The first method uses a
fixed weighting coefficient over the whole test data to obtain
the combinational CMN, and this is called fixed-weight com-
binational CMN. However, the optimal weight seems to de-
pend on the speaker position and the length of the utterance
to be recognized. Thus, a fixed weighting coefficient does
not obtain the optimal result. A variable weighting coeffi-
cient may produce better performance. A single input fea-
ture compensated by the combinational cepstral means with
different weighting coefficients generates multiple input fea-
tures. Thus, the problem becomes how to obtain the optimal
performance for the given multiple input features. Voting
on the different hypotheses generated from the multiple in-
put features has been studied in [12], [14]. In [15], a new
algorithm to select a suitable channel for speech recognition
using the output of the speech recognizer has been proposed.
All the methods discussed above use the output hypotheses
generated by multiple decoders to estimate the final result.
In our previous study [13], we proposed the combination of
multiple input streams at frame level using a single decoder.
In this paper, we extend this method to the combination of
PDCMN/VT-PDCMN and conventional CMN. The second
method for obtaining the combinational CMN involves cal-
culating the output probability of each input feature at frame
level, and a single decoder using these output probabilities is
used to perform speech recognition. This is called variable-
weight combinational CMN and is very easy to implement
in both isolated word recognition systems and continuous
speech recognition systems.

Section 2 describes the combination of short-term and
long-term spectrum based CMN. An environmentally ro-
bust real-time Position-Dependent CMN (PDCMN) and
Variable-Term spectrum based PDCMN (VT-PDCMN) are
described in Sect. 3. The combination of PDCMN/VT-
PDCMN and conventional CMN is proposed in Sect. 4. Sec-
tion 5 describes the experimental results of distant-talking
speech recognition in a real environment. Finally, Sect. 6
summarizes the paper and describes future work.

2. Variable-Term Spectrum Based CMN

2.1 Conventional Short-Term Spectrum Based CMN

A simple and effective way of channel normalization is to
†For the sake of convenience, CMN refers to short-term spec-

trum based CMN, and PDCMN refers to short-term spectrum
based PDCMN in this paper.



WANG et al.: ROBUST SPEECH RECOGNITION BY COMBINING VT-PDCMN AND CONVENTIONAL CMN
459

subtract the mean of each cepstral coefficient (CMN) [4],
[5], [16], which removes time-invariant distortions caused
by the transmission channel and the recording device.

When speech s[l] is corrupted by convolutional noise
h[l] and additive noise n[l], the observed speech x[l] be-
comes

x[l] = h[l] ⊗ s[l] + n[l]. (1)

We, however, conducted our experiments in a silent seminar
room, with the result that the effect of noise is ignored in
this paper. So Eq. (1) becomes x[l] = h[l] ⊗ s[l].

CMN has been used to compensate for the convolution
distortion. In order for CMN to be effective, the length of
the impulse response has to be shorter than the short-term
spectral analysis window. However, in a distant-talking en-
vironment, the length of impulse response is longer than the
short-term spectral analysis window, and therefore the late
effect of impulse response cannot be compensated.

To analyze the effect of impulse response, the impulse
response h[l] can be separated into two parts h1[l] and h2[l]
as

h1[l]=

⎧⎪⎪⎨⎪⎪⎩
h[l] l < L

0 otherwise
, h2[l]=

⎧⎪⎪⎨⎪⎪⎩
h[l + L] l ≥ 0

0 otherwise
,

(2)

where L is the length of the spectral analysis window, and
h[l] = h1[l]+δ(l−L)⊗h2[l]. δ() is a dirac delta function (that
is, unit impulse function). The formula (1) can be rewritten
as

x[l] = s[l] ⊗ h1[l] + s[l − L] ⊗ h2[l], (3)

where the early effect is within a frame (analysis window),
and the late effect is over multiple frames.

In [17], the early term of Eq. (3) was compensated by
conventional CMN, whereas the late term of Eq. (3) was
treated as additive noise, and a noise reduction technique
based on spectrum subtraction was applied. In this paper,
we focus on increasing the length of the analysis window L,
which reduces the early effect of the impulse response (that
is, the first term of Eq. (3)) as much as possible.

Cepstrum is obtained by DCT transforming a loga-
rithm of a power spectrum of the signal (that is, Cx =

DCT (log |DFT (x)|2)), and thus Eq. (1) becomes

Cx = Ch + Cs, (4)

where Cx, Ch and Cs express the cepstra of observed speech
x, transmission characteristics h, and clean speech s, respec-
tively.

Based on this, the convolutional noise is considered as
additive bias in the cepstral domain, so the noise (transmis-
sion characteristics or channel distortion) can be compen-
sated by CMN in the cepstral domain as:

C̃t = Cx
t − ΔC, (t = 0, . . . , T ), (5)

ΔC ≈ C̄x − C̄train, (6)

where C̃t and Cx
t are the compensated and original cepstra

at time frame t, and C̄x and C̄train are the cepstral means of
utterances to be recognized and those to be used to train the
speaker-independent acoustical model, respectively.

2.2 Combination of Short-Term and Long-Term Spectrum
Based CMN

In the traditional method, a short-term cepstral analysis is
used. However, the duration of impulse response of rever-
beration usually has a much longer tail in a distant-talking
environment. Therefore, conventional CMN is not effective
under these conditions.

For the static part of speech signals, the spectrum can
be extracted by the long-term analysis window because the
speech signal is stationary. We assume that a static speech
segment affected by long reverberation can be modeled by
the long-term spectrum based CMN. Thus, the effect of long
reverberation on a static speech signal may be compensated
by the long-term spectrum based CMN. On the other hand,
for the non-static part of speech signals, the Fourier trans-
form cannot be applied to a long-term analysis window be-
cause the long-term speech signal is not stationary. This
result in long-term analysis window based spectrum yields
too low time resolution for transient speech. Thus, the long-
term CMN cannot be applied to non-static part of speech
signals because long-term cepstral mean is not available too.
In the case of a non-static speech segment, the traditional
short-term spectrum based CMN is used. Thus, the combi-
nation of short-term and long-term spectrum based CMN is
defined as [18]:

C̃t = Cx
t − ΔC =

⎧⎪⎪⎨⎪⎪⎩
Cx short

t − ΔCshort

Cx long
t − ΔClong

=

⎧⎪⎪⎨⎪⎪⎩
Cx short

t − (C̄x short − C̄train short)

Cx long
t − (C̄x long − C̄train long)

⎧⎪⎪⎨⎪⎪⎩
if t-th speech segment is non-static

if t-th speech segment is static
, (7)

where Cx short
t and Cx long

t are the original short-term and
long-term cepstra at time frame t, C̄x short and C̄x long are
short-term and long-term cepstral means of utterances to be
recognized, and C̄train short and C̄train long are short-term and
long-term cepstral means of utterances to be used to train
the speaker-independent acoustical model, respectively.

2.3 Static and Non-static Speech Segment Detection

Test and training utterances include static and non-static
speech. In order to estimate the cepstral means of static
and non-static speech segments and to normalize the cor-
responding cepstral features, static speech segment detec-
tion and non-static speech segment detection are necessary
and important for speech recognition using the proposed
method. It is well known that a static speech segment has
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smaller variance between neighboring frames than a non-
static speech segment. To discriminate the static and non-
static speech segments, the cepstral distance of neighboring
frames is defined as:

D(Ct,Ct+1) =
M∑

m=1

|Cm
t −Cm

t+1|, (8)

where Cm
t is the m-th cepstrum of the t-th frame. A speech

segment is more likely to be a static speech segment when
the cepstral distance between neighboring frames is small.
For the sake of simplicity, a certain percentage of speech
segments with smaller cepstral distances is identified as
static speech segments in this paper.

3. Variable-Term Spectrum Based Position-Dependent
CMN

3.1 Position-Dependent CMN

In a real distant-talking environment, the transmission char-
acteristics of different speaker positions differ because of the
distance between the speaker and the microphone, and the
reverberation of the room [19]. In [12], [13], we proposed
an environmentally robust speech recognition method based
on Position-Dependent CMN (PDCMN). For PDCMN, the
compensation parameter in Eq. (6) is defined by:

ΔC = C̄position − C̄train, (9)

where C̄ position is the cepstral mean of utterances affected by
the transmission characteristics between a certain position
and the microphone. Both C̄ position and C̄train are estimated
from short-term cepstra. In our experiments in Sect. 5, we
divide the room into 12 areas as shown in Fig. 1 and measure
the C̄ position corresponding to each area.

We measure the transmission characteristics (the com-
pensation parameters for position-dependent CMN) from
some grid points in the room a priori. The system esti-
mates the speaker position in a 3-D space based on mi-
crophone arrays [19]. Four microphones are arranged in a
T-shape on a plane, and the sound source position is esti-
mated by Time Delay of Arrival (TDOA) among the micro-
phones [20]–[22]. The system then adopts the compensation
parameter corresponding to the estimated position, applies a
channel distortion compensation method to the speech (that
is, position-dependent CMN), and performs speech recogni-
tion.

3.2 Combination of Short-Term and Long-Term Spectrum
Based PDCMN

We extend the concept of combining short-term and long-
term spectrum based CMN to PDCMN, which we call
Variable-Term spectrum based PDCMN (VT-PDCMN).
C̄position and C̄train are both estimated by averaging short-
term cepstra obtained from non-static speech segments and
long-term cepstra obtained from static speech segments.

Fig. 1 Room configuration. (room size: (W) 3 m × (L) 3.45 m ×
(H) 2.6 m)

The cepstrum of the t-th speech segment Cx
t is compensated

by ΔC = C̄position − C̄train, while the corresponding C̄ position

and C̄train are selected as:

C̄position=

⎧⎪⎪⎨⎪⎪⎩
C̄position short if t-th segment is non-static

C̄position long if t-th segment is static
,

(10)

C̄train =

⎧⎪⎪⎨⎪⎪⎩
C̄train short if t-th segment is non-static

C̄train long if t-th segment is static
,

(11)

where C̄position short, C̄ position long are short-term and long-
term cepstral means of utterances emitted from a certain po-
sition, and C̄train short and C̄train long are short-term and long-
term cepstral means of utterances to be used to train the
speaker-independent acoustical model, respectively.

4. Combination of PDCMN/VT-PDCMN and Conven-
tional CMN

4.1 Fixed-Weight Combinational CMN

To compensate the channel distortion and speaker charac-
teristics simultaneously, a short-term or variable-term spec-
trum based position-dependent cepstral mean is combined
linearly with the conventional cepstral mean [23]. The new
compensation parameter ΔC for combinational CMN is de-
fined by:

ΔC = λ(C̄position − C̄train) + (1 − λ)(C̄x
t − C̄train)

= λC̄position + (1 − λ)C̄x
t − C̄train, (12)
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where λ denotes a weighting coefficient. In Sect. 4, C̄position

and C̄train are estimated by averaging short-term cepstra for
PDCMN given by Eq. (9) and variable-term cepstra for VT-
PDCMN given by Eqs. (10) and (11). When a fixed λ is used
for the entire test data, the method is known as fixed-weight
combinational CMN.

4.2 Variable-Weight Combinational CMN

In Sect. 4.1, a fixed weighting coefficient λ is used to com-
bine PDCMN/VT-PDCMN with the conventional CMN.
The effect of the channel distortion (that is, position-
dependent cepstral mean) depends on speaker position and
the confidence of the estimated speaker characteristics (that
is, the conventional cepstral mean) depends on the length of
the utterance. Therefore, the weighting coefficient λ should
be adjusted according to the speaker position and the length
of the utterance. A single input feature compensated by the
combinational cepstral means with different weighting coef-
ficients generates multiple input features. Thus, the problem
becomes how to obtain the optimal performance given the
multiple input features.

Given a set of variable weights λk, an automatic de-
cision algorithm for the optimal weighting coefficient λ is
required. In a previous study [13], we proposed an optimal
input decision algorithm, which calculates the output prob-
ability of each input stream at frame level and selects the
input with maximum probability as the optimal input. We
extend and modify this algorithm to the so-called variable-
weight combinational CMN. Indeed, the proposed variable-
weight combinational CMN can automatically select the op-
timal weight coefficient at frame level from within the range
of given weight coefficients.

For multiple inputs, a conventional Viterbi algo-
rithm [24] is used for each input stream, k. The probability
α(t, j, k) of the most likely state sequence at time t which
has generated the observation sequence Ok(1) · · ·Ok(t) (un-
til time t) of the k-th input (1 ≤ k ≤ K) and ends in state j is
defined by:

α(t, j, k) = max
1≤i≤S
{α(t − 1, i, k)ai jb j(Ok(t))}, (13)

Ok(t) = C̃t − (λkC̄
position + (1 − λk)C̄x

t − C̄train).

where ai j = P(st = j|st−1 = i) is the transition probability
from state i to state j, 1 ≤ i, j ≤ S , 2 ≤ t ≤ T ; and b j(Ok(t))
is the output probability for an observation sequence Ok(t)
at state j. λk is the k-th weighting coefficient.

In this conventional multiple-decoder method, the
Viterbi algorithm is performed for each input stream inde-
pendently, resulting in a computational complexity of K (the
number of input streams). Thus, both the calculation of out-
put probability and the rest of the processing costs such as
finding a best path (state sequence), and so forth, are K times
that of a single input.

In order to use a single decoder for multiple inputs, we
modify Eq. (13) as follows:

α(t, j) = max
1≤i≤S
{α(t − 1, i)ai j max

k
b j(Ok(t))}. (14)

This method is called single decoder processing. In
Eq. (14), the maximum output probability of all K inputs at
time t and state j is used. So only one best state sequence for
all K inputs using the maximum output probability of all K
inputs is obtained. This means that an extra K − 1 times the
calculation of only the output probability is required com-
pared to that of a single input. Furthermore, the derivatives
of the K input cepstrums (Δcepstrum) compensated by dif-
ferent combinational cepstral means have the same values.
Thus, the calculation depending only on the derivatives can
be shared by the input streams.

5. Experiments

5.1 Experimental Setup

We performed the experiment in a room, measuring 3.45 m×
3 m × 2.6 m, without additive noise, as shown in Fig. 2. The
room was divided into the 12 (3×4) rectangular areas shown
in Fig. 1, where each area is 60 cm×60 cm. We measured the
transmission characteristics (that is, the mean cepstrums of
utterances recorded a priori) from the center of each area.
For our experiments, the room was set up as the seminar
room shown in Fig. 2 with a whiteboard beside the left wall,
a table and a few chairs in the center of the room, a TV and
some other tables, etc. The reverberation time of this room
was about 150 ms.

4 microphones in a T-shape as shown in Fig. 3 were
used. The first microphone (M1) was regarded as the refer-
ence and was placed at the origin of the coordinate system.
The distance between a pair of microphones was 20 cm. In
this paper, the first microphone (M1) was used for single
microphone processing, and 4 microphones in a T-shape
were used for microphone array processing (delay-and-sum
beamforming [25], [26]). Delay-and-sum beamforming is
one of the simplest and the most robust means of spatial fil-
tering, which can discriminate between signals based on the
physical locations of the signal sources. Therefore beam-
forming can not only separate multiple sound sources but

Fig. 2 Experimental environment.
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Fig. 3 Setup of microphones. (d = 20 cm)

also suppress reverberation for the speech source of interest.
In our method, the estimated speaker position is used

to determine the area (60 cm × 60 cm) in which the speaker
should be. In a past study [19], we revealed that speaker po-
sitions 1, 5 and 9 shown in Fig. 1 could be estimated with
estimation errors of less than 10 cm by the T-shaped mi-
crophone system shown as Fig. 3, and that 99.8% positions
would be within the correct area. In the present study, there-
fore, we assumed that the position area was accurately esti-
mated, and we evaluated only our proposed speech recogni-
tion methods.

Twenty male speakers each with a close-microphone,
uttered 200 isolated words. The 200 isolated words are
phonetic balance common isolated words selected from
Tohoku University and Panasonic isolated spoken word
database [27]. The average time of all utterances was about
0.6 seconds. For each speaker, the first 100 words were used
as test data and the remainder for estimating the cepstral
mean C̄position in the short-term spectrum based on Eq. (9)
and the variable-term spectrum based on Eq. (10)†. To sim-
ulate the utterances spoken at various positions, all the utter-
ances were emitted by a loudspeaker located in the center of
each area and recorded for test purposes and the estimation
of C̄position. The sampling frequency was 12 kHz. The frame
length was 21.3 ms (256-point) for a short-term cepstrum,
and 37.3 ms (448-point) for a long-term cepstrum. To com-
pensate for the effect of long reverberation, it seems that
longer analysis window is more effective. However, there
exists a tradeoff between temporal resolution and frequency
resolution. The longer the analysis window was, the worse
the temporal resolution was. Furthermore, the speech seg-
ment (even the vowel etc.) should no longer be a station-
ary signal if the analysis window it too long, the recognition
performance would became worse in that case. In this paper,
the length of long-term analysis window was empirically de-
termined. The result based on 448-point window obtained
the best performance. By the way, the result based on 448-
point window was almost the same as that based on 512-
point window and was significantly better than that based
on other length of windows. A frame shift of 8 ms (96-
point) was used for both short-term and long-term cepstra.
The number of filters in a filter bank was 24, and the length

Table 1 The individual speech recognition results for short-term and
long-term cepstra. Cepstral means were estimated from 100 isolated words
for each speaker. (single microphone: %)

Recognition short-term spectrum long-term spectrum
method based CMN based CMN

Acoustic short-term short-term long-term
model cepstrum cepstrum cepstrum

Area 10 95.0 94.3 94.1
Area 11 95.1 94.8 94.4
Area 12 95.2 93.6 94.0

Ave. 95.1 94.2 94.2

of cepstral liftering was 22. Then, 116 Japanese speaker-
independent syllable-based HMMs (strictly speaking, mora-
unit HMMs [28]) were trained using 27992 utterances read
by 175 male speakers (JNAS corpus). Each continuous-
density HMM had 5 states, 4 with pdfs of output probability.
Each pdf consisted of 4 Gaussians with full-covariance ma-
trices. The feature space comprised 10 MFCCs. First- and
second-order derivatives of the cepstra plus first and second
derivatives of the power component were also included.

When using the variable-weight combinational CMN,
the optimal weighting coefficient was not empirically deter-
mined for the entire test data or development data as in fixed-
weight combinational CMN, but was automatically selected
at frame level from within the range of given weight coeffi-
cients. In this paper, the number of weight coefficient K was
set as 3. For the single microphone, λ1, λ2 and λ3 were set
as 0.6, 0.7 and 0.8, respectively. For the microphone array,
λ1, λ2 and λ3 were set as 0.4, 0.5 and 0.6, respectively.

5.2 Preliminary Experimental Results Based on the Com-
bination of Short-Term and Long-Term Spectrum
Based CMN

We conducted the preliminary speech recognition experi-
ment using a single microphone and combining short-term
and long-term spectrum based CMN as proposed in Sect. 2.
The utterances emitted by a loudspeaker located in areas 10,
11 and 12 as shown in Fig. 1 were used as test data.

The individual results for the single microphone based
on short-term cepstrum and long-term cepstrum are com-
pared in Table 1. Cepstral means were estimated from 100
isolated words for each speaker, and then CMN was per-
formed. The results based on long-term cepstrum were
worse than those based on short-term cepstrum because nu-
merous speech segments of test data were not static sig-
nals and could not be analyzed by the long-term window
(≈ 37.3 ms). For static signals analyzed by the long-term
window, both the short-term HMMs and long-term HMMs
were used as acoustic models. Since a considerable num-
ber of the speech segments of training data was not static
and could not be analyzed by the long-term window, pa-
rameters of the long-term HMMs could not be estimated ac-

†For the speech recognition method combining short-term
and long-term spectrum based CMN, estimation of a position-
dependent cepstral mean C̄position is not necessary.
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curately. Thus, the results based on long-term HMMs were
slightly worse than those based on short-term HMMs. In the
following part of this paper, the same short-term syllable-
based HMMs were used as acoustic models for both the
short-term spectrum based CMN and the long-term spec-
trum based CMN.

The results of combining short-term and long-term
spectrum based CMN are shown in Table 2. Cepstral means
were estimated from 1 word, 10 words and 100 words for
each speaker. 30% of speech segments with a smaller cep-
stral distance were identified as static speech segments, and
this was empirically determined. For CMN with 1 word,
since the average duration of the static speech signal of all
utterances was too short (about 0.6 second × 30% = 0.18
second), accurate cepstral means could not be estimated for
the static speech signal (long-term spectrum). Thus, the
combination of short-term and long-term spectrum based
CMN did not improve recognition performance for short ut-
terances. For CMN with 10 words or 100 words, the pro-
posed combination method effectively improved recognition
performance. The experimental results also show that the
longer the speech data which is used to estimate the cepstral
mean, the greater the improvement. The proposed combina-
tion of the short-term and long-term spectrum based CMN
using 100 words for cepstral mean estimation achieved a
14.3% relative error reduction rate over the conventional
short-term spectrum based CMN.

5.3 Experimental Results Based on the Combination of
PDCMN/VT-PDCMN and Conventional CMN

The variable-term spectrum based CMN (that is, the combi-
nation of short-term and long-term spectrum based CMN)
improved the recognition rate when the length of the ut-
terance to be recognized was long enough. However, this
precludes real-time processing of speech recognition. Fur-
thermore, the variable-term spectrum based CMN degraded
the recognition rate when the length of utterance to be
recognized was too short. In this section, we conducted
the experiments based on a combination of environmen-
tally robust real-time PDCMN/VT-PDCMN and conven-
tional CMN. Both the single microphone and the T-shape
4 microphone array were used. Short-term cepstral means
were estimated from one isolated word (about 0.6 seconds)
for conventional CMN.

The average results of all 12 areas based on a combi-
nation of PDCMN/VT-PDCMN and conventional CMN for
both the single microphone and the microphone array are

Table 2 Speech recognition results for the combination of short-term and long-term spectrum based
CMN. Cepstral means were estimated from 1 word, 10 words and 100 words for each speaker. (single
microphone: %)

Area 1 word 10 words 100 words
Conv. CMN proposed Conv. CMN proposed Conv. CMN proposed

10 90.4 88.6 94.4 94.8 95.0 95.7
11 90.9 88.5 94.2 94.9 95.1 96.1
12 89.9 88.7 94.8 94.7 95.2 95.6

Ave. 90.4 88.6 94.5 94.8 95.1 95.8

summarized in Table 3. The detailed experimental results
for every area are shown in Table 4 for the single micro-
phone and Table 5 for the microphone array. By compen-
sating the transmission characteristics using the compen-
sation parameters measured a priori from sufficient utter-
ances for each area, the short-term spectrum based PDCMN
given by Eq. (9) effectively improved the speech recogni-
tion performance in all 12 areas for both the single micro-
phone and the microphone array, compared to the conven-
tional CMN. For the microphone array, the conventional
CMN and the proposed PDCMN were applied after the
delay-and-sum beamforming. The proposed method out-
performed the conventional CMN (that is, a typical chan-
nel normalization method for dereverberation), microphone
array processing (that is, a spatial filtering for dereverber-
ation) and the combination method of conventional CMN
and microphone array processing. Furthermore, CMN based
dereververation methods are easy to be combined with many
other dereverberation methods such as representations Rel-
Ative SpecTrA (RASTA) filtering, low-pass AutoRegressive
Moving Average (ARMA) filtering [29]–[31], etc. RASTA
applies a band-pass filter to the energy in each frequency
subband in order to smooth over noise variations and to re-
move any constant offset resulting from static spectral col-
oration in the speech channel [29], [32]. The band-pass na-
ture of the RASTA filter and mean subtraction of CMN
both result in a feature vector stream with mean of zero.
In many cases, the performance based on CMN was simi-
lar to that based on RASTA under convolutional noise [33],
[34]. In [33], RASTA filtering and CMN were examined
as methods for normalization. Experiments showed that
RASTA filtering results in slightly better performance on

Table 3 Speech recognition results for the combination of PDCMN/VT-
PDCMN and conventional CMN (%).

Single microphone Microphone array
W/O CMN 90.1 91.4
Conv. CMN 92.9 93.6

PDCMN 95.8 96.4

VT-PDCMN 96.2 96.7
PDCMN +
Conv. CMN 96.3 96.9

(fixed-weight)
VT-PDCMN +

Conv. CMN 96.6 97.1
(fixed-weight)
VT-PDCMN +

Conv. CMN 97.0 97.5
(variable-weight)
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Table 4 Speech recognition results for the combination of PDCMN/VT-PDCMN and conventional
CMN using a single microphone (%).

Conv. PD- VT- PDCMN + VT-PDCMN + VT-PDCMN +
Area CMN CMN PDCMN Conv. CMN Conv. CMN Conv. CMN

(fixed-weight) (fixed-weight) (variable-weight)
1 93.1 96.6 97.0 96.9 97.2 97.8
2 96.1 97.8 97.7 97.9 98.1 98.6
3 94.9 96.6 97.2 97.1 97.6 98.1
4 93.6 95.9 96.2 96.2 96.5 97.0
5 94.4 96.6 97.1 97.2 97.6 97.8
6 93.7 96.0 96.4 97.0 97.1 97.5
7 92.4 95.8 95.9 96.4 96.6 97.0
8 91.1 95.1 95.2 95.2 95.7 96.1
9 93.8 96.9 96.9 97.4 97.3 97.7

10 90.4 94.4 94.6 94.4 95.1 95.5
11 90.9 94.0 95.3 94.9 95.4 95.6
12 89.9 93.6 94.6 94.7 95.2 95.5

Ave. 92.9 95.8 96.2 96.3 96.6 97.0

Table 5 Speech recognition results for the combination of PDCMN/VT-PDCMN and conventional
CMN using a microphone array (%).

Conv. PD- VT- PDCMN + VT-PDCMN + VT-PDCMN +
Area CMN CMN PDCMN Conv. CMN Conv. CMN Conv. CMN

(fixed-weight) (fixed-weight) (variable-weight)
1 94.8 97.2 97.5 97.7 97.8 98.2
2 96.0 98.1 98.2 97.9 98.3 98.6
3 94.7 96.9 97.3 97.7 98.0 98.3
4 93.1 95.9 96.6 96.7 97.3 97.6
5 94.5 97.0 97.3 98.0 97.8 98.4
6 94.6 97.3 97.1 97.7 97.9 98.2
7 94.1 96.8 97.0 96.9 97.0 97.5
8 93.0 95.9 96.4 96.2 96.8 96.9
9 93.8 96.5 97.0 97.2 97.1 97.7

10 91.5 94.8 95.7 95.4 95.6 96.1
11 91.9 95.5 95.7 95.8 95.9 96.7
12 91.4 94.4 94.7 95.2 95.4 95.8

Ave. 93.6 96.4 96.7 96.9 97.1 97.5

the unconstrained monophone task than CMN. In [34],
the classical RASTA filtering resulted in decreased recogni-
tion performance when compared to CMN. Phase-corrected
RASTA reached the same performance level as obtained for
CMN for a medium and large vocabulary continuous speech
recognition task. The phase-corrected RASTA is a tech-
nique that consists of classical RASTA filtering followed
by a phase correction operation. In some cases, the com-
bination of CMN and RASTA can give better results than
either of the techniques alone [30], [32]. Therefore, our pro-
posed method is effective than some typical dereververation
techniques such as the conventional CMN and the delay-
and-sum beamforming. Moreover, the proposed method is
easy to be combined with many other dereverberation meth-
ods such as beamforming, RASTA filtering, ARMA filter-
ing, etc., and a furthermore improvement should be ob-
tained. Thus, in this paper, we did not compare our proposed
method with other dereverberation methods such as RASTA
filtering, ARMA filtering, etc.

Since the effect of long reverberation on a static speech
segment could be compensated by the long-term spectrum
based CMN, the combination of short-term spectrum based
PDCMN and long-term spectrum based PDCMN (that is,

Variable-Term spectrum based PDCMN (VT-PDCMN)) fur-
ther improved the speech recognition performance. VT-
PDCMN achieved a relative error reduction rate of 9.5%
over PDCMN for the single microphone and 8.3% over
PDCMN for the microphone array. 40% of speech segments
for the single microphone and 30% of speech segments for
the microphone array with smaller cepstral distances were
identified as static speech segments, and this was empiri-
cally determined.

The combination of short-term spectrum based
PDCMN and conventional CMN with fixed-weight com-
pensated the channel distortion and speaker characteris-
tics simultaneously, so an 11.9% relative error reduc-
tion rate was achieved over PDCMN for the single mi-
crophone and a 13.9% relative error reduction rate was
achieved over PDCMN for the microphone array. When
VT-PDCMN was combined with conventional CMN using
fixed-weight, it achieved a relative error reduction rate of
19.0% over PDCMN for the single microphone and 19.4%
over PDCMN for the microphone array. The best aver-
age performance was obtained with the weight coefficient
λ = 0.7 for the single microphone and λ = 0.5 for the mi-
crophone array.
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Finally, the combination of VT-PDCMN and conven-
tional CMN with variable-weight achieved the best recog-
nition performance of all the methods because the optimal
weighting coefficients were selected at each frame in an ut-
terance. In other words, when using the variable-weight
combinational CMN, the optimal weighting coefficient was
not empirically determined for the entire test data or devel-
opment data as in fixed-weight combinational CMN, but was
automatically selected at frame level from within the range
of given weight coefficients. For the single microphone,
a 4.1% improvement (57.7% relative error reduction rate)
over conventional CMN, and a 1.2% (28.6% relative error
reduction rate) over PDCMN were achieved. For the mi-
crophone array, a 3.9% improvement (60.9% relative error
reduction rate) over conventional CMN, and a 1.1% (30.6%
relative error reduction rate) over PDCMN were achieved.
The computational cost of the variable-weight combina-
tional CMN was only 1.26 times that of the other methods
even when 3 input streams were used.

6. Conclusion and Future Work

In a distant-talking environment, the length of channel im-
pulse response is longer than the short-term spectral anal-
ysis window which is usually 16 ms - 25 ms. Therefore,
conventional short-term spectrum based CMN is not ef-
fective in these conditions. We have proposed a robust
distant-talking speech recognition method by combining a
short-term spectrum based CMN with a long-term spec-
trum based CMN. We have assumed that a static speech
segment affected by reverberation can be modeled by a
long-term cepstral analysis. Thus, the effect of long re-
verberation on a static speech segment may be compen-
sated by the long-term spectrum based CMN. The cepstral
distance of neighboring frames is used to discriminate the
static speech segment and non-static speech segment. The
cepstra of static and non-static speech segments are nor-
malized by the corresponding cepstral means. In this pa-
per, the concept of variable-term spectrum based CMN has
been extended to a robust speech recognition method based
on Position-Dependent CMN (PDCMN) to compensate for
channel distortion depending on speaker position. We call
this method Variable-Term spectrum based PDCMN (VT-
PDCMN). Since PDCMN/VT-PDCMN cannot normalize
speaker variation, we have further combined PDCMN/VT-
PDCMN with conventional CMN to compensate simulta-
neously for the channel distortion and speaker characteris-
tics. The short-term spectrum or variable spectrum based
position-dependent cepstral mean is combined linearly with
a conventional cepstral mean using the following two types
of processing. The first method uses a fixed weighting coef-
ficient over the whole test data to obtain the combinational
CMN, and this is called fixed-weight combinational CMN.
The second method calculates the output probability of mul-
tiple features compensated by a variable weighting coeffi-
cient at each frame, and a single decoder using these output
probabilities is used to perform speech recognition. This is

called variable-weight combinational CMN. We conducted
the experiments of our proposed method using limited vo-
cabulary (100 words) distant-talking isolated word recogni-
tion in a real environment. The combination of VT-PDCMN
and conventional CMN with variable-weight achieved a rel-
ative error reduction rate of 60.9% over the conventional
short-term spectrum based CMN and 30.6% over the short-
term spectrum based PDCMN using a T-shape 4 micro-
phone array.

In our future work, we aim to subtract the late term of
Eq. (3) based on spectrum subtraction and to normalize the
early term of Eq. (3) by combining variable-term spectrum
based PDCMN with conventional CMN as proposed in this
paper.
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