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Acoustic Feature Transformation Combining Average and
Maximum Classification Error Minimization Criteria

Makoto SAKAI" ™ Norihide KITAOKA ™, and Kazuya TAKEDA ", Members

SUMMARY  Acoustic feature transformation is widely used to reduce
dimensionality and improve speech recognition performance. In this letter
we focus on dimensionality reduction methods that minimize the average
classification error. Unfortunately, minimization of the average classifica-
tion error may cause considerable overlaps between distributions of some
classes. To mitigate risks of considerable overlaps, we propose a dimen-
sionality reduction method that minimizes the maximum classification er-
ror. We also propose two interpolated methods that can describe the av-
erage and maximum classification errors. Experimental results show that
these proposed methods improve speech recognition performance.
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1. Introduction

Using acoustic dynamic information that expresses tempo-
ral change in speech signals would improve speech recogni-
tion performance because temporal change is not adequately
described by a hidden Markov model-based speech recogni-
tion system. Several methods for integrating dynamic infor-
mation have been proposed [1], [2]. One popular approach is
to compute first- and second-order differences of successive
features [1]. It is well known that this approach can improve
speech recognition performance. Another approach for in-
tegrating dynamic information is to concatenate several suc-
cessive features into a single high-dimensional feature vec-
tor. Then, a feature transformation method is applied to the
vector to reduce dimensionality without losing discrimina-
tive information. The latter approach includes the former
one as a special case. In this letter the latter approach is
investigated. Especially, we focus on dimensionality reduc-
tion methods that minimize misclassification in the sense of
the Bayes classification error [3]—-[5], while the former ap-
proach does not take the minimization of misclassification
into account directly. We show that the purpose of the ex-
isting methods can be regarded as minimization of the av-
erage classification error (AveCE) among classes. While
minimizing the AveCE suppresses total classification error,
it cannot avoid the occurrence of considerable overlaps be-
tween distributions of some classes. Therefore, there may be
class pairs that have little or no discriminative information
on each other. Hence, the AveCE does not necessarily find

Manuscript received November 11, 2009.
Manuscript revised February 19, 2010.
"The author is with DENSO CORPORATION, Nisshin-shi,
470-0111 Japan.
"'The authors are with Nagoya University, Nagoya-shi, 464—
8603 Japan.
a) E-mail: msakai@rlab.denso.co.jp
DOI: 10.1587/transinf.E93.D.2005

a suitable projection for speech recognition. To avoid this,
we propose an alternative dimensionality reduction method
that minimizes the maximum classification error (MaxCE)
among all class pairs. The proposed method can avoid con-
siderable error between classes. Moreover, we propose in-
terpolated methods including AveCE and MaxCE.

2. Minimization of Approximated Bayes Error

In this letter we focus on a minimization criterion of an ap-
proximation of the Bayes error [3], [5].

2.1 Bayes Error

Let us consider the discrimination problem of classifying an
observation as coming from one of K possible classes k €
{1,2,---,K}. And, let x be an n-dimensional feature vector
such as a concatenated speech frame. The error probability
P, of the optimal Bayes rule for the classification into K
classes becomes [6], [7]

P, =1- fmlflx [Apr(X)] dx,

where 4; and p; denote a prior probability and a probability
density function (pdf) for class k, respectively. We assume
that the 44 and py fork = 1,--- , K are entirely known.

The number of the dimension of a feature vector x can
be reduced to p < n by a transformation z = BTx with a
transformation matrix B € R"™?” of rank p, where B" is the
transpose of the matrix B. Then, the error probability in the
range space of BT, PE, becomes:

PE =1- fml?x [Akpf(z)] dz,

where pf denotes the pdf for class k in the projected space
spanned by the column vectors of B. Since the transforma-
tion z = BTx produces a linear combination of the compo-
nents of the feature vector x, discriminative information is
generally lost and PB>P,[4].

The feature transformation problem could be stated as
a selection of an n by p matrix B from all n by p matrices of
rank p such that

A

B:argm'jnPE. @))

Unfortunately, it is generally difficult to calculate P di-
rectly.
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2.2 Other Ceriteria for Estimating Error Probability

Instead of minimizing P® directly, the following affinity be-
tween two pdfs have been often used:

= f \Pi(X)pj(X)dx. ()

pij is called the Bhattacharyya coefficient and is an upper
bound on the Bayes error [3]. This coefficient can be re-
garded as a classification error between two pdfs. Clearly,
pi,j lies between zero and one.

The Bhattacharyya coefficient in the range space of BT
becomes:

o= [ Jrarod 3

If we assume that the py is a Gaussian distribution with
a mean vector y; and a covariance matrix Cy, Eq. (3) has the
closed form expression:

Py = exp(=1;)) )
where

1 -1
nll.?j = gtr ((BTC,JB) BTM,‘jB)

. BTC,B
+ 3 log | = | ) o)
|BTC:B|[BTC;B|
C, = C; +C and M;; = (u; — p) (i — )" ng. is called the

Bhattacharyya distance.

Several extensions of Eq.(2) to handle multi-class
problems have been proposed. Here, we briefly review two
techniques.

2.2.1 Upper Bound on Bayes Error

The Bayes error is bounded from above by the following
expression [5], [8]:

Z \//li/ljpi,ﬁ (6)

i,j>i

Saon et al. [5] proposed the following objective func-
tion based on Eq. (6):

ToowaB) = > Al @

i,j>i
2.2.2  Average Bhattacharyya Coefficient

Another natural extension to treat multi-class problems is
the average Bhattacharyya coeflicient as follows [3]:

Z Aidjpij ®)
iJ
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Based on the average Bhattacharyya coefficient, we can
define the following objective function to reduce dimension-
ality:

Jae®B) = " A0l )
ij

3. Issue about Existing Methods

Frompli =1, p” =pB,and 3; A; = 1, we have

Jit?

Z VAidipr; =

iL,j>i

1

3 (Z NI 1). (10)
ij

Using this, Eq. (7) can be rewritten as follows:

Jbound(B) o Z V/ll/ljp?j
iJ
SoELELN)

=) A0k, (1)
ij

where Z = Y, VA is a normalizing constant, and /l;( =
VA;/Z. Equations (9) and (11) are essentially the same ob-
jective function, and the only difference between them is
their priors. Hence, both functions can be regarded as the
average of Bhattacharyya coefficient p . That is, both ob-
jective functions search for a prOJeCthIl matrix B so that
the average classification error (AveCE) is minimized. Al-
though minimizing the AveCE suppresses total classifica-
tion error among classes, it cannot avoid the occurrence of
considerable overlaps between distributions of some classes,
which is critical for speech recognition because there may
be class pairs that have little or no discriminative informa-
tion on each other.

Figure 1 shows that two-dimensional three-class sam-
ples are projected onto one-dimensional subspace. Each
class sample is synthetic data drawn from different Gaus-
sians. The priors of classes 1 to 3 were 0.75, 0.125 and

class 1

class 2

Jave projection

Jmax projection

Fig.1 Example of a synthetic data set comprising three classes. Two
lines are the one-dimensional subspaces. The vertical line and the horizon-
tal line are obtained using Eqs. (11) and (12), respectively.
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0.125, respectively. The projection by J,,. gave high sep-
arabilities between classes 1 and 2, and between classes 1
and 3. On the other hand, there was a considerable overlap
between classes 2 and 3. Here, let us regard the situation in
Fig. 1 as a phone classification task. Suppose that classes 1
to 3 represent some phones (ex. /sil/, /a/, /o/, etc.). When we
transform features by J,,., classification becomes difficult
between two phones associated with classes 2 and 3.

4. Minimization of Maximum Bhattacharyya Coeffi-
cient

To overcome the drawback of the AveCE described in
the previous section, we propose an alternative objective
function that minimizes the maximum classification er-
ror (MaxCE) among all class pairs. The proposed objec-
tive function can avoid considerable error between classes.
Moreover, we propose generalized objective functions in-
cluding two criteria.

4.1 Approximated Maximum Classification Error

To prevent less discrimination power of some class pairs, we
define the alternative objective function that minimizes the
maximum overlap among classes regardless of their priors,
instead of AveCE, as follows:

Imax(B) = II}?XpEj, (12)

Unfortunately, minimization of Eq. (12) with respect to B is
generally difficult. Instead, we approximate Eq.(12). Let
y be an n x 1 vector with positive components {y;}",, and
let @ be an n X 1 vector of positive weights {a;}_,, so that
0 <@ <land Y7, a; = 1. To approximate Eq. (12), we
focus on the generalized mean, also known as the weighted
mean of order m. The generalized mean is given by [9]:

n 1/m
M(y, @, m) = (Z a,-yf"] : (13)
i=1

for any real m. Equation (13) can describe several means by
changing m. For example, Eq. (13) with m = 1 corresponds
to the arithmetic mean of {y;}!_, and Eq. (13) withm — 0
converges to the geometric mean of {y;}}_ ;. We especially
focus on the following special case of the generalized mean:

lim M(y, @,m) = maxy;. (14)

We approximate Eq. (12) using the generalized mean
and sufficiently large value 7 as follows:

1/m

Jnax(B) = lim (Z i (p??,)’”] (15)
iJ

A\
(s
ij
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Equation (16) with /2 = 100 was applied in Fig. 1. The
result showed that the projection by J,,,, gave higher sepa-
rability between class 2 and class 3 than that by J,,,. That
is, Juqx can offer greatly improved classification power be-
tween class 2 and class 3.

4.2 Interpolation between Two Criteria

In Fig. 1, the projection by J,,,, gave a more desirable result
than by J,,.. However, similar to J,e, Jnqx also does not
necessarily find a suitable projection. If a number of class
pairs have an overlap comparable to the maximum one, the
total error increases significantly. In such a situation, speech
recognition performance will deteriorate because most class
pairs have only small discrimination power. Therefore, an
interpolated criterion that minimizes MaxCE while mini-
mizing AveCE would be effective. Here, we propose two
interpolated functions between MaxCE and AveCE.

Jimerpl(Bs @) = (1 = &) Jae(B) + aJpax(B),
1/m
JinrerpZ(Ba m) = (Z /li/lj <Pf])m] s
ij

where @ and m denote control parameters so that @ € [0, 1]
and m > 1, respectively. Jiperp1 corresponds to Jg,, when
« = 0 and to J,,qx When a = 1. From Eq. (9), Jiserp2 corre-
sponds to J,,, when m = 1. Similarly, from Eq. (15), Jinerp2
converges to J,,,, When m — co. As @ becomes larger, only
one class pair with the maximum overlap between class dis-
tributions becomes dominant in Jiep1. On the other hand,
as m becomes larger, several class pairs with large overlaps
become dominant in Jiuerp2-

5. Experiments

We conducted experiments on a CENSREC-3 database [10],
which is designed as an evaluation framework for Japanese
isolated word recognition in real in-car environments. For
training of HMMs, we used drivers speech of phonetically-
balanced sentences recorded under two conditions: while
idling and driving on city streets under a normal in-car en-
vironment. A total of 14,050 utterances by 293 drivers
(202 males and 91 females) were recorded with a close-
talking (CT) microphone. For evaluation, we used 2,646 ut-
terances by 18 drivers (8 males and 10 females) recorded un-
der an in-car environment. The speech signals were sampled
at 16 kHz. We followed the CENSREC-3 baseline scripts as
the evaluation procedure except that fifty similar-sounding
words (ex. aim for game and tops for pops) were added
to the vocabulary. The total vocabulary size became 100.
In CENSREC-3, the baseline scripts are designed to facil-
itate HMM training and evaluation by HTK. The acoustic
models consist of triphone HMMs. Each HMM has five
states three of which have output distributions. Each dis-
tribution is represented with a 32 mixture of diagonal Gaus-
sians. The total number of states with the distributions is
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Table 1  Word error rates (WER) (%).
WER WER
MFCC + A + AA 6.50 LDA 6.12
Jave 5.85 Tax 5.36
Jinterpl (a=0.6) 4.72 JinterpZ (m =16) 3.32

Table2  WER of Jinrerp1 vs. a.

a 0 0.2 0.4 0.6 0.8 1.0
WER | 585 | 578 | 574 | 472 | 5.10 | 5.36

Table3  WER of Jiyrerp2 vs. m.

m 1 2.5 6 16 30 100
WER | 585 | 457 | 400 | 332 | 419 | 536

2,000. The baseline performance was evaluated with 39 di-
mensional feature vectors that consist of 12 MFCCs and log-
energy, and their delta and delta-delta coefficients. A delta
coefficient was calculated from seven successive frames of
MFCCs, and a delta-delta from five successive frames of
delta. Consequently, a feature vector was calculated using
eleven successive MFCC vectors. The frame length and the
frame shift are 20 ms and 10 ms, respectively.

5.1 Feature Transformation Procedure

Eleven successive frames were concatenated into one fea-
ture vector (143 dimensions), which is the same number
of frames used for calculating delta and delta-delta coeffi-
cients. Feature transformation was performed by LDA [7],
Javes Jmaxs Jinterpt and Jiprerpo for the concatenated features.
The concatenated vectors were reduced to 39, which are the
same number of dimensions of the baseline feature vectors,
and then MLLT [11] was applied. The number of classes
was 40.

5.2 Experimental Results

The experimental result is presented in Table 1. Optimal
control parameters of Jiperp1 and Jiyerp2 Were selected ex-
perimentally. The result showed that the performance of
Jnax Was slightly superior to that of J,,.. As mentioned
in Sect. 4.2, J,,. and J,,,, have complementary character-
istics. Both interpolated methods Jiuerp1 and Jierp2 yielded
lower error rate than J,,, and J,,,,, because they could play a
complementary role between J,,, and J,,,,. Tables 2 and 3
showed WER for different control parameters of Jj,erp1 and
Jinterp2, Where « for Jiy,r,1 varied between 0 and 1, and m
for Jinserpo varied between 1 and 100. The results indicated
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that the optimal values of control parameters of Jjyerp1 and
Jinterp2 Were 0.6 and 16 on the CENSREC-3 database, re-
spectively. The results showed that Jj,.,» gave better per-
formance than that of Jiyep1. This is because that Jiyepo
can reduce classification error of several class pairs with
large overlaps, as m is a large value, while Jjy,p1 Teduces
that of only one class pair with the maximum overlap be-
tween class distributions.

6. Conclusions

To improve speech recognition performance, we propose a
dimensionality reduction method that minimizes the max-
imum classification error, instead of the average classifica-
tion error. In addition, we also propose interpolated methods
that can describe the maximum classification error and the
average one. Experimental results show the effectiveness of
the proposed methods.

Future work includes choosing the control parameters
for interpolated methods to obtain optimal performance.
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