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Evaluation of Combinational Use of Discriminant Analysis-Based
Acoustic Feature Transformation and Discriminative Training

Makoto SAKAI†,††a), Norihide KITAOKA††, Members, Yuya HATTORI†, Nonmember,
Seiichi NAKAGAWA†††, Fellow, and Kazuya TAKEDA††, Member

SUMMARY To improve speech recognition performance, acoustic fea-
ture transformation based on discriminant analysis has been widely used.
For the same purpose, discriminative training of HMMs has also been used.
In this letter we investigate the effectiveness of these two techniques and
their combination. We also investigate the robustness of matched and mis-
matched noise conditions between training and evaluation environments.
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1. Introduction

To improve speech recognition performance, feature trans-
formation such as linear discriminant analysis (LDA) [1]
and heteroscedastic discriminant analysis (HDA) [2] are
widely used to transform concatenated acoustic features.
In a previous paper we proposed power linear discriminant
analysis (PLDA) [3], which can describe various criteria in-
cluding LDA and HDA as special cases. All these meth-
ods have improved speech recognition performance. Re-
cently, in machine learning/vision communities, other dis-
criminant analyses have been proposed. Several researchers
proposed objective functions such as oriented discriminant
analysis (ODA) and a heteroscedastic extension of LDA us-
ing Chernoff criterion [4]. All of these discriminant analyses
transform features discriminatively in a feature space. On
the other hand, various criteria for discriminative training of
acoustic models have been studied. Maximum mutual in-
formation (MMI) and minimum phone error (MPE) criteria
have been successfully applied to many speech recognition
systems [5]–[7].

The feature transformation technique and the discrimi-
native training technique aim to improve speech recognition
performance at different levels. The combination of these
two techniques can further improve speech recognition per-
formance [8]–[11]. In this letter, we investigate combina-
tions of discriminant analysis-based feature transformation
and discriminative training through experiments using in-car
speech [12]. We also investigate the robustness against mis-
matched noise conditions between training and evaluation
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environments.

2. Feature Transformation Based on Discriminant
Analysis

This section briefly reviews five feature transformation tech-
niques: LDA, HDA, PLDA, ODA and heteroscedastic ex-
tension of LDA using Chernoff distance.

2.1 Linear Discriminant Analysis (LDA)

Given n-dimensional features x j ∈ Rn( j = 1, 2, . . . ,N),
for example, several successive speech frames, let us find
a transformation matrix B ∈ Rn×p that transforms these fea-
tures to p-dimensional features z j ∈ Rp (p < n), where
z j = BT x j, and N denotes the number of features.

To obtain an optimal transformation matrix B, the ob-
jective function of LDA is defined as follows [1]:

JLDA (B) =

∣∣∣BT CbB
∣∣∣∣∣∣BT CwB
∣∣∣ , (1)

where Cb and Cw denote between-class and within-class co-
variance matrices, respectively. Cw =

∑c
k=1 PkCk, where Ck

is the covariance matrix of class k, Pk is the class weight,
and c is the number of classes. LDA finds a transformation
matrix B that maximizes Eq. (1).

2.2 Heteroscedastic Discriminant Analysis (HDA)

The objective function of HDA is defined as follows [2]:

JHDA (B) =
c∏

k=1

⎛⎜⎜⎜⎜⎜⎝
∣∣∣BT CbB

∣∣∣∣∣∣BT CkB
∣∣∣
⎞⎟⎟⎟⎟⎟⎠

Nk

, (2)

where Nk denotes the number of features labeled as class k.
Maximization of Eq. (2) is performed using a numerical op-
timization technique.

2.3 Power Linear Discriminant Analysis (PLDA)

We have proposed PLDA with the following objective func-
tion which includes LDA and HDA as special cases [3]:

JPLDA (B,m) =

∣∣∣BT CbB
∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎝
c∑

k=1

Pk(BT CkB)m

⎞⎟⎟⎟⎟⎟⎠
1/m∣∣∣∣∣∣∣

, (3)
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where m is a control parameter. By varying the con-
trol parameter m, the objective function can represent var-
ious objective functions. Especially, PLDA corresponds to
LDA/HDA when m equals one/zero, respectively.

2.4 Oriented Discriminant Analysis (ODA)

ODA has adopted symmetric divergence as a measure of
dissimilarity between two distributions [13]. The objective
function is defined as follows:

JODA(B) = −
c∑

i=1

tr((BT CiB)−1BT AiB),

where Ai =
∑c

j=1, j�i(Mi j+C j) and Mi j = (µi−µ j)(µi−µ j)T .

2.5 Heteroscedastic Linear Discriminant Analysis Using
Chernoff Distance (HLDAC)

Loog et al. [4] proposed a heteroscedastic extension of LDA
using the Chernoff criterion (HLDAC) †:

JHLDAC(B)

=

c−1∑
i=1

c∑
j=i+1

PiPjtr
((

BT CwB
)−1

BT C
1
2
w

×
( 1
πiπ j

(
log
(
Cw

i j

)
− πi log

(
Cw

i

)
− π j log

(
Cw

j

))

+
(
Cw

i j

)− 1
2 Mw

i j

(
Cw

i j

)− 1
2
)
C

1
2
wB
)
,

where Cw
i j = C

− 1
2

w (πiCi+π jC j)C
− 1

2
w , Cw

k = C
− 1

2
w CkC

− 1
2

w , Mw
i j =

C
− 1

2
w Mi jC

− 1
2

w , πi = Pi/(Pi + Pj), and π j = Pj/(Pi + Pj) .

3. Discriminative Training

This section briefly reviews two discriminative training
techniques: MMI [5], [6] and MPE [7].

3.1 Maximum Mutual Information (MMI)

The MMI criterion is defined as follows [5], [6]:

FMMI(λ) =
R∑

r=1

log
pλ(Or |sr)κP(sr)∑

s pλ(Or |s)κP(s)
,

where λ is the set of HMM parameters,Or is the r’th training
sentence, R denotes the number of training sentences, κ is
an acoustic de-weighting factor which can be adjusted to
improve the test set performance, pλ(Or |s) is the likelihood
given sentence s, and P(s) is the language model probability
for sentence s. The MMI criterion equals the multiplication
of the posterior probabilities of the correct sentences sr.

3.2 Minimum Phone Error (MPE)

MPE training aims to minimize the phone classification er-
ror (or maximize the phone accuracy) [7]. The objective
function to be maximized by the MPE training is expressed
as

FMPE(λ) =
R∑

r=1

∑
s pλ(Or |s)κP(s)A(s, sr)∑

s pλ(Or |s)κP(s)
, (4)

where A(s, sr) represents the raw phone transcription accu-
racy of the sentence s given the correct sentence sr, which
equals the number of correct phones minus the number of
errors.

4. Combination of Feature Transformation and Dis-
criminative Training

Feature transformation aims to transform high dimensional
features to low dimensional features in a feature space while
separating different classes such as monophones. Discrim-
inative training estimates the acoustic models discrimina-
tively in a model space. Because these two techniques are
adopted at different levels, a combination of them is ex-
pected to have a complementary effect on speech recogni-
tion.

5. Experiments

We conducted experiments on CENSREC-3 database [14],
which is designed as an evaluation framework for Japanese
isolated word recognition in real in-car environments.
Speech data were collected using two microphones: a close-
talking (CT) microphone and a hands-free (HF) microphone
attached to the driver’s sun visor. The speech signals were
sampled at 16 kHz. For training of HMMs, driver’s speech
of phonetically-balanced sentences was recorded under two
conditions: while idling and driving on city streets under a
normal in-car environment without air-conditioner noise. A
total of 28,100 utterances spoken by 293 drivers (202 males
and 91 females) were recorded with both microphones. We
used all utterances recorded with CT and HF microphones
for training. For evaluation, we used drivers speech of iso-
lated words recorded with CT and HF microphones under
three different conditions: an in-car environment without
A/C noise (normal), with low fan-speed noise (fan low), and
with high fan-speed noise (fan high). Tables 1 and 2 show
the amount of data for evaluation in each condition (total
six conditions) and the average SNR (Signal to Noise Ratio)
in each recording condition for evaluation data [14], respec-
tively.

†We let the function f of a symmetric positive definite ma-
trix A equal Udiag( f (λ1), . . . , f (λn))UT = U( f (Λ))UT , where
A = UΛUT , U denotes the matrix of n eigenvectors, and Λ de-
notes the diagonal matrix of eigenvalues, λi. Here, we define the
function f as the logarithm of A.
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Table 1 Amount of evaluation data.

Microphone In-car condition # Utterances
CT A/C off (normal) 2646
CT A/C on, low (fan low) 2637
CT A/C on, high (fan high) 2695
HF A/C off (normal) 2646
HF A/C on, low (fan low) 2637
HF A/C on, high (fan high) 2695

Table 2 Average SNR of evaluation data in each environment (dB) [14].

Condition Normal Fan (low) Fan (high)
Microphone CT HF CT HF CT HF
Idling 41.19 16.75 32.86 11.01 25.76 5.47
Low speed 38.39 10.96 32.11 8.67 22.64 2.75
High speed 30.11 5.89 28.58 3.59 21.65 1.46

5.1 Experimental Setup

As for an evaluation procedure, we followed the
CENSREC-3 baseline scripts except that fifty similar-
sounding words (ex. aim for game and tops for pops) were
added to the vocabulary. The total vocabulary size became
100. In CENSREC-3, the baseline scripts are designed to
facilitate HMM training and evaluation by HTK. The acous-
tic models consist of triphone HMMs. Each HMM has five
states and three of them have output distributions. Each dis-
tribution is represented with 32 mixture diagonal Gaussians.
The total number of states with the distributions is 2,000.
The feature vector consists of 12 MFCCs and log-energy
with Δ and ΔΔ (baseline). The frame length and the frame
shift are 20 ms and 10 ms, respectively.

5.2 Feature Transformation Procedure

Feature transformation was performed using LDA, HDA,
ODA, HLDAC, and PLDA for concatenated features.
Eleven successive static frames (143 dimensions) were re-
duced to 39 dimensions, which are the same number of
baseline feature dimensions. Although adding delta (and
acceleration) coefficients to feature vectors to be processed
may be regarded as finding a desirable projection, delta co-
efficients essentially have no additional information because
they are a linear combination of static feature vectors around
current time. Therefore, we did not add delta and accelera-
tion to feature vectors. The number of classes was 43, cor-
responding to the number of monophones. MLLT [15] was
applied after LDA, HDA, ODA and HLDAC. For PLDA, we
assumed that projected class covariance matrices in Eq. (3)
were diagonal. The optimal control parameter (m=−1.5) of
PLDA was selected experimentally.

5.3 Discriminative Training Procedure

Discriminative training requires two lattices: one for the
correct transcription of each training file and another derived
from the recognition result of each training file. Having cre-
ated these lattices using an initial set of models, the HMMs

Table 3 Word error rates (%) on the evaluation set recorded under a
normal condition.

CT HF
ML MMI MPE ML MMI MPE

baseline 7.4 7.1 6.9 15.0 14.4 15.9
LDA 7.1 6.9 3.9 14.2 14.1 13.7
HDA 7.9 7.9 6.9 14.5 14.2 13.6
ODA 8.5 7.8 7.0 13.8 13.4 13.3
HLDAC 9.1 8.3 7.4 12.8 12.2 11.3
PLDA 6.2 6.0 5.0 10.7 10.3 10.2

Table 4 Word error rates (%) on the evaluation set recorded under a fan
low condition.

CT HF
ML MMI MPE ML MMI MPE

baseline 9.1 8.8 8.0 25.4 25.0 28.9
LDA 7.3 7.3 4.4 26.3 26.1 26.5
HDA 8.4 8.5 7.8 26.6 26.3 28.2
ODA 8.9 8.2 7.7 24.9 23.4 24.9
HLDAC 8.6 8.3 7.0 24.3 23.7 24.8
PLDA 6.4 6.1 4.9 19.7 19.7 19.6

Table 5 Word error rates (%) on the evaluation set recorded under a fan
high condition.

CT HF
ML MMI MPE ML MMI MPE

baseline 10.9 10.7 11.2 56.4 55.9 59.8
LDA 14.1 13.3 11.8 63.7 63.3 65.8
HDA 11.1 10.8 11.0 62.6 62.1 66.3
ODA 12.9 11.8 11.2 65.3 64.3 64.9
HLDAC 12.5 11.5 12.0 65.2 64.6 66.7
PLDA 11.3 11.0 10.2 61.4 63.2 62.4

are re-estimated by 5 iterations of a parameter estimation
procedure using the same set of lattices. Once these lattices
were generated for each feature transformation technique,
the same lattice was used to train HMMs with MMI and
MPE criteria.

5.4 Experimental Results

The experimental results are presented in Tables 3 to 5.
The noise condition for the evaluation data used in Table 3
matches that for training data. The evaluation data used in
Table 4 contain low air-conditioner noise. The data used in
Table 5 contain high air-conditioner noise. These noises are
not contained in training data. The best overall performance
is shown in bold.

These results showed that both of feature transforma-
tions and two discriminative training techniques worked
well under a matched noise condition between training and
evaluation. In particular, combinations of feature transfor-
mations and MPE evidenced outstanding performance. On
the other hand, under a mismatched noise condition, the re-
sults under a fan low noise condition and a fan high noise
condition had a different tendency. Under a fan low condi-
tion, both of feature transformations and two discriminative
trainings also worked well. This result comes from the fact
that the difference between a normal condition and a fan low
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condition is slight because A/C noise with low fan-speed
is small. Under a fan high noise condition, neither feature
transformations nor MPE worked well for the data recorded
with an HF microphone, as shown in Table 5. When noise
in training differs considerably from that in evaluation, the
degree of confusability of acoustic features among differ-
ent classes would change. Therefore, no feature transforma-
tions estimated under a normal noise environment in train-
ing worked well under a fan high noise environment in eval-
uation. In terms of phone classification error among dif-
ferent classes, the data under a normal condition and the
data under a fan high condition would have different op-
timal boundaries to minimize phone classification errors.
Therefore, MPE had worse recognition performance than
the other training criteria.

6. Conclusions

We have investigated the effectiveness of discriminant
analysis-based feature transformation techniques and dis-
criminative training techniques. Under a matched back-
ground noise condition between training and evaluation,
both techniques achieved better results than the traditional
one (MFCC+Δ+ΔΔ). In addition, a combination of these
techniques obtained the best result. However, under a mis-
matched background noise condition, feature transforma-
tions, MPE and their combinations were not necessarily ef-
fective.
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