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SUMMARY  Huet and Lévy showed that index reduction is
a normalizing strategy for every orthogonal strongly sequential
term rewriting system. Toyama extended this result to root bal-
anced joinable strongly sequential systems. In this paper, we
present a class including all root balanced joinable strongly se-
quential systems and show that index reduction is normalizing
for this class. We also propose a class of left-linear (possibly
overlapping) NV-sequential systems having a normalizing strat-

egy.
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1. Introduction

Normalizing strategies, which guarantee to find the nor-
mal form of terms whenever their normal forms exist,
play an important role in the implementation of func-
tional programming languages such as Miranda| 18]
and Clean[2]. A normalizing strategy for a larger
subclass of term rewriting systems makes realization of
more flexible programming languages possible[1],[7],
[10],[11],[14].

Huet and Lévy[7] formulated strong sequentiality
criterion for orthogonal term rewriting systems. They
showed that for every strongly sequential orthogonal
term rewriting system R, index reduction is a normaliz-
ing strategy, that is, by rewriting a redex called an index
at each step, every reduction starting with a term hav-
ing a normal form eventually terminates at the normal
from. Here, the index is defined as a needed redex con-
cerning an approximation of R which is obtained by
analyzing the left-hand sides alone of the rewrite rules
of term rewriting systems. Oyamaguchi[15] introduced
the notion of NV-sequentiality which is a proper ex-
tension of strong sequentiality. NV-sequentiality is not
only based on the analysis of the left-hand sides of the
rewrite rules of term rewriting systems but also on the
non-variable parts of the right-hand sides. Extensions of
NV-sequentiality were proposed by Nagaya et al.[13],
Comon [3] and Jacquemard[8]. The notion of strong
sequentiality was extended to left-linear term rewriting
systems by Toyama|16]. He showed that index reduc-

Manuscript received October 1, 1997.

"The authors are with Japan Advanced Institute of Sci-
ence and Technology, Hokuriku, Ishikawa-ken, 923-1292
Japan. ‘

" The author is with Nagoya University, Nagoya-shi,
464—8603 Japan.

tion is a normalizing strategy for every root balanced
joinable strongly sequential system.

In this paper, we show that index reduction is
normalizing for the class of stable balanced joinable
strongly sequential systems. A stable balanced joinable
system is a left-linear term rewriting system in which ev-
ery critical pair is joinable with balanced stable reduc-
tion. In stable reduction, transitive index being stable
under substitutions is contracted. This class includes all
root balanced joinable strongly sequential systems. In
stable balanced joinable strongly sequential systems, in-
dex reduction has the balanced weakly Church-Rosser
property. Thus we can show the normalizability of
index reduction by using Toyama’s theorem{16] con-
cerning reduction strategy. We show that every NV-
stable balanced joinable NV-sequential system has a
normalizing strategy by introducing the notions of tran-
sitivity and stability for indices with respect to NV-
sequentiality. In this paper, we do not consider more
general sequential systems (NVNF-[13], shallow[3] or
growing[8] sequential systems). The reason is that in-
dex reduction is not balanced weakly Church-Rosser
even if the system is orthogonal.

2. Term Rewriting Systems

An abstract reduction system is a structure A = (D, —)
consisting of a set D and a binary relation — on D,
called a reduction relation. The identity of elements of
D is denoted by =. The transitive-reflexive closure of

— is denoted by . %, is the k-steps reduction of —,
is the symmetric closure of — and = is the transitive-
reflexive-symmetric closure of —. We write ¢t «— ¢ if
s — t. Wesay z € D is a normal form if there exists
no y € D such that z — y. NF is the set of normal
forms. We say that z has a normal form if z = y for
some normal form y.

We say that A (or —) is strongly normalizing if
there are no infinite reduction sequences o — z; —
x9 — ---. A (or — ) is Church-Rosser if Vz,y,z € D,
z >y and z = z imply y = w and z = w for some
w € D. A has the normal form property if Vx € D,
Vy € NF, z = y implies = = y.

Let F be a finite set of function symbols denoted
by f,9,h,..., and let V be an enumerable set of vari-
ables denoted by z,v, z,... where F NV = ¢. The set
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of all terms built from F and V is denoted by 7 (F, V).
The set 7 (F,V) is sometimes denoted by 7. Terms not
containing variables are called ground terms. The set
of all ground terms built from F is denoted by 7 (F).

A substitution # is a mapping from V into 7 (F, V).
Substitutions are extended into homomorphisms from
T(F,V) into T(F,V). We write t6 instead of 8(¢). A
term s is an instance of a term ¢ if there exists a substi-
tution @ such that s = t6.

Let O be an extra constant. A context CJ,...,]
is a term in 7(F U {O},V). If C[,...,] is a context
with n occurrences of O and t,...,t, € 7(F,V) then

Clt1,...,ty] is the result of replacing from left to right
the occurrences of O by ¢y, ...,t,. A context containing
precisely one occurrence of O is denoted by C[]. A term
s is a subterm occurrence of a term ¢, written by s Ct,

if there exists a context C| | such that ¢ = C[s]. If ¢ has
an occurrence of some (function or variable) symbol e
then we write e € ¢. The variable occurrence z of C[z]
is fresh if z ¢ C[ ].

A term rewriting system is a pair (F,R) consist-
ing of a set F of function symbols and a finite set R
of rewrite rules. A rewrite rule is a pair (,7) of terms
such that [ ¢ V and any variable in »r also occurs in [.
We write [ — » for {[,7). An instance of the left-hand
side of a rewrite rule is a redex. The rewrite rules of
a term rewriting system (F, R) define a reduction rela-
tion —x on 7 (F,V) as follows: ¢ — s iff there exist
a rewrite rule I — r € R, a substitution # and a context
C[ ] such that ¢t = C[l6] and s = C[rf]. We may write

t éng s to specify the redex occurrence A = [6 of ¢ in
this reduction. When no confusion can arise, we omit
the subscript R.

A rewrite rule [ — 7 is ground if [ and » are ground.
[ — r is left-linear if every variable in [ occurs only
once. A term rewriting system R is left-linear if every
[ —r € R is left-linear.

Let ! — r and I’ — 7’ be two rewrite rules of R.
We assume that they are renamed to have no common
variables. Assume that s ¢ V is a subterm occurrence
of [, namely I = C|[s], such that s and !’ are unifiable,
i.e. s = I'0 for a most general unifier #. Then we say
that [ — r and I’ — 7’ are overlapping and the pair
(C[r']0, r8) is a critical pair of R. If { > r and I’ — r
are same rule, we do not consider the case s =1[. R is
called non-overlapping if R has no critical pair. R is
orthogonal if R is left-linear and non-overlapping.

A reduction relation —, on 7 is a reduction strat-
egy for R (or —g) if —; C ;R and every normal
form with respect to — is also a normal form with re-
spect to —x. A reduction strategy — is normalizing
if for each ¢ having a normal form with respect to —x,
there are no infinite sequences t =ty —, t1 —g .

In this paper we restrict ourselves to the class of
left-linear term rewriting systems.
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3. Normalizing Strategy for Stable Balanced Join-
able Systems

We first explain the notions and the results concerning
strong sequentiality [3],[7],[9],[12],[16].

Let €2 be a new constant symbol representing an
unknown part of a term. The set 7(F U {Q},V) is ab-
breviated to 7. Elements of 7, are called Q2-terms. An
)-normal form is an 2-term without redexes, contain-
ing at least one occurrence of 2. ¢ denotes the Q-term
obtained from ¢ by replacing all variables in ¢ by Q.
The prefix ordering < on 7 is defined as follows: (i)
Q< tforallt € Tg, (1) f(s1,-.-,80) £ ft1,...,t,) if
s; <t (1£L4<n), (iii) z < z for all z € V. We write
t<sift<sandt=Fs.

Two Q-terms ¢ and s are compatible, written by
t 7 s, if there exists an Q-term 7 such that ¢ < » and
s < r; otherwise, t and s are imcompatible, which is
indicated by t #s. Let SC7g. We write ¢t T S if there
exists some s € S such that ¢ T s; otherwise, ¢t #S. Red
istheset { in | { — r € R}. The Q-reduction —¢ is de-
fined on 7q as C[t] —q C[2] where ¢ T Red and t £ Q.
The set of normal forms with respect to Q-reduction is
denoted by NFq,.

Lemma 3.1 ({12]): Q-reduction is Church-Rosser and
strongly normalizing.

w(t) denotes the normal form of ¢ with respect to
Q-reduction. w(t) is well-defined according to the pre-
vious lemma. We write e € w(¢) if the normal form of ¢
with respect to Q2-reduction has an occurrence of some
symbol e.

Definition 3.2: The displayed occurrence of § in C[(}]
is an index if z € w(C[z]) where z is fresh. We indi-
cate the index with C[€;]. Let C[Q;] and A be a redex
occurrence of C[A]. Then A is also called an index of
C[A] and we write C[A[].
Lemma 3.3 ([7],[9],[12]):

(1) If C[Qr] and Clz] £ C’[2] where z is fresh, then
C'[$y].

(i) If C[C’[Q]] then C'[Q].

Definition 3.4: A left-linear term rewriting system is
strongly sequential if every 2-normal form has an in-
dex.

The index reduction — is defined on 7 as follows:

t—ysifft 2 s for some index A. If R is strongly se-
quential then index reduction is a reduction strategy for
R [16]. Huet and Lévy[7] showed that index reduction
is a normalizing strategy for every orthogonal strongly
sequential system. Toyama[16] generalized this result
to the class of root balanced joinable strongly sequen-
tial systems. A term rewriting system R is root balanced
joinable if for any critical pair (p, q), there exist £ and

k = 0 such that p ﬁ,. t and ¢ &T t, where the root
reduction ¢t —, s is defined as ¢t 5 and t = A.
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Theorem 3.5 ([16]): If R is root balanced joinable
and strongly sequential then R has the normal form
property and index reduction is a normalizing strategy
for R.

The decidability of strong sequentiality for orthog-
onal term rewriting systems was first shown by Huet and
Lévy[7] and simplified proofs were presented by Klop
and Middeldorp[12]. Jouannaud and Sadfi[9] proved
the decidability of strong sequentiality assuming left-
linearity instead of orthogonality. Also this result was
proven by Comon [3].

Theorem 3.6; Strong sequentiality of left-linear term
rewriting systems is decidable.

3.1 Stable Balanced Joinability

In this section, we define stable balanced joinable term
rewriting systems. For that purpose, we need the no-
tions of transitivity, which was introduced by Toyama et
al.[17], and stability for indices. Although the notion
of transitivity is restricted to orthogonal term rewriting
systems in [17], we define transitive indices assuming
only left-linearity.
Definition 3.7: The displayed index in C[Q] is transi-
tive if C’[C[S21]] for any C’[Q;]. The transitive index is
denoted by C[Qr].
Example 3.8: Let Red = {f(¢(Q)}.  The Q-
occurrence in g(f2) is an index. However, this index
in g(Q) is not transitive because the 2-occurrence in
f(g(f2)) is not an index.
Lemma 3.9: If C[Qr] and Clz] £ C’'[z] where z is
fresh, then C'[Q7].
Proof : Let C”[Q;]. Then we have C”[C[;]]. Clearly
C"[Clz]] £ C"[C'[z]]. By Lemma 3.3 (i), C"[C'[Q]].
Thus C’[Q7]. 0
Definition 3.10: The displayed transitive index in
C[Qr] is stable, which is denoted by C[Qg], if CO[Qr]
for any 6.

The stable reduction —g is defined as C[l0] —g
C[rf] where C[Qs] and | — r € R.

Lemma 3.11: If¢ —g s and C[Qy] then C[¢t0] — C[s6]
for any 6.

Proof : Lett = C'[l0'] —s C'[r0'] = s. From C'[Qg],
it follow that C'8[Qr] for any §. By the definition
of transitivity, we have C[C'6[Q;]]. Thus C[td] =
C[C'0[16'60)] —1 C[C'0[r6'0]] = C|sh)]. O
Definition 3.12: A critical pair (p, ¢) is stable bal-

anced joinable if p ﬂs t and g £>s t for some ¢ and
kE > 0. A term rewriting system R is stable balanced
joinable if every critical pair is stable balanced join-
able.

Note that every root balanced joinable term rewrit-
ing system is stable balanced joinable because —,
c —s.
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3.2 Normalizing Strategy

In this section, we show that index reduction is normal-
izing for every stable balanced joinable strongly sequen-
tial system. Our proof uses the theorem of Toyama[16]
concerning reduction strategy. We first explain this the-
orem.

A reduction relation — on 7 is balanced weakly
Church-Rosser if V¢, t',t" € T, t — t and ¢t — t”
imply ¢/ % s and t" % s for some s € T and
k = 0. We write t+—» s if there exists a connection
T 2 e 2 T R g with SDm > Song. We
write t «— s if s «» ¢,

Theorem 3.13 ([16]): Let —, be a reduction strategy
for — such that:

(1) —, is balanced weakly Church-Rosser,
(i) Ift — sthent =; 8 Or t«—»g > -« 5.
Then — has the normal form property and —; is a

normalizing strategy.

Let A and A’ be two redex occurrences of t € 7.
Let A = Cls1,...,8,] and C[Q,...,Q] € Red. We say
that A and A’ (or A’ and A ) are overlapping if A’ C A
and A’ & s; for any 4 [16].
Lemma 3.14: Let R be stable balanced joinable. Let
t é»; ¢ and t & t”, where A’gA and A and A’ are
overlapping. Then ¢ ;s and ¢ 57 s for some s and
k= 0.
Proof : Let : = C[A] = C[C'[A’]]. Then ¢ = C[¢d]
and #’ = C[pd] for some critical pair (p, ¢) and 9.
Since R is stable balanced joinable, we have p LA
and ¢ —k>5 s’ for some s’. Thus, from Lemma 3.11
and C[€;], we obtain ¢ = CJ[gf] 5 C[s'68] and

" = Cpb] &, C[s'0]. O
Lemma 3.15 ([16]): Let C[A;,A’]. Then C[Ay, ] for
any t.

Lemma 3.16: Let R be stable balanced joinable. If

t —7t' and t — t" then ¢/ ﬁ»; s and t” iq s for some
sand k = 0.

Proof : Lett g] t' and t g[ t”. If A and A’ are dis-
joint then from Lemma 3.15 the lemma follows. If A
and A’ are not disjoint, then by the definition of index,
A and A’ must be overlapping. Thus the lemma holds
by Lemma 3.14. O

The parallel redution ¢ —++ s is defined as ¢t =

C[Al,...,An]A—%---A—?s(ngO). We write ¢ —-' s if

Aq-Ap
t 4= sandn>0.

Lemma 3.17: Let R be strongly sequential and sta-
ble balanced joinable and ¢+ s. Then ¢t =7 s or
te»r- —H> - «—18.
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ArAg
Proof : Lett —i> s. We prove the lemma by induc-

. e AqeDp
tion on n. The case n = 0 is trivial. Lett — s (n >

0). There are two cases.
DgAn
(1) Some A;, say Ay, is an index. Let ¢ [ilq VAT
OTRY.N,
s. Applying induction hypothesis to ¢’ 2 s,

we obtain the lemma.

(2) No A; is an index. Since R is strongly sequen-
tial, ¢ has an index. Let A be an index of ¢ and
= 1 t". Furthermore, consider the following two
cases.

(2-1) A and A, are non-overlapping for any <.
Using the left-linearity of R and Lemma 3.15, we
can easily show that ¢/ -+~ s’ and s —; s’ for
some s'. Thus we have t «»; - —t> - «—rs.

(2-2) A and some A,;, say A1, are overlapping.

Ay, DBy .. .
Lett = ¢ —» s. By the definition of index,

we have A; CA. From Lemma 3.14, it follow

that ¢/ £>1 s’ and ¢/ A[ s’ for some s’ and k > 0.
Thus we have t+»;t’. Applying induction hy-

) A2An i
othsis to ¢/ —#~ s, we obtain the lemma. O
p

Theorem 3.18: Let R be strongly sequential and stable
balanced joinable. Then R has the normal form prop-
erty, and index reduction —j is a normalizing strategy
for R.

Proof : It is obvious that —; is a reduction strategy
for —+’. Take —; as —4 and —#' as — in Theo-
rem 3.13. From Lemmas 3.16 and 3.17, the conditions
(i) and (i1) in Theorem 3.13 are satisfied. Thus, from
— C—'C 5, the theorem follows. a

Quasi-index reduction (or hyper-index reduction)
is defined as - - —;. In Theorem 3.18 index reduction
can be relaxed into quasi-index reduction.

Theorem 3.19: Let R be strongly sequential and stable
balanced joinable. Then quasi-index reduction — - —
18 a normalizing strategy for R.

Proof : Similar to Theorem 7.2 in [16]. a

3.3 Decidability of Stable Transitive Indices

Stable balanced joinability is an undecidable property
for left-linear term rewriting systems. Because the halt-
ing problem for Turing machines is reducible to this
problem by the construction of a left-linear term rewrit-
ing system which can simulate the computations of a
Turing machine. (For a construction, see [11].) In this
section, we show that for a given C[(2] we can determine
whether the displayed occurrence of 2 in C[Q] is a sta-
ble transitive index. Thus, stable balanced joinability
is semi-decidable.

Lemma 3.20: Let C[¢,$2;]. Then C|z,§);] where z is a
fresh variable.
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Proof : Suppose that the displayed occurrence of €2 in
Clz,Q] is not an index. Let # be a substitution such
that 6 =t and yf = y for any y = z. Then C[t, 2] =
Clz, z]0 where z is fresh. Because Q2-reduction is closed
under substitutions, C[t, 2] = C[z,2]8 Sq w(Clz, 2])6.
From w(C[t, 2]) £ w(C[x, 2])0 and z & w(C|z, z]), it fol-
lows that z & w(Ct, z]). However, this is contradictory
to C[t, QI] . (]
Definition 3.21: The set Red* is defined as follows:

Note that the above definition of Red* is different
from the original one by Toyama et al. [17]. In fact, our
Red” is a subset of theirs, and these two sets are equal
if R is orthogonal.

Example 3.22: Let

fla,z) = a

R =4 [f(bg(z)) — g(b)
b —b.

Then Red* = { f(a,Q), f(b,9(22)), a, b}.

Lemma 3.23: Let C[Q;] and C[t] 1 Red. Then ¢ 1
Red*.

Proof : Since C[t] 1 Red, there exists a left-hand
side | of R such that C[¢] T lo. Because C[Qy],
we have | = C'[s] for some s and C'[ | such that

t T sq and Clz] T C4lz] where z is fresh. Now
we show that s € Red*. Without loss of general-

ity, we may state that C[z] = C"[s1,...,5n,2,9Q,...,9)]
and C'[z] = C"[z1,...,%n,2,t1,...,tm] Where
C"[,...,] does not contain variables and Q <
tig for i+ = 1,...,m. Repeated application of
Lemma 3.20 yields C"[z1,...,Zn, Q27,Q,...,9]. Since

C'z1yeo oy Ty 2,0y ...,Q] £ C'[2], it follows from
Lemma 3.3 (i) that C'[Q;]. Thus sq € Red*. O
Lemma 3.24: Let C[Q2] € Tn. Then C[Qr] iff 2z €
w(Cz]) and w(C|[z]) # Red* where z is fresh.

Proof :

(=) Itisclearthat z € w(C[z]). Let C'[z] = w(C|[z]).
Suppose C’[z] T s for some s € Red*. Then
there exists C”'[ ]| such that C”[Q;] and C§ls] €
Red. Since C"[C'[z]] 1T Red, w(C"[C[z]]) =
w(C"[C'[z]]) = 2. But this contradicts C[{27].
Hence w(C|[z]) # Red*.

(<) It is clear that C[Q;]. We will prove C'[C[$]]
for any C’'[Q]. Let w(Clz]) = Ci[z] and
w(C'[z]) = Ci[z]. Tt suffices to show that
C1[C4[z]] € NFgq. Suppose C;[C1[z]] € NFq. Be-
cause C1[z] € NFg and Cf[z] € NFq, there exists
C"[C1[2]] € C1[Cy[z]] such that C"[C1[z]] T Red.
From C{[Q;] and Lemma 3.3 (ii), C"[Q;]. Using
Lemma 3.23 we obtain Cy[z] T Red*. However,
this contradicts w(C|z]) # Red*. 0

Lemma 3.25: Let C[Q] € Tg,. Then C[Qg] iff Co[Q7].
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Proof :

(=) Let 6 be a substitution such that zf is a
redex for any z € C[]. Note that CO[Qy]
and w(CO[z]) = w(Cqlz]). We will show that
C'[Cq[Qy]] for any C'[Q;]. Because C'[CO[Q]],
we have 2z € w(C'[C0]7]]) = w(C'w(Clz])]) =
w(C'w(Cqlz])]) = w(C'[Cql7]]). Thus
C'[Cql4]]-

(&) Clearly Cqlz] < C6[z] for any 6. From
Lemma 3.9 and Cq[Qy], it follows that CO[Qr]
for any 0. Therefore we obtain C[Qg]. O

Lemma 3.26: Let C[Q)] € To. Then C[Qg] iff z €
w(Cqalz]) and w(Cqlz]) # Red* where z is fresh.

Proof : It is trivial from Lemmas 3.24 and 3.25. O

Therefore, by the previous lemma, we can decide
whether C[Q2s] for a given C[(2).

Example 3.27: Consider R of Example 3.22. R
has only one critical pair (f(b, g(z)), g(b)). Because
w(g(z)) = g(z) # Red*, we obtain g(Qg) using
Lemma 3.26. By f(b,g(z)) —s g(b) —s g(b), R is
stable balanced joinable. Note that R is not root bal-
anced joinable. R is strongly sequential because R is
left-normal[16]. Thus, from Theorem 3.18, index re-
duction is a normalizing strategy for R.

4. Normalizing Strategy for NV-Stable Balanced
Joinable Systems

In this section, we show that NV-index reduction is a
normalizing strategy for every N'V-stable balanced join-
able NV-sequential system. We first discuss the no-
tion of N'V-sequentiality, which is introduced by Oyam-
aguchi[15].

The $y-reduction —gq, is defined on 7n as
C[t] —q, Clrq] where t T lg and ¢t = § for some
l—reR[15]
Definition 4.1: The displayed occurrence of 2 in C[]
is called an NV-index if z € t for each Q-term ¢ such
that C[z] Sq, t where z is fresh. If the displayed oc-
currence of © in C[Q)] is an NV-index then we write
C[Qy,,]; otherwise C [Q N1y If C[Qp, ] then a redex oc-
currence A in C[A] is also called an NV-index. If A is
an NV-index of C[A] then we write C[Ay, |; otherwise
C[ANIV]~

Note that C[Q2;] implies C[Q,]. The above defini-
tion of NV-index is different form the one in [15]. By
using the following property of NV-indices, we can see
that they are equivalent.

Lemma 4.2 ([15]): Let C[z] € To where z is a fresh
variable. C[Qyr, ] iff there exist C'[2] C C[z] and ¢ such
that C'[2] Sq, t,t] Red and z € t.

The following lemma is used later.
Lemma 4.3 ([15]):
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(i) If C[82y, ] and C[z] £ C’[z] where z is fresh, then
'l

(i) If C[C'[Qr,]] then C'[Qr, ].

Definition 4.4: A left-linear term rewriting system is
NV-sequential if every 2-normal form has an NV-index.
Oyamaguchi[15] proved that NV-indices are com-
putable in polynomial time for arbitrary left-linear
NV-sequential systems. He also showed that NV-
sequentiality of orthogonal term rewriting systems is de-
cidable. This result was generalized to left-linear term
rewriting systems by Comon [3].
Theorem 4.5: NV-sequentiality is a decidable property
of left-linear term rewriting systems.

4.1 NYV-Stable Balanced Joinable Systems and Nor-
malizing Strategy

The NV-index reduction —,, is defined on 7 as fol-

lows: t —p, sifft 2 s for some NV-index A.
Definition 4.6: The displayed NV-index in C[Qy, ] is
transitive if C'[C[S2r,,]] for any Q-term C'[Qy, ]. If the
displayed occurrence of 2 in C[Q)] is a transitive NV-
index then we write C'[Q2p, |; otherwise C[Qn, .

The following example shows that a transitive in-
dex is not always a transitive NV-index.

Example 4.7: Consider R of Example 3.22. We can
show g(€21) by using Lemma 3.24. However, we have
Q(QNTV) because f(b,g(QN]V)) for f(b, Q]V).
Definition 4.8: The displayed transitive NV-index in
C[Qr, ] is stable if CO[Qr, | for any 6. If the displayed
occurrence of 2 in C[Q)] is a stable transitive NV-index
then we write C[Qg,]; otherwise C[Qpys, ]

The NV-stable reduction —g, is defined as

Cllf] —g, C[rf] where C[Qg, ] andl — r € R.
Lemma 4.9: If t —g, s and C[Qy,] then Cl¢d] —,
C|s0] for any 6.
Proof : Similar to Lemma 3.11. |
Definition 4.10: A critical pair (p, ¢) is NV-stable bal-
anced joinable if p ﬁ*sv t and g ﬁ’sv t for some t and
k > 0. A term rewriting system R is NV-stable bal-
anced joinable if every critical pair is NV-stable bal-
anced joinable.

We can prove the following theorems by a argument

similar to that in Sect. 3.2.
Theorem 4.11: Let R be NV-sequential and NV-stable
balanced joinable. Then R has the normal form prop-
erty, and NV-index reduction —, is a normalizing
strategy for R.

Quasi-NV-index reduction (or hyper-NV-index re-
duction) is defined as N Iv-

Theorem 4.12: Let R be NV-sequential and N'V-stable
balanced joinable. Then quasi-NV-index reduction
~ . -7, is a normalizing strategy for R.
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Note that the class of NV-stable balanced join-
able systems includes all root balanced joinable systems.
However, this class does not include all stable balanced
joinable systems. Consider R of Example 3.22 which is
stable balanced joinable.. R has only one critical pair
(f(b,g(x)), g(b)). Because g(2nT, ), g(b) cannot be re-
duced by —g,. Thus, R is not NV-stable balanced
joinable. Since —; C —,, we obtain the following
corollary. The calculating on index is much easier than
NV-index.

Corollary 4.13: Let R be strongly sequential and NV-
stable balanced joinable. Then index reduction —; is
a normalizing strategy for R.

4.2 Decidability of Stable Transitive NV-Indices

We next show that for a given C[Q] it is decidable
whether C[Qs,,|. Hence, NV-stable balanced joinability
is also semi-decidable.

Definition 4.14: The set Red;, is defined as follows:
Redy, = {tq | 1 =C[t], C[Q, ), l 5T €R}.
Lemma 4.15: Let C[t,y,]. Then C[z,Q;,] where

is fresh.

Proof : Similar to Lemma 3.20. O
Lemma 4.16: Let C[Qr,] and C[t] T Red. Then t 1
Reds,.

Proof : Similar to Lemma 3.23. O

Lemma 4.17: Let C[Q;,]. Then C[Qnr, ] iff there ex-
ists t such that C[z] Sq, ¢ and t T Red’ where z is
fresh.
Proof :
(=) Let C'[C[Q2n1,]] for C'[Qr,]. By Lemma 4.2
and C[§, ], there exist C”[C[z]] C C'[C]z]] and s

such that C”[C[2]] Zq, s,s ] Red and z € s. We
have s = C{[C1[z]] for some C{'[] and C;[ ] such
that C"[z] Sq, C7[?] and C[z] Sq, Cilz]. By
Lemma 4.3 (ii) and C'[Qy, |, C"[S2;, ] and there-
fore C{'[Q, ]. From Lemma 4.16, it is follows that
Ci[2] 1 Reds.

(<) Let s be an Q-term such that t T s and s €
Redy,. Then by the definition of Red;, there ex-
ists C'[Q,] such that Ch[s] € Red. It is clear
that C'[C[#]] q, C'[t] and C'[t] T Red. Since
C[Qr,], z € t and therefore z € C'[t]. From
Lemma 4.2, it follows that C'[C[Qn7,]]. Thus
C[QNTV]- O

We use tree automata techniques in our poof. The
definition of tree automaton is given as follows.
Definition 4.18: Let X be a finite ranked alphabet. A
finite tree automaton over X is a triple A = (Q, Qy, R),
where @ is a finite set of states, Q is a finite set of final
states (Qf € Q), R is a set of ground rewrite rules of
the form f(q1,4¢2,...,9n) — q or ¢ — ¢’ where f € %,
qi,-- -,Qn,%q/ € Q
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We write —4 for —g. A tree automaton A ac-
cepts t € T(X) iff there exists a final state ¢ such that
t 5.4 q. The language T(A) is the set of terms which
are accepted by A. A set T' of terms is recognizable if
there exists a tree automaton A such that 7" = T'(A).
(see e.g. [6] for more details.)

Lemma 4.19: Let C[Qy,]. Then C[Qns,] iff
CO[Qn7, | for some 6 such that y8 € 7(F,{z}) for any
yeCl].

Proof : It is easily shown using Lemma 4.17. |

By the previous lemma, stability of transitive in-
dices in ¢t € 7Tg only depends on instances of ¢ in
T(F U {Q},{z}). In the Qy-reduction, every vari-
able can be considered as constant. Thus we fix ¥ =
FU{Q,z, 2} and after this we restrict the Qy -reduction
to 7(X) x T(X). We also write 75 for 7(X). Let
Tr={teTE |t >q, s s Redi}. We will show
that 7T is recognizable.

Definition 4.20 ([4]): A ground tree transducer G over
Y. is a pair (U, D) where U = (Q,Q;,R) and U =
(Q',Qr, R} are tree automaton over .

The relation —¢ associated with G is defined on
T(X) by t —¢ t' iff there exists s € T(X U Q) such
that ¢t 5y s < p ¢/. A relation associated a ground tree
transducer is called a GTT relation.

Lemma 4.21 ({5]): Let T be a recognizable set and let
—q be a GTT relation. Then theset { ¢ |t —g s, s €
T} is recognizable.

LetTr = {s €17 | s 1 Red}, }. According to the
previous lemma, it suffices to show that T’ is recogniz-
able and g, is a GTT relation. t* denotes the term
obtained from ¢ by replacing all variables and Q’s in ¢
by x.

Lemma 4.22: Ty is a recognizable set.
Proof : Let A = (Q,Qy,R), where Q = {¢ | tCs%,

s € Redjy } U{qu g0}, Qf = {@ | t = 5 €
Redi, } U{gn } and R consists of the following rules:

() f(gtys--+,q,) — q where f € F,
Ft1, . tn) Ttq and t £ Q,

(ZZ) Qﬁqﬁs x_)QCC’ z_)qtlt'

We show that T'(A) = Tg.
(S) We first prove the following claim: if s € 7

and s 54 q; then s T to. The proof is by in-
duction on the size of s. Base step: Trivial. In-
duction step: Let s = f(s1,...,8,). Then there
exists a rule f(qs,...,q:,) — ¢ in R such that
8; —4 gy, for any i. Note that fti,oooitn) T ta.
By induction hypothesis, we have s; 1 ¢; for any
i. If tq = Q then trivially s T to. Otherwise,
to = f(t},...,t,) and t; T ¢, for any i. We now
show that s; T ¢} for any 4. If ; = Q then s; = Q
by construction of A. Therefore s; T . If ¢; £
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then we obtain t;q = ¢, from ¢; T ¢} because & t;
and ¢; does not contain variables. Hence s; T ¢,.
Thus the claim follows. Assume s € 7§ and
s 54 g with ¢, € Q. Ift = Q then s = Q
and therefore s € Tr. Otherwise, from the claim,
it follows that s T tg, i.e. s T Redj,. Thus s € Tkg.

HJ

) It is clear that Q € Tg is accepted by A. If
s € Tr and s % § then s | tg for some ¢; € Q5
with ¢ & €. Hence we prove that for any s F , if
s T tq and ¢, € Q with t £ Q then s — 4 ¢;. The
proof is by induction on the size of s. Base step:
Trivial. Induction step. Let s = f(s1,...,5n)-
Case 1. t = z. Let t; = Q if s; = Q; otherwise,
let ¢, = z. From induction hypothesis, it follows

that s; —» 4 gy, for any i. Since f(qti, Qe ) —
gz € R, s = f(s1,..-,5n) 24 g Case 2.
t= f(t1,...,tn). Note that s; T t;q, ¢, € Q and

t; F Q for any . Let t; = Q if s, = Q; otherwise,
let ¢, = t;. From induction hypothesis and the
rule @ — go, we have s; — 4 q for any 7. Because
f(th,-. . t,) T L, there exists f(qs,. .-, q) — a
in R. Thus s = f(s1,...,80) —A G- O

Lemma 4.23: 5q, is a GTT relation.

Proof : We define the tree automaton U and D as fol-
lows. U = (Q,Qr,R), where @ = {q: | tCs®, s €
Red}U{qs, go}, Qr = {q | t=s", s € Red} and R
consists of the following rules:

(%) flgty,---rq.) — @ where f € F,
flti,.-stn) Ttg and t £ Q,

(1) Q—qq, T — gu, 2 s

D=(Q,Qr,R) where @) = QrU{q |tCro,l —TE€
R} and R’ consists of the following rules:

@ fla,,--»a,) = a
where f(t1,...,tn) =1,

(1) ¢, — g+ wheret =1" and s = rq for
somel —r € R.

We can prove the following claims by a argument sim-
ilar to that in Lemma 4.22.

(1) Lets € 7% and ¢, € Q. Then s 5o qp iff s 7 te
and s £ .

(2) Letse 72 and ¢; € Qr. Thens 5p ¢ iff s =g
and ¢t = [* for some | — r € R.

Let G = (U, D). Then it follows from the above
claims that —»g, C —¢ C —q,. Because the

transitive-reflexive closure of a GTT relation is a GTT
relation [4], g, is a GTT relation. i

Lemma 4.24: T is a recognizable set.
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Proof : From Lemmas 4.21, 4.22 and 4.23. O

By the previous lemma, there exists a complete and
deterministic automaton A such that T'(Ar) = T [6].
The number of states in Ay is denoted by kr. The
height p(t) of ¢ is defined as follows: p(t) = 1 +
max{ p(t1),...,p(t,) } if t = f(t1,...t,) and n > 0;
otherwise p(t) = 1.

Lemma 4.25: Let C[Qp,]. Then C[Qys,| iff
CO[QdyT,] for some 6 such that p(yf) < kp and y6 €
T(F,{z}) forany y € C[ ].

Proof :

(=) From Lemmas 4.17 and 4.19, C¢'[2] is accepted
by Ar for some ¢’ such that y¢' € T(F,{z}) for
any y € C|[ ]. Because Ay is complete and deter-
ministic, for any y € C[] there is exactly one state
q of Ar such that y8’ 54, q. Since there exists
s € T(F,{z}) such that p(s) < kr and s S, ¢
by pumping lemma[6], we define §” by y6” = s.
Then it is obvious that C'6"[z] is accepted by Ar.
Thus, from Lemma 4.17, C0"[QnT,].

(<) Trivial O

Theorem 4.26: It is decidable whether C[Qg, | for a
given C[Q)].

Proof : It is decidable whether C[Qr,][3],[15]. If
ClQnr,] then C[Qus,]. Otherwise, by Lemma 4.25,
it is suffices to check wether C8[Qr, | for any 8 such
that p(y#) < kr and y0 € T(F,{z}) for any y € C[],
which is also decidable. O
Example 4.27: Let

fla, h(x),y) — g(h(y), h(z))
R 9@z)—a

h(a) — h(b)
b—b.

The critical pair is only {f(a, h(b),y), g(h(y), h(a))). R
is NV-stable balanced joinable because we can show
that f(a’a h(b)7y) —Sv g(h(y), h(b)) Sy g(h(y)& h(a))
Note that R is not stable balanced joinable. R is
strongly sequential since R is left-normal system[16].
Thus, from Corollary 4.13, index reduction — is a nor-
malizing strategy for R.

5. Concluding Remarks

In this paper we show that (1) index reduction is
normalizing for the class of stable balanced joinable
strongly sequential systems and (2) NV-index reduction
is normalizing for the class of NV-stable balanced join-
able NV-sequential systems.

Stable and NV-stable balanced joinability proper-
ties are undecidable. It remains to indicate decidable
subclasses.

It is not easy to generalize our results to more gen-
eral sequential systems (NVNF-[13], shallow[3] and
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growing[ 8] sequential systems). Because index reduc-
tion is not balanced weakly Church-Rosser even if the
system is orthogonal. For example, consider the follow-
ing orthogonal NVNF-sequential system:

fz) —b
R = b — g(b)
h(a) — a.

Because f(b) and b in f(b) are indices with respect to
NVNF-sequentiality, f(b) reduce to b and f(g(b)) by in-
dex reduction. However b and f(g(b)) are not balanced
joinable. In NVNF-sequential systems, two indices not
being overlapping may nest.
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