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PAPER

Acoustic Feature Transformation Based on Discriminant Analysis
Preserving Local Structure for Speech Recognition

Makoto SAKAI†,††a), Norihide KITAOKA††, and Kazuya TAKEDA††, Members

SUMMARY To improve speech recognition performance, feature
transformation based on discriminant analysis has been widely used to re-
duce the redundant dimensions of acoustic features. Linear discriminant
analysis (LDA) and heteroscedastic discriminant analysis (HDA) are of-
ten used for this purpose, and a generalization method for LDA and HDA,
called power LDA (PLDA), has been proposed. However, these methods
may result in an unexpected dimensionality reduction for multimodal data.
It is important to preserve the local structure of the data when reducing the
dimensionality of multimodal data. In this paper we introduce two meth-
ods, locality-preserving HDA and locality-preserving PLDA, to reduce di-
mensionality of multimodal data appropriately. We also propose an ap-
proximate calculation scheme to calculate sub-optimal projections rapidly.
Experimental results show that the locality-preserving methods yield better
performance than the traditional ones in speech recognition.
key words: speech recognition, feature extraction, multidimensional signal
processing

1. Introduction

Cepstrum-based feature vectors, such as mel frequency cep-
stral coefficients (MFCCs), are generally used in speech
recognition. These feature vectors are estimated over 20
to 30 milliseconds and accurately extract static information
from speech signals. In addition to static feature vectors,
dynamic information that describes temporal change among
several successive features is usually included in the feature
vector. Several methods for integrating dynamic informa-
tion have been proposed [1]–[3]. The simplest method in-
cluding dynamic information is to concatenate several suc-
cessive features into a single feature vector. The concate-
nated high-dimensional vectors often include nonessential
information and incur heavy computational load. Therefore,
to reduce dimensionality, a feature transformation method is
often applied to concatenated vectors.

Linear discriminant analysis (LDA), also known as
Fisher discriminant analysis (FDA), is widely used to reduce
dimensionality, and is a powerful tool to preserve discrim-
inative information [4], [5]. LDA assumes that each class
shares a common class covariance [6]. However, this as-
sumption does not necessarily hold for a real data set. In
order to overcome the limitation, heteroscedastic discrimi-
nant analysis (HDA) has been proposed [7]. HDA employs
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individual weighted contributions of the classes for its ob-
jective function. In addition, a generalization method for
LDA and HDA has been proposed, which is called power
LDA (PLDA) [8].

These methods may result in an unexpected dimension-
ality reduction if the data in a certain class consist of sev-
eral clusters, i.e., multimodal, because they implicitly as-
sume that data are generated from a single Gaussian distri-
bution. In speech recognition, speech signals for acoustic
model training tend to be multimodal because they are gen-
erally collected under various conditions, such as gender,
age and noise environment. Therefore, each class such as a
phone is generally represented as a Gaussian mixture model
(GMM) or HMM whose states are represented by GMMs in
a speech recognizer. Hence, dimensionality reduction meth-
ods without handling multimodality may give unsatisfactory
performance, so a dimensionality reduction method for mul-
timodal data is desired to improve speech recognition per-
formance.

Recently, several methods have been proposed to re-
duce the dimensionality of multimodal data in the machine
learning community [9]–[12]. It is important to preserve
the local structure of data in reducing the dimensionality of
multimodal data appropriately. Locality preserving projec-
tion (LPP) [10] finds a projection such that the data pairs
close to each other in the original space remain close in the
projected space. Thus, LPP reduces dimensionality without
losing information on local structure. Local Fisher discrim-
inant analysis (LFDA) [11] is also proposed as a supervised
method for multimodal data, while LPP is an unsupervised
method. To deal with multimodal data, LFDA combines the
ideas of FDA and LPP, maximizes between-class separabil-
ity and preserves within-class local structure. Thus, LFDA
is an extension of LDA to reduce the dimensionality of mul-
timodal data.

Since LFDA is based on LDA which assumes ho-
moscedasticity, the effectiveness of LFDA may be limited.
To reduce the dimensionality of multimodal data appro-
priately, we extend HDA which assumes heteroscedastic-
ity. To deal with multimodal data using HDA, we combine
the ideas of LPP and HDA, and propose locality-preserving
HDA. In addition, we also propose locality-preserving
PLDA. These extensions can be expected to yield better per-
formance because they reduce the dimensionality of multi-
modal data appropriately.

Locality-preserving methods such as LFDA and the
proposed methods require considerable computational time
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to obtain optimal projections when there are many features.
In order to slash time, we propose an approximate calcula-
tion scheme. Experimental results show that the locality-
preserving dimensionality reduction methods yield better
performance than traditional ones.

The paper is organized as follows. Feature transfor-
mation methods are reviewed in Sect. 2. Existing locality-
preserving dimensionality reduction methods are reviewed
in Sect. 3. Proposed methods are introduced in Sect. 4. An
approximate calculation to obtain a sub-optimal projection
is given in Sect. 5. Experimental results are presented in
Sect. 6. Finally, conclusions are given in Sect. 7.

2. Linear Dimensionality Reduction Methods

We formulate the problem of linear dimensionality reduc-
tion. Given n-dimensional features x j ∈ Rn where j =
1, 2, . . . ,N, e.g., concatenated speech frames, and associated
class labels y j ∈ {1, 2, . . . ,K}, e.g., phonemes, let us find a
projection matrix B ∈ Rn×p that transforms these features to
p-dimensional features z j ∈ Rp, where p < n, z j = B�x j,
K denotes the number of classes, and N denotes the num-
ber of features. X� denotes the transpose of the matrix X.
Here, we briefly review existing dimensionality reduction
methods. The aim of the techniques are to find a projection
matrix B.

2.1 Linear Discriminant Analysis

In LDA, within-class, between-class and mixture covariance
matrices are used to formulate its objective function. These
covariance matrices are defined as follows [4], [5]:

C(W) =
1
N

K∑
k=1

∑
j:y j=k

(x j − µk)(x j − µk)�,

C(B) =

K∑
k=1

Pk(µk − µ)(µk − µ)�,

C(M) =
1
N

N∑
j=1

(x j − µ)(x j − µ)�

= C(W) + C(B),

where µk is the mean of features in class k, µ is the mean
of all features regardless of their class assignments, and Pk

is the weight for class k. In general, Pk is empirically given
by Pk = Nk/N, where Nk is the number of features in class
k. There are several definitions of LDA objective functions.
Typical objective functions are the following [4], [5]:

JLDA1 (B) =

∣∣∣B�C(B)B
∣∣∣∣∣∣B�C(W)B
∣∣∣ , (1)

JLDA2 (B) =

∣∣∣B�C(M)B
∣∣∣∣∣∣B�C(W)B
∣∣∣ , (2)

JLDA3 (B) = tr
(
(B�C(W)B)−1B�C(B)B

)
, (3)

where |X| is the determinant of the matrix X, and tr(X) is
the trace of the matrix X. A projection matrix is obtained to
maximize the objective function with respect to B. The opti-
mizations of Eqs. (1) to (3) result in the same projection [4].

In Eqs. (1) to (3), within-class scatter, S(W), between-
class scatter, S(B), and mixture scatter, S(M), may be em-
ployed in place of C(W), C(B) and C(M), respectively. These
scatters are given by S(W) = NC(W), S(B) = NC(B), and
S(M) = NC(M). The same solution is obtained even if C(W),
C(B) and C(M) in Eqs. (1) to (3) are replaced with S(W), S(B)

and S(M), respectively.

2.2 Heteroscedastic Discriminant Analysis

HDA uses the following objective function which incorpo-
rates individual weighted contributions of the class vari-
ances [7]:

JHDA (B) =
K∏

k=1

⎛⎜⎜⎜⎜⎜⎝
∣∣∣B�C(B)B

∣∣∣∣∣∣B�CkB
∣∣∣
⎞⎟⎟⎟⎟⎟⎠

Nk

∝
∣∣∣B�C(B)B

∣∣∣
K∏

k=1

∣∣∣B�CkB
∣∣∣Pk

, (4)

where Ck is a class covariance matrix in class k and is given
by

Ck =
1

Nk

∑
j:y j=k

(x j − µk)(x j − µk)�.

Ck and C(W) satisfy C(W) =
∑K

k=1 PkCk. The solution to
maximize Eq. (4) is not analytically obtained. Therefore,
a numerical optimization technique, such as BFGS [13], is
performed to maximize Eq. (4) with respect to B.

2.3 Power Linear Discriminant Analysis

We have proposed the following objective function, which
integrates LDA and HDA [8], [14] † :

JPLDA1 (B,m) =

∣∣∣B�C(B)B
∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

Pk(B�CkB)m

⎞⎟⎟⎟⎟⎟⎠
1/m
∣∣∣∣∣∣∣∣

, (5)

where m denotes a control parameter. We have referred to it
as power linear discriminant analysis (PLDA). Intuitively, as
m becomes larger, the classes with larger variances become
dominant in the denominator of Eq. (5). Conversely, as m
becomes smaller, the classes with smaller variances become
dominant. Thus, by varying the control parameter m, the

†We let a function f of a symmetric positive definite matrix
A equal Udiag( f (λ1), . . . , f (λn))UT = U( f (Λ))UT , where A =
UΛUT , U denotes the matrix of n eigenvectors, and Λ denotes the
diagonal matrix of eigenvalues, λi’s. We may define the function f
as some power A.
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objective function can represent various objective functions.
If m is set to one/zero, the objective function corresponds to
the LDA/HDA objective function [14].

The following objective function is given as another
definition of PLDA:

JPLDA2 (B,m) =

∣∣∣B�C(M)B
∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

Pk(B�CkB)m

⎞⎟⎟⎟⎟⎟⎠
1/m
∣∣∣∣∣∣∣∣

, (6)

If m is set to zero, the objective function corresponds to
heteroscedastic linear discriminant analysis [15], which is
shown in [14]. One issue regarding PLDA in practice is
how to select the optimal control parameter m. In [16], the
method for selecting a sub-optimal control parameter is pro-
vided.

3. Existing Dimensionality Reduction Preserving Lo-
cality of Data Structure

Recently, several linear dimensionality reduction methods
for multimodal data have been proposed in the machine
learning community [9]–[12]. Here, we review two meth-
ods: locality preserving projection (LPP) [10] and local
Fisher discriminant analysis (LFDA) [11].

3.1 Locality Preserving Projection

Let A be a symmetric N × N matrix, which represents an
affinity between features [10]. The (i, j)-element Ai j of A is
the affinity between xi and x j. An affinity element Ai j be-
comes a large value if xi and x j are located close to each
other. Contrarily, Ai j becomes a small value if xi and x j

are located far from each other. There are several different
definitions of A, e.g., the nearest neighbor [17], the heat ker-
nel [18] or the local scaling [19]. The objective function of
LPP is defined as follows [10]:

JLPP(B) =
1
2

N∑
i, j=1

Ai j||B�xi − B�x j||2,

s.t. B�XDX�B = I, (7)

where X = [x1x2 · · · xN], I is the identity matrix, and D is
a diagonal matrix whose (i, i)-element is given by Di,i =∑N

j=1 Ai j. Minimizing Eq. (7) with respect to B, LPP seeks
for a projection matrix B such that nearby data pairs in the
original space remain close in the projected space. To ig-
nore a trivial solution, i.e., B = 0, LPP imposes the con-
straint (7). Thus, LPP is an unsupervised dimensionality
reduction method preserving locality of features in the orig-
inal space.

3.2 Local Fisher Discriminant Analysis

A supervised dimensionality reduction method preserving
locality of features has been proposed by Sugiyama [11],

[20] and has been referred to as local Fisher discriminant
analysis (LFDA). LFDA combines the ideas of LDA (FDA)
and LPP.

Within-class scatter and between-class scatter ex-
plained in Sect. 2.1 can be rewritten in a pairwise manner:

S(W) =
1
2

N∑
i, j=1

W (W)
i j (xi − x j)(xi − x j)

�, (8)

S(B) =
1
2

N∑
i, j=1

W (B)
i j (xi − x j)(xi − x j)

�, (9)

where

W (W)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/N1 if yi = y j = 1,
...

...

1/NK if yi = y j = K,

0 if yi � y j,

(10)

W (B)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/N − 1/N1 if yi = y j = 1,
...

...

1/N − 1/NK if yi = y j = K,

1/N if yi � y j.

(11)

LDA searches for a projection matrix B such that data pairs
in the same class are close to each other and data pairs
in different classes are separate from each other. A more
formal interpretation of this is given in [11]. Based on
an affinity matrix A and the pairwise expressions of the
between/within-class scatter, a local within-class scatter and
a local between-class scatter are defined as follows [11]:

S(LW) =
1
2

N∑
i, j=1

W (LW)
i j (xi − x j)(xi − x j)

�, (12)

S(LB) =
1
2

N∑
i, j=1

W (LB)
i j (xi − x j)(xi − x j)

�, (13)

where

W (LW)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai j/N1 if yi = y j = 1,
...

...

Ai j/NK if yi = y j = K,

0 if yi � y j,

(14)

W (LB)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai j(1/N − 1/N1) if yi = y j = 1,
...

...

Ai j(1/N − 1/NK) if yi = y j = K,

1/N if yi � y j.

(15)

Both S(LW) and S(LB) put a weight on data pairs in the same
class, which is proportional to their affinity. The objective
function of LFDA corresponding to Eq. (3) is defined as fol-
lows [11], [20]:
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JLFDA3 (B) = tr
((

B�S(LW)B
)−1

B�S(LB)B
)
. (16)

LFDA searches for a projection matrix B such that nearby
data pairs in the same class remain close and the data pairs
in different classes are separate from each other; far-apart
data pairs in the same class are not forced to be close. Thus,
LFDA is a supervised dimensionality reduction method pre-
serving locality. If Ai j is taken to be one for all in-class pairs,
LFDA corresponds exactly to LDA because S(LW) and S(LB)

agree with S(W) and S(B), respectively. Thus, LFDA is an
extension of LDA to deal with multimodal data.

In the same fashion as the definition of LDA objective
functions, the following function could be defined as other
objective functions of LFDA:

JLFDA1 (B) =

∣∣∣B�S(LB)B
∣∣∣∣∣∣B�S(LW)B
∣∣∣ , (17)

JLFDA2 (B) =

∣∣∣B�S(LM)B
∣∣∣∣∣∣B�S(LW)B
∣∣∣ , (18)

where a local mixture scatter S(LM) is given by

S(LM) =
1
2

N∑
i, j=1

W (LM)
i j (xi − x j)(xi − x j)

� (19)

and W (LM)
i j is given by

W (LM)
i j = W (LW)

i j +W (LB)
i j =

⎧⎪⎪⎨⎪⎪⎩
Ai j/N if yi = y j,

1/N if yi � y j.
(20)

The optimizations of Eqs. (16) to (18) result in the same
projection.

Local within-class covariance, C(LW), local between-
class covariance, C(LB), and local mixture covariance, C(LM),
can be defined as C(LW) = 1

N S(LW), C(LB) = 1
N S(LB) and

C(LM) = 1
N S(LM), respectively. The same solution is obtained

when S(LW), S(LB) and S(LM) in Eqs. (16) to (18) are replaced
with C(LW), C(LB) and C(LM), respectively.

4. Extensions of HDA and PLDA to Deal with Multi-
modality

We first describe limitations facing the existing methods:
LDA, HDA, PLDA and LFDA. Next, in order to ease the
limitations, we propose two methods that extend HDA and
PLDA.

4.1 Limitations of Existing Methods

While LDA is widely used to reduce dimensionality because
of its simplicity and effectiveness, it assumes that each class
shares common class covariance (i.e., homoscedasticity) [6].
Therefore, if this assumption is far from the real data, LDA
sometimes does not work well. In order to overcome the
limitation, HDA has been proposed, which can deal with un-
equal class covariances (i.e., heteroscedasticity). These two

methods, however, sometimes does not work well because
the fixed weight of each class covariance in the two methods
cannot be necessarily suitable for any kind of data [14]. So
we previously proposed PLDA to generalize LDA and HDA
to control the class weights. Unfortunately, all these meth-
ods implicitly assume that data are generated from a single
Gaussian distribution. Therefore, they cannot deal with mul-
timodal data appropriately. To deal with multimodal data,
LFDA has been proposed as explained in Sect. 3.2. It ex-
tends the between-class covariance and the within-class co-
variance to preserve locality of data structure. Nevertheless,
since LFDA is based on LDA that assumes homoscedastic-
ity, the effectiveness of LFDA may be limited.

In the following sections, we extend HDA that as-
sumes heteroscedasticity using locality-preserving class co-
variances that can deal with multimodal data. We also pro-
pose locality-preserving PLDA. These extensions can be
expected to yield better performance because they do not
assume homoscedasticity and can reduce dimensionality of
multimodal data appropriately.

4.2 Local Heteroscedastic Discriminant Analysis

To deal with multimodality using LDA, LFDA extends the
within-class and between-class covariances in the LDA ob-
jective function to the local within-class and between-class
covariances, respectively. The HDA objective function
uses class covariances instead of a within-class covariance.
Therefore, we will extend class covariances, similar to the
local within-class and local between-class covariances. We
first rearrange a class covariance matrix in a pairwise man-
ner:

Ck =
1

2Nk

N∑
i, j=1

Wk,i j(xi − x j)(xi − x j)
�,

where

Wk,i j =

⎧⎪⎪⎨⎪⎪⎩
1/Nk if yi = y j = k,

0 otherwise.
(21)

W (W)
i j and Wk,i j satisfy W (W)

i j =
∑K

k=1 Wk,i j. Similar to LDA,
HDA also searches for a projection matrix B so that data
pairs in the same class are close to each other and data pairs
in different classes are separate from each other. A more
formal interpretation is given in Appendix A.

A class covariance matrix can extend to preserve lo-
cality of the data structure, similar to the extensions of S(W)

and S(B). Let us define a local class covariance matrix C(L)
k

as follows:

C(L)
k =

1
2Nk

N∑
i, j=1

W (L)
k,i j(xi − x j)(xi − x j)

�, (22)

where

W (L)
k,i j =

⎧⎪⎪⎨⎪⎪⎩
Ai j/Nk if yi = y j = k,

0 otherwise.
(23)
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From Eqs. (14) and (23), W (LW)
i j =

∑K
k=1 W (L)

k,i j. In addition,

C(L)
k and C(LW) satisfy C(LW) =

∑K
k=1 PkC(L)

k . Replacing class
and the between-class covariance matrices with local class
and the local between-class ones, the objective function of
HDA preserving locality is defined as follows:

JLHDA (B) =

∣∣∣B�C(LB)B
∣∣∣

K∏
k=1

∣∣∣B�C(L)
k B
∣∣∣Pk

. (24)

We call it local HDA. If Ai j is taken to be one for all in-class
pairs, LHDA is proportionate to HDA because C(L)

k corre-
sponds to Ck. Since the only difference between Eqs. (4)
and (24) is the definitions of their covariance matrices, the
solution to maximize Eq. (24) with respect to B is ob-
tained through the same numerical optimization procedure
of HDA.

4.3 Local Power Linear Discriminant Analysis

As in the case of LHDA, using local class covariances C(L)
k ,

we extend a PLDA objective function as follows:

JLPLDA1 (B,m) =

∣∣∣B�C(LB)B
∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

Pk(B�C(L)
k B)m

⎞⎟⎟⎟⎟⎟⎠
1/m
∣∣∣∣∣∣∣∣

. (25)

We call it local PLDA (LPLDA). From Eqs. (17) and
(24), LPLDA corresponds exactly to LFDA when m=1 and
LPLDA corresponds exactly to LHDA when m → 0. Since
the only difference between Eqs. (5) and (25) is the defini-
tions of their covariance matrices, the solution to maximize
Eq. (25) with respect to B is obtained through the same nu-
merical optimization procedure of PLDA [8], [14]. We can
also extend the other definition of PLDA as follows:

JLPLDA2 (B,m) =

∣∣∣B�C(LM)B
∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎝
K∑

k=1

Pk(B�C(L)
k B)m

⎞⎟⎟⎟⎟⎟⎠
1/m
∣∣∣∣∣∣∣∣

.

LPLDA corresponds exactly to PLDA when Ai j is taken to
be one for all in-class pairs.

5. Approximate Computations of Local Covariances

To obtain the optimal projections by LFDA, LHDA and
LPLDA, C(L)

k , C(LW), C(LM) and C(LB) must be calculated
in advance. Throughout the paper, these covariance matri-
ces are called local covariance matrices. Each local covari-
ance matrix requires N2 times calculations from their defini-
tions. Therefore, their computational complexities are pro-
portional to N2. Since acoustic models in a speech recog-
nition system are generally trained using a large amount of
speech data, the value of N tends to become large, e.g., 106

to 109. Hence, the computational costs of local covariance
matrices tend to be high.

5.1 Approximation of Local Class Covariances

For rapid calculation of local covariances, we first consider
an approximate computation of local class covariances. In
general, each class is represented as GMMs or HMMs in a
speech recognizer. Therefore, we assume that the distribu-
tion of each class is constructed from several separate clus-
ters. In addition, we approximate a local class covariance by
the average of covariances of the clusters. The relation be-
tween a local class covariance and covariances of clusters is
similar to that between the within-class covariance and class
covariances. Then, we have

C(L)
k ≈

Mk∑
m=1

Pk,mCk,m ≡ C̃(L)
k , (26)

where Mk is the number of clusters in class k, Pk,m is the
weight of the m-th cluster in class k, and Ck,m is an m-th
cluster covariance in class k. C̃(L)

k denotes an approximated
local class covariance matrix. C̃(L)

k agrees with C(L)
k when

the affinity matrix is defined as follows: Ai j = 1/Pk,m, if
xi and x j are assigned to the same cluster m in a class k,
otherwise Ai j = 0. If the number of clusters equals one,
C̃(L)

k corresponds to Ck. To obtain Pk,m and Ck,m, we employ
the Expectation-Maximization (EM) algorithm. Since the
computational complexities of the E-step and the M-step in
the EM algorithm are proportional to the number of data, we
can rapidly calculate C(L)

k by using Eq. (26).

5.2 Approximation of Other Local Covariances

C(LW), C(LM) and C(LB) can be rewritten using C(L)
k as fol-

lows:

C(LW) =

K∑
k=1

PkC(L)
k , (27)

C(LM) = C(M) −
K∑

k=1

P2
k(Ck − C(L)

k ), (28)

C(LB) = C(LM) − C(LW). (29)

The derivation of Eq. (28) is given in Appendix B. Since
the computational cost of C(L)

k is proportional to N2, these
covariances involve considerable computational costs.

To calculate these covariances rapidly, we replace all
C(L)

k in Eqs. (27) – (29) by C̃(L)
k :

C(LW) ≈
K∑

k=1

PkC̃(L)
k ≡ C̃(LW), (30)

C(LM) ≈ C(M) −
K∑

k=1

P2
k(Ck − C̃(L)

k ) ≡ C̃(LM), (31)

C(LB) ≈ C̃(LM) − C̃(LW) ≡ C̃(LB). (32)

C̃(LW), C̃(LM) and C̃(LB) denote approximated C(LW), C(LM)
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and C(LB), respectively. Since the computational costs of
C(M) and Ck are proportional to the number of data, there
are no N2 times calculations in Eqs. (30) – (32). Once we
calculate C(M) and Ck, and estimate Pk,m and Ck,m for C̃(L)

k

using the EM algorithm, we can calculate C̃(LW), C̃(LB) and
C̃(LM) immediately. Thus, the computational costs are sig-
nificantly reduced.

6. Experiments

We conducted experiments on CENSREC-3 database [21],
which is designed as an evaluation framework for Japanese
isolated word recognition in real in-car environments.
Speech data were collected using two microphones: a close-
talking (CT) microphone and a hands-free (HF) micro-
phone. We only used the speech data collected using a
CT microphone. For training of HMMs, a driver’s speech
of phonetically-balanced sentences was recorded under two
conditions: while idling and driving on city streets under a
normal in-car environment without air-conditioner noise. A
total of 14,050 utterances by 293 drivers (202 males and 91
females) were recorded with a CT microphone. For eval-
uation, we used driver’s speech of isolated words recorded
with a CT microphone under three different conditions: an
in-car environment without A/C noise (normal), with low
fan-speed noise (fan low), and with high fan-speed noise
(fan high). Originally, the aim of feature transformation is
to reduce redundant information and not to treat mismatched
conditions explicitly. However, the transformations should
not compromise the system’s robustness and so we also in-
vestigate robustness under different noise conditions. Al-
though one can use various noise conditions, to make the
problem simple, we selected fan noise for the investigation.
There are 2,646, 2,637 and 2,695 speech utterances for nor-
mal, fan low and fan high conditions, respectively. The
speech signals for training and evaluation were both sam-
pled at 16 kHz.

6.1 Experimental Setup

For an evaluation procedure, we followed the CENSREC-
3 baseline scripts except that fifty similar-sounding words
were added to the vocabulary (total 100 words) to make the
recognition task difficult. The acoustic models consist of tri-
phone HMMs. Each HMM has five states, and three of them
have output distributions. Each distribution is represented
with 32 mixture diagonal Gaussians. The total number of
states with the distributions is 2,000. The baseline perfor-
mance was calculated with 39 dimensional feature vectors
that consist of 12 MFCCs and log-energy with their corre-
sponding delta and acceleration coefficients. Eleven succes-
sive frames, whose center is the current frame, were used
to obtain dynamic coefficients because delta and accelera-
tion window sizes were three and two, respectively. At the
beginning and end of the speech, the first or last vector is
replicated five-fold. Frame length is 20 ms and frame shift
is 10 ms. In the Mel-filter bank analysis, a cut-off is applied

to frequency components lower than 250 Hz. Throughout
the experiments, cepstral mean normalization is not applied
to the features †.

6.2 Feature Transformation Procedure

Feature transformation was performed using LDA, HDA [7],
PLDA [8], LFDA [11], LHDA and LPLDA for spliced fea-
tures. Eleven successive frames (143 dimensions), whose
center is the current frame, were reduced to 20, 30 and
39 to investigate the effectiveness of the feature transfor-
mation methods. At the beginning and end of the speech,
the first or last vector is replicated five-fold. In PLDA and
LPLDA, we used the limited-memory BFGS algorithm as a
numerical optimization technique, and their control param-
eters (m = −0.1) were experimentally selected. The LDA
transformation matrix was used as the initial gradient. In
LFDA, LHDA and LPLDA, the number of mixtures was
four for each class, while the number of mixtures was one
for the classes that have training data of less than one per-
cent of the total. In addition, to obtain projection matrices
by LFDA, LHDA and LPLDA, we employed an approxi-
mate computation scheme for calculating covariances. To
assign one of the classes to every feature vector, HMM state
labels were generated for the training data by a state-level
forced alignment algorithm using a well-trained HMM sys-
tem. The number of classes was 40.

6.3 Results

Experimental results are presented in Tables 1 to 3. The
noise condition for the evaluation data used in Table 1
matches that for training data. The evaluation data used
in Table 2 and the data used in Table 3 contain low air-
conditioner noise and high air-conditioner noise, respec-
tively. These noises are not contained in training data.

We first discuss the results of the feature transforma-
tion methods when the size of a reduced space is 39 (i.e.,
p = 39). The size is equal to that of baseline. Table 1
showed that the locality-preserving dimensionality reduc-
tion methods consistently yielded better performance than
the traditional methods. This result suggests that projected
features using the locality-preserving methods have higher
separability among acoustic classes than those using the tra-
ditional methods because the locality-preserving methods
can consider multimodality of data. Especially, LPLDA
yielded the lowest word error rate (WER) among all dimen-
sionality reduction methods. Table 2 showed a similar ten-
dency to Table 1. The locality-preserving dimensionality re-
duction methods also yielded better performance. These re-

†In CENSREC-3, there is no difference in the recording con-
ditions between the training data and the evaluation data from the
standpoint of convolutional noises such as reverberation. There-
fore, the effectiveness of cepstral mean normalization is limited. In
practice, preliminary experimental results have showed that cep-
stral mean normalization did not improve recognition performance
in almost all the cases.
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Table 1 Word error rates (%) under a normal condition.

Size of reduced space (p)
Method 39 30 20

baseline 6.50 - -
LDA 6.50 6.00 6.87
HDA 7.33 5.85 5.14
PLDA 5.40 6.08 6.84
LFDA 6.00 5.93 5.44
LHDA 6.46 5.32 5.29
LPLDA 4.83 5.89 5.17

Table 2 Word error rates (%) under a fan low condition.

Size of reduced space (p)
Method 39 30 20

baseline 8.00 - -
LDA 8.22 7.24 8.49
HDA 7.73 6.40 6.52
PLDA 6.29 6.75 7.58
LFDA 6.97 7.05 5.95
LHDA 6.94 6.29 6.90
LPLDA 5.46 6.14 6.90

sults were obtained from the fact that the difference between
a normal condition and a fan low condition is slight because
A/C noise with a low fan-speed is small. In addition, the
combinations of heteroscedasticity and locality-preservation
worked well. On the other hand, Table 3 showed a differ-
ent tendency from the others. The feature transformation
methods excluding LPLDA gave worse performance than at
baseline (MFCC + Δ + ΔΔ). In general, the degree of con-
fusability of acoustic features among different classes would
change when the noise in training differs considerably from
that in evaluation. Therefore, a feature transformation esti-
mated under a normal noise environment in training did not
necessarily work well under a fan high noise environment in
evaluation. Nevertheless, LPLDA kept comparable perfor-
mance with the baseline whether or not the noise condition
in evaluation matches when training because it would trans-
form features that have sufficiently high separability among
different classes even in a mismatch noise condition.

Next, we discuss the results of the feature transforma-
tion methods when p = 20 and p = 30 †. As shown in Ta-
bles 1 and 2, under matched and almost matched noise con-
ditions between training and evaluation, the optimal dimen-
sions of most feature transformation methods are lower than
39. On the other hand, Table 3 showed that all methods de-
graded recognition performance under a mismatched noise
condition when the dimensions were relatively small. These
results imply that feature transformation methods might
obtain lower dimensions in matched conditions, whereas

†In some preliminary experiments, the degradation of recogni-
tion performance was found when p > 39 and p < 20 with a few
exceptions. While the best performances of PLDA and LPLDA
were found at p = 50 under a fan high condition, the differences
of the performances between p = 50 and p = 39 were not so large.
Although the best results using different methods under the differ-
ent environments are obtained with a few variety of p as explained
here, these facts does not affect the overall conclusion of this paper.

Table 3 Word error rates (%) under a fan high condition.

Size of reduced space (p)
Method 39 30 20

baseline 10.72 - -
LDA 12.05 12.39 16.99
HDA 13.21 14.62 15.91
PLDA 11.42 14.21 16.10
LFDA 11.50 12.02 12.80
LHDA 10.98 13.02 14.91
LPLDA 10.64 11.42 15.17

in mismatched conditions, redundant information can con-
tribute to the improvement of recognition performance. Ta-
bles 1 to 3 also showed that while the proposed methods did
not necessarily yield comparable performance of the other
methods when p = 20, they consistently yielded the lowest
word error rate when p ≥ 30.

7. Conclusions

In this paper, we proposed two-dimensionality reduction
methods; HDA preserving the local structure of the data
(LHDA) and PLDA preserving the local structure (LPLDA),
to reduce dimensionality of multimodal data appropriately.
In general, to obtain the optimal projections by the locality-
preserving methods, considerable computational time is re-
quired. In order to overcome this problem, we proposed
an approximate calculation scheme. Experimental results
showed that the locality-preserving dimensionality reduc-
tion methods yielded better performance than traditional
ones, especially under matched noise conditions. In par-
ticular, LPLDA outperformed the others whether or not the
noise condition in evaluation matched that in training.
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Appendix A: Interpretation of HDA

Similar to LDA, HDA searches for a projection matrix B
such that data pairs in the same class are close to each other
and data pairs in different classes are separated from each
other. We give a formal interpretation of this. In [11], for
vi j ≡ B�(xi − x j), the change in LDA objective function
when only vab becomes αvab with α > 0 was investigated,
where a, b ∈ {1 · · ·N} and a � b. The result has showed the
following: the value of the LDA objective function becomes
large when a data pair in the same class is close to each
other, i.e., ya = yb and 0 < α < 1, or when a data pair in
different classes is separated from each other, i.e., ya � yb

and α > 1. Through a similar approach in [11], we will
investigate the change in HDA objective function when only
vab becomes αvab with α > 0.

To simplify the notations of projected covariance ma-
trices, we rewrite B�C(B)B and B�CkB as C̄(B) and C̄k, re-
spectively. From here on, we denote covariance matrices in

the projected space by symbols with a bar. Let us rewrite an
HDA objective function as follows:

JHDA (B) =

∣∣∣C̄(B)
∣∣∣

K∏
k=1

∣∣∣C̄k

∣∣∣Pk

. (A· 1)

C̄(αB) and C̄(α)
k denote the between-class and class co-

variance matrices for αvab defined by

C̄(αB) ≡ C̄(B) − (β/N)W (B)
ab vabv�ab,

C̄(α)
k ≡ C̄k − (β/Nk)Wk,abvabv�ab,

β ≡ 1 − α2

2
,

assuming that C̄(B), C̄(αB), C̄k and C̄(α)
k are positive definite

matrices. The objective function of HDA for αvab is given
by

J(α)
HDA (B) ≡

∣∣∣C̄(αB)
∣∣∣

K∏
k=1

∣∣∣C̄(α)
k

∣∣∣Pk

. (A· 2)

From the definition of C̄(αB), the determinant of C̄(B)

becomes
∣∣∣C̄(B)
∣∣∣ = ∣∣∣C̄(αB) + (β/N)W (B)

ab vabv�ab

∣∣∣
=
∣∣∣∣C̄(αB)

(
I + (β/N)W (B)

ab P(αB)vabv�ab

)∣∣∣∣
=
∣∣∣C̄(αB)

∣∣∣ ∣∣∣I + (β/N)W (B)
ab P(αB)vabv�ab

∣∣∣
=
(
1 + (β/N)W (B)

ab v�abP(αB)vab

) ∣∣∣C̄(αB)
∣∣∣ ,

where P(αB) = (C̄(αB))−1 and we have made use of the fol-
lowing formula [22]: |I+ ab�| = 1+ a�b, where a and b are
arbitrary vectors and I is an identity matrix.

We first consider the case when both xi and x j are in the
same class, i.e., yi = y j. In addition, without loss of gener-
ality, suppose that both yi and y j are equal to l ∈ {1, · · · ,K}.
From Eq. (11), we have W (B)

i j < 0. We also have Wl,i j > 0
if yi = y j = l and Wk,i j = 0 if yi = y j = k(� l). Similar
to the case of the determinant of C̄(B), the determinant of C̄l

becomes
∣∣∣C̄l

∣∣∣ =
(
1 + (β/Nl)Wl,abv�ab

(
C̄(α)

l

)−1
vab

) ∣∣∣C̄(α)
l

∣∣∣

and the determinant of C̄k becomes |C̄k | = |C̄(α)
k | for k � l.

Equation (A· 1) can be rewritten as

JHDA(B) =
ζ
∣∣∣C̄(αB)

∣∣∣

ηPl

K∏
k=1

∣∣∣C̄(α)
k

∣∣∣Pk

=
ζ

ηPl
J(α)

HDA(B), (A· 3)
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where ζ ≡ 1 + (β/N)W (B)
ab v�ab

(
C̄(αB)

)−1
vab and η ≡ 1 +

(β/Nl)Wl,abv�ab

(
C̄(α)

l

)−1
vab.

If 0 < α < 1, then β > 0. Since we assume

that C̄(αB) and C̄(α)
k are positive definite, v�ab

(
C̄(αB)

k

)−1
vab

and v�ab

(
C̄(α)

k

)−1
vab satisfy v�ab

(
C̄(αB)

k

)−1
vab > 0 and

v�ab

(
C̄(α)

k

)−1
vab > 0, respectively. Hence, Eq. (A· 3) yields

JHDA(B) < J(α)
HDA(B) because ζ/ηPl < 1. In other words,

the value of the objective function for αvab is always greater
than that of Eq. (A· 1) if yi = y j and 0 < α < 1, i.e., a data
pair in the same class is made close.

Similarly, if yi � y j, then we have Wk,i j = 0 and W (B)
i j >

0. From η = 1, Eq. (A· 1) becomes

JHDA(B) =
ζ
∣∣∣C̄(αB)

∣∣∣
K∏

k=1

∣∣∣C̄(α)
k

∣∣∣Pk

= ζ J(α)
HDA(B). (A· 4)

If α > 1, then β < 0. Hence, Eq. (A· 4) yields
JHDA(B) < J(α)

HDA(B) because ζ < 1. In other words, the
value of the objective function for αvab is greater than that
of Eq. (A· 1) if yi � y j and α > 1, i.e., a data pair in different
classes is separated from each other.

Appendix B: Derivation of Eq. (28)

W (LM)
i j in Eq. (20) can be decomposed as

W (LM)
i j =

1
N
−W (LM1)

i j +W (LM2)
i j ,

where

W (LM1)
i j ≡

⎧⎪⎪⎨⎪⎪⎩
1/N if yi = y j,

0 if yi � y j,

W (LM2)
i j ≡

⎧⎪⎪⎨⎪⎪⎩
Ai j/N if yi = y j,

0 if yi � y j.

From the definitions of W (LM1)
i j and W (LM2)

i j , we have

W (LM1)
i j =

K∑
k=1

PkWk,i j,

W (LM2)
i j =

K∑
k=1

PkW (L)
k,i j.

Hence,

W (LM)
i j =

1
N
−

K∑
k=1

PkWk,i j +

K∑
k=1

PkW (L)
k,i j.

Then, we have

C(LM) =
1

2N

N∑
i, j

W (LM)
i j Xi j

=
1

2N

N∑
i, j=1

⎛⎜⎜⎜⎜⎜⎝ 1
N
−

K∑
k=1

Pk(Wk,i j −W (L)
k,i j)

⎞⎟⎟⎟⎟⎟⎠Xi j

= C(M) −
K∑

k=1

P2
k

⎛⎜⎜⎜⎜⎜⎜⎝
1

2Nk

N∑
i, j=1

(Wk,i j −W (L)
k,i j)Xi j

⎞⎟⎟⎟⎟⎟⎟⎠

= C(M) −
K∑

k=1

P2
k

(
Ck − C(L)

k

)
,

where we let Xi j ≡ (xi − x j)(xi − x j)�.
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