IEICE TRANS. FUNDAMENTALS, VOL. E§1-A, NO. 4 APRIL 1998

615

|PAPER Special Section on Concurrent Systems Technology

Timed Petri Net Based Scheduling for Mechanical
Assembly——Integration of Planning and

Scheduling——

Akio INABA', Member, Fumiharu FUJIWARA'T, Tatsuya SUZUKI'T,

SUMMARY In scheduling problem for automatic assembly,
planning of task sequence is closely related with resource allo-
cation. However, they have been separately carried out with lit-
tle interaction in previous work. In assembly planning problem,
there are many feasible sequences for one mechanical product. In
order to find the best assembly sequence, we have to decide the
cost function for each task a priori and make decision based on
summation of costs in sequence. But the cost of each task depends
on the machine which executes the allocated task and it becomes
difficult to estimate an exact cost of each task at planning stage.
Moreover, no concurrent operation is taken into account at plan-
ning stage. Therefore, we must consider the sequence planning
and the machine allocation simultaneously. In this paper, we
propose a new scheduling method in which sequence planning
and machine allocation are considered simultaneously. First of
all, we propose a modeling method for an assembly sequence
including a manufacturing environment. Secondly, we show a
guideline in order to determine the estimate function in A* al-
gorithm for assembly scheduling. Thirdly, a new search method
based on combination of A* algorithm and supervisor is pro-
posed. Fourthly, we propose a new technique which can take
into consider the repetitive process in manufacturing system so as
to improve the calculation time. Finally, numerical experiments
of proposed scheduling algorithm are shown and effectiveness of
proposed algorithm is verified.

key words: scheduling, Timed Petri Net, assembly

1. Introduction

In scheduling problem for automatic assembly, we need
to decide sequence of tasks and allocation of machines.
In most of previous researches, these problems have been
studied separately. In conventional scheduling prob-
lem, for example, Job Shop Scheduling (JSS)[1]-[4]
has widely been discussed, however, only resource al-
location problem has mainly been focused in JSS. On
the other hand, in assembly planning problem, there
are many feasible sequences for one mechanical prod-
uct. In order to find the best assembly sequence, we
have to decide the cost function for each task a priori
and make decision based on summation of costs in se-
quence. However, the cost of each task depends on the

Manuscript received September 8, 1997.
Manuscript revised November 10, 1997.
TThe author is with the Gifu Prefectural Metal Research
Institute, 1288 Oze, Seki-shi, 5013265 Japan.
" The authors are with Department of Electrical Engi-
neering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-
shi, 464—8603 Japan.

and Shigeru OKUMA'', Nonmembers

machine which executes the allocated task and it be-
comes difficult to estimate an exact cost of each task at
planning stage. Moreover, no concurrent operation is
taken into account at planning stage. Figure 1 shows
an example on this point. The solution in planning
problem is sequence (a), because the summation of cost
is smaller that of (b). However, production time of se-
quence (b) is smaller than that of sequence (a), when
we can use machine M1 and M2 concurrently. Figure 2
shows another example. The solution in planning is se-
quence (a), but production time of sequence (b) is much
smaller than that of sequence (a), when we can use ma-
chine M1 and M2 concurrently. (Here, MO : OO in

Sum of execution
time for tasks :10

Production time : 6

(a) {b)

Sum of execution
time for tasks

Production time :8

Fig. 1 An example of planning (1).

Sum of execution
123 time for tasks

Sum of execution
time for tasks

Production time :19 Production time :14
(a) (b)

Fig. 2 An example of planning (2).

616

Figs. 1 and 2 denote machine and execution time of each
task in case of using assigned machine.) Therefore, we
must consider the sequence planning and the machine
allocation simultaneously. On the other hand, in few
previous researches, sequence planning and machine al-
location were discussed simultaneously. For example,
M.F. Sebaaly et al.[8] have been proposed a method
based on GA. However, they study the case that the
number of assembled product is only one for each kind
of product. In this case, the solution may not be good
solution for case that the number of assembled product
is greater than one.

In this paper, we propose a new scheduling method
for assembly problem in which sequence planning and
machine allocation are considered simultaneously based
on Timed Petri net modeling. Proposed method has
also a feature that the solution can be implemented in
logical controller because the controlled object is rep-
resented by Timed Petri Net.

2. Modeling of Assembly Sequences

We construct the model of assembly sequence including
a manufacturing environment by doing stepwise refine-
ment of assembly network which consists only of me-
chanical parts. Homem de Mellow et al. have shown an
efficient method for representation of assembly network
using AND/OR graph. A Petri Net representation of
assembly network is given by

Ns = (Ps,Ts,1s,0g), €))
where, Pg,Ts,Is and Og are as follows.

Pg = {A set of subassemblies}

Ts = {t;} = {A set of assembly tasks}
*t; = {two subassemblies before task ¢;}
t? = {the subassembly after task ¢;}

v pietty

Is (pmtj) - { 0 : otherwise
. 1 : p;e t;

Os(tup]) = { 0 otherwise

Figure 4 shows a Petri Net representation of assembly
network about a ball-point pen shown in Fig. 3.

In [7], the authors have shown a technique to con-
struct AND/OR Petri Net from geometric information
of mechanical product.

In this paper, we assume that the manufacturing
environment is given as follows (Fig.5).

e A production system consists of semi-universal as-
sembly machines, a common stack, a product sta-
tion and a transferring robot.

e Each assembly machine has its own parts feeder to
supply parts for machine.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 4 APRIL 1998

. CEe=E=u

CAP HEAD

BODY TUBE BUTTON

Fig. 3 A ball-point pen.

{COHTU)

{c {0} (T} H) leg}

Fig. 4 A Petri net representation of assembly network about a
ball-point pen.

parts rarts parts
feeder feeder feeder
assembly assembly assembly
machine machine ® o |machine

local local local

stack stack stack

transfer robot 1
product
common stack .

station

Fig. 5 Production system.

e Each assembly machines has its own local stack
and subassemblies are transferred between machine
and common stack through this local stack.

e The capacity of a common stack is limited.

Under this manufacturing environment, each assembly
task consists of following steps.

e A transferring robot transfers subassemblies from
the common stack to the local stack in assembly
machine.

e An assembly machine assembles subassemblies in a
local stack (or parts loaded from parts feeders).

e A transferring robot transfers the assembled sub-
assembly from the local stack to the common stack.

INABA et al: TIMED PETRI NET BASED SCHEDULING FOR MECHANICAL ASSEMBLY

(a)P, and B, are parts (b)p:L %s a subassembly
! P2 is a part

Fig. 6 Assembly tasks.

Figure 6 shows a Petri Net expression of these steps A
mathematical formulation for them is given as follows.
(O A set of places

e A set of places for subassemblies

PTS:{p]JanpB}a (2)

where, p; and p, are subassemblies before assembling,
p3 is the assembled subassembly for p; and po.
e A set of places for steps

{plljapullj = 17NM}

: p1, P2 1S parts 3)
{p1d; Paj: Putld = 1, Nas}

: otherwise

Prr =

where, p;4 is a step to load subassemblies from the com-
mon stack to a assembly machine. p,; is a step to assem-
ble subassemblies at machine j. p,; is a step to unload
subassemblies from the assembly machine to the com-
mon stack. Njs is number of feasible machines in the
environment.

e A set of places for resources.

PTR:{pr7p57pmj]ZlaNM} (4)

where, p, is the transferring robot. ps is the common
stack. py,; is a feasible machine j for an assembly task.
Each of these places has a token if it is available.

After all, a set of places for an assembly task is
given as follows.

Pr = PrsU Prp U Prg (5)

617
O A set of transition
Tp = {t;}
{takvtulkats tk= I:NM}
: p1,p2 are parts (6)
{tid, tak, tutk, ts : kK =1, Nas}

: otherwise
where, ¢4, tok, tuir and ts are given as follows.

*tutk = {Pampraps};t;m = {puhpmk}
.ts = {pul}:t; = {p37p'r'}

In case that p; and py are parts.

.tak = {p17p2apmk}>t;k; = {pa,k}

In case that pi(pz) is a subassembly and pa(p;) is
a part.

*tig = {p1(p2), pr}, tha = {01a}
.tak = {pZ(pl)vplihpmk}ai;k - {pakapT‘ﬂpS}
In case that p; and po are subassemblies.
*tig = {p1, 2, Pr 1> 11y = {p1a}
.tak = {pld,pmk},t;k = {pak7praps}
(O Weight of arcs

Py €® ty (7)

1
Ir(p;j, t) = { 0 otherwise

2 pr€t,pr=Ds
p1 and py are parts

OT(tjapk) = 1 Pk € t;a (pk :}: ps Or (8)
p1 Or py is a part.)
0 : otherwise

(O A set of time assigned to place

Ar = {a;} ©)
___] execution time p; € Prr
4 = { 0 : otherwise (10)

After all, Petri Net of an assembly task is given by
N¢ = (Pr,Tr, I, Or, Ar). (11)

We extend assembly network shown in Fig.4 to as-
sembly system including resources as follows (Fig. 7).
Here, we denote task ¢ by N% in order to distinguish it
from other tasks.

(1) We replace each transition of Ng by N&.

(2) If successive assembly in one machine is possible,
bypass nets are added. Because, we do not need
the unloading and reloading steps between assem-
bly tasks.

618

Fig. 7 Refinement of assembly networks.

Based on the above procedure, we consider the complete
Petri Net representation for assembly system including
resources. First of all we give the bypass net to the
assembly task pflj executed with the machine ;.
O In case that one of p} and p} is a part

We add the transition which represents the begin-
ning of successive assembly task for the subassembly pt
(p5) in the machine p?,;, as shown in Fig.7(a).

b% (k,1) = {tl;ij—k} anj = Pls P1(P3) = P§
a 1) otherwise
(12)

where,

o.bi ki ki bie ;

ta7j~k: = {palﬁpé}({pabpl})’taj—k = {pZ]}

e Sets of places and transitions along the bypass net

Nra Niz

i bi
Toi = Pt taj (k1) (13)
P=¢ (14)

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 4 APRIL 1998

where, Nt 4 is number of all tasks.
O In case that pi and p¥ are subassemblies

We add the bypass net (pass 1) which represents
pass for the successive assembly task for the subassem-
bly p} in the machine p,;, and add the bypass net (pass
2) which represents pass for the successive assembly task
for the subassembly pj in the machine p;, ., as shown in
Fig. 7 (b).

poigeny = § (agied Py = Prapl =P
ldj A ¢ otherwise
(15)
2ok, 1) = {t%d;ik} Dl = Dl 5 = 15
tdj A ¢ otherwise
(16)

where, .tllagik = {pgl’pévpr}s .t?dgz—k = {plgl:piapr}’

b = tiar = {p}y}, Pl is a step to load a subassem-
bly from the common stack.
e Sets of places and transitions along bypass net

i TEU{thY o T E ¢
T, = pj aj P
PJ { ¢ otherwise (17)
bi ‘i
Pio= {pia} T, +¢ 18
P {) otherwise (18)
'y NraNi 4 _; 2—i o1bi
where, Tp; = U- U (tig;"(k, 1) U ti5" (K, 1), *tgy =

{p%j ’ tgij. = {pijapraps}'
Therefore, Petri Net for an assembly system includ-
ing resources is specified as follows.

NA = (PA>TA7IAaOA7AA)7 (19)

where, Pa,Ta, 14,04 and A, are follows.

N . . Ny .
P4 = P U < o <P¢}T UPL, U (Jf P;j>>>
=1 j=1
Nra i Nis i
Ta= Y (TT - (jgl TPj))

a1 piet
IT(pzatJ) - { 0 otherwise

Or (L, pj)
2:p; €9,p; = sy Pi; €% 1,
pF, = {a task to load two subassemblies
from the common stack.}
={1: p}, € ti®, (p}, = ps or Fpf, €y,
Pk, & {a task to load two subassemblies

from the common stack.}
0 : otherwise

Aa = {a;}
a; = execution time : p; eU?f{‘(P%TU (Uj‘\gvip;j))
0 : otherwise

INABA et al: TIMED PETRI NET BASED SCHEDULING FOR MECHANICAL ASSEMBLY

The reason why we have adopted the Timed Place Petri
Net (TPPN) is that the marking in TPPN is always
determined uniquely. On the contrary, if we use the
Timed Transition Petri Net (TTPN), tokens disappear
when transitions are firing, then marking may not be
determined uniquely.

3. Scheduling Algorithm

A scheduling algorithm executed on the Petri Net model
has been proposed by Doo Yong Lee et al.[5]. This
technique is modified version of A* algorithm. The de-
tails of this algorithm are as follows.

Algorithm L1

STEP1. Put the initial marking mg on the list OPEN.
STEP2. If OPEN is empty, terminate with failure.

STEP3. Remove the first marking m from OPEN
and put it on the list CLOSED.

STEP4. If m is final marking, construct the path from
the initial marking to the final marking and ter-
minate.

STEPS. Find the enable transition of the marking m.

STEP6. Generate the next marking, or successor, for
each enabled transition, and set pointers from the
next marking to m. Compute g(m') for every
successor m. . ‘

STEP7. For every successor m of m, do the follow-
ing.

a: If m’ is already on OPEN, direct its poipter
along the path yielding the smallest g(m).

b: If m' is already on CLOSED, direct its
pointer along the path yielding the smallest
g(m). If m' requires pointer redirection,
move m' to OPEN.

c: If m is not on either OPEN or OLOSED,
compute h(m) and f(m) and put m on
OPEN.

STEPS. Reorder OPEN in the increasing magnitude
of f.

STEP9. Go to STEP2.

Here, f(m) is an estimate of the cost, i.e., the makespan
from the initial marking to final marking along an opti-
mal path which goes through the marking m. f(m) =
g(m) + h(m). g(m)is the current lowest cost obtained
from the initial marking to the current marking m.
h(m) is an estimate of the cost from the marking m
to the final marking along an optimal path which goes
through the marking m.

619

In scheduling algorithm, it always finds an optimal
path if h(m) satisfies the following condition.

h{m) < h*(m) for all m (20)

where, h*(m)is the actual cost of the optimal path from
m to the final marking. The estimate function based
on number of remaining tasks was presented in litera-
ture[5]. However, no method to estimate the number
of remaining tasks has been shown in it. In assembly
problem, we can give the estimate as follows. We need
n—1 tasks to assemble a product from n subassemblies.
In this case, number of remaining tasks is n — 1. We
extend this idea to case that the number of each part is
o. At the intermediate state of assembly process, if the
number of subassemblies are [, then the number of re-
maining tasks is [— . Therefore, we define the estimate
function h(m) as follows.

. Omina (21)

where, o, [and Ny, are the number of products, places
and machine, respectively. m(7) is the number of token
in place ¢ at marking m. Cp,;, is minimum cost in all
assembly tasks.

f(z')={é

On the other hand, in algorithm L1, it is well known
that when h(m) is much smaller than h*(m), search
time becomes bigger. Generally speaking, h(m) shown
in the Eq. (21) is much smaller than ~2*(m) because (21)
does not take into account the cost of transferring task
and few tasks with near minimum cost may be per-
formed. In order to take into account this point We
redefine h(m) as follows.

place p; expresses a subassembly
otherwise

Nt (Ca +Ta) (22)
where, C, is mean cost of assembly tasks, 7}, is mean
cost of transfer tasks.

Although Eq.(22) does not satisfy the condition (20),
in many cases, the optimal solution can be obtained.
The simulation results on this point will be shown in
Sect. 7.

4. Reduction of Search Space Using a Supervisor

When we apply the algorithm L1 to a scheduling prob-
lem in which many numbers of products are assembled,
search space becomes enormous and we need much time
to solve it. In order to overcome this difficulty and ob-
tain a quasi optimal solution with small calculation
time, we propose a new algorithm adopting the follow-
ing three strategies.

620

1) We add state feedback (a supervisor) to assembly
Petri Net in order to reduce the size of state space.

2) We try to search a quasi optimal solution which has
repetitive operation.

3) We make a limitation for the capacity of list OPEN.

As for 3), Limitation of capacity for list OPEN enables
us to search a quasi optimal solution with small cal-
culation time (See[6]). In the remaining part of this
chapter we state about 1). Also we state about 2) in the
next chapter. Supervisor controls a firing of each transi-
tion based on markings of assembly system and reduce
the search space (Fig.8). Control place is attached to
each transition of assembly Petri Net. Control place
and transition are linked by dual arcs and each control
place has a token at an initial marking (Fig.9). Super-
visor controls a token in control place based on state of
marking and closed loop specification.

For example, when execution of a task is forbid-
den, the token in the control place connected to corre-
sponding transition is removed. In the same way, fire
of transitions can be controlled by supervisor. On the
other hand, this proposed method can be viewed as a
new search algorithm based on the combination of A*
algorithm and supervisor. In other words, we can say
that a ’rule based algorithm’ (supervisor) is built in the
A* algorithm in order to reduce the search space.

In this paper, we introduce a supervisor which han-
dles a problem of parts allocation to parts feeders.

Here, we consider the following control specifica-
tron.

Supervisor

Token in
Control
place

Sequence Net

h
.

»

.

.

.

. .

» Marking
.

.

.

.

.

.

.

Fig. 9 Control place.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 4 APRIL 1998

e Same kind of part is loaded from same parts feeder.

This is natural specification because, in practical
manufacturing, there are few cases in which same kind
of parts are loaded from different parts feeders. We
show how to construct the control logic of supervisor
for this problem.

4.1 The Control of Allocation of Parts Feeders

The supervisor controls tokens in control places based
on Task List table (Table 1) and Control List table (Ta-
ble 2). Task List table includes information on the re-
lation of machine number, loaded parts and places cor-
responding to the parts loading step. Control List table
includes information on the relation of parts, loaded
machine and transitions for loading task. For exam-
ple, there is a token in place pl, at a marking m in
an assembly system shown in Fig.10. Supervisor de-
tects that parts A and B are allocated to machine M;
by Task List table, and forbids the firing of transition
about steps loading machines except for machine M;
with parts A and B by Control List table. In this case,
transition ¢, is forbidden.

4.2 Avoidance of Deadlock Occurring from Control
of Parts Allocation

In an assembly system shown in Fig. 10, when 2, fires
and a token is provided in p2, (An assemble step for
part C and D by machine M is performed), parts C
and D are allocated to the parts feeder in machine Ms.
Then, supervisor introduced in previous section forbids

Table 1 Task List table.
Place | Machine No | Parts
P, 1 A,B
Ly 2 A,B
pil I C.D
Py 2 C,D
pil 1 C
piQ 2 C
o, 1 D

Table 2 Control List table.

Parts | Machine No | Transition
A 1 tl
A 2 L,
B 1 il
B 2 tl,
C i 2,8, 80
C 2 8,8,
D 1 ta1 tor t05 s
D 2 2,

INABA et al: TIMED PETRI NET BASED SCHEDULING FOR MECHANICAL ASSEMBLY

Fig. 10

An assembly system.

firing of transition #2,, ¢3,, ¥5_,. This leads to that ex-
ecution of the assembly step for subassembly ABC and
part D is impossible. However, when one of transitions
t3,, %%, and t¥3_, is fired, it starts to make subassem-
bly ABC and after all, deadlock will occur. In order to
avoid this type of deadlock, the supervisor has to forbid
firing of transitions ¢3,, t23_, and t%5_,, when firing of
transitions ¢3; and t25_, are forbidden. Therefore, we
make Subassembly List table (Table 3) and Task Group
List table (Table 4). Subassembly List table includes in-
formation on the relation of subassembly and group of
assembly task including s. Ty, 1s the group of task to
assemble s and another subassembly or part. T3, is the
group of task to make s. Task Group List table includes
information on the relation of task group, controlled
transition, entry transition and entry place. The infor-
mation on the controlled transition is used in order to
detect forbidden tasks. Entry transitions express begin-
ning task in a task group and entry places are output
places of entry transitions. Entry transitions are used
to forbid all steps in task group and entry places are
used to detect the beginning of a task in the task group.
Based on this consideration, supervisor controls tokens
in control places as follows.

621
Table 3 Subassembly List table.
Subassembly T: Tout
AB A+B | AB+CD,AB+C
CD C+D AB+CD
ABC AB+C ABC+D

Table 4 Task Group List table.

Task group | controlled | entry entry
transition transition place
tl (pl) tl
A+B al\al al pl pl
tao(Pa2) toa ol Foe2
ta1(P21) t
C+D al\Mal al p2 p2
tiz(pzzzz) t<212 al’ta2
3 3 b3 3 .3
AB+C tgl (p§1) té«é’ tal—l p%(ppal
toa(P32) taa—1 Pas
thtar b
4 (4 al— 4, b4
AB+CD ta1(Pas 21 Pig» Pray
al—2
5 (5 5 45 5 .5
ABC+D to1 (Pa1 Ugrtar s Pig:Pa1

1) When all tasks in T, are disabled, forbid the exe-
cution of all tasks in T},

2) When a task in Tj, is executed, and only one task
in Ty, can be performed, disable the execution of
all tasks of which execution disable it.

3) If all tasks in task group are forbidden, disable the
firing of all entry transitions of it.

For example, supervisor introduced in previous sec-
tion forbids t3; and #%5_5, when a token is in p2,. The
supervisor identifies that t3; for ABC+D is forbidden
referring Task Group List table, and forbid the execu-
tion of ¢}, by execution procedure 3. Moreover, the
supervisor identifies that all tasks in 7,,,; for subassem-
bly ABC are forbidden referring Subassembly List ta-
ble, and forbid AB+C in T}, based on procedure 1 and
forbids ¢2;, t%3_, and t%5_, referring Task Group List
table.

When ¢}, is fired and a token is provided into p},,
supervisor identifies the execution of task AB+C refer-
ring Task Group List table. Supervisor executes proce-
dure 2 because only p?; belongs to Tyy; of subassembly
ABC of which T3, includes AB+C, referring Subassem-
bly List table. We assume that there is a token in p5,,
supervisor forbids t2, according to procedure in previ-
ous section.

The control of this deadlock doesn’t guarantee that
all deadlock can be avoided because supervisor uses
only local information. However, supervisor can re-
move many deadlocks and improve efficiency of search.

5. Speedup Based on Searching a Quasi Optimal So-
lution Including Repetitive Process

There are several case that the optimal solution includes

622

repetitive process in manufacturing system, when infi-
nite number of products are assembled. In this paper,
paying attention to this point, we try to reduce calcula-
tion time by searching a quasi optimal solution includ-
ing repetitive process.

We detect repetitive process as follows. First, we
define marking time, sojourn time of a token and equiv-
alent marking.
¢ Marking time
Marking time is time, when a transition becomes enable
in marking.

» Sojourn time of a token in a marking

Sojourn time of a token is time interval from marking
time to a time when the token comes to be able to get
out. If sojourn time is negative, it is defined as 0.

o Equivalent marking for m

Equivalent marking for m is a marking in which num-
ber of token for each place except for places correspond-
ing to parts and products is equal to that of m and in
which sojourn time of each token in place except for
places corresponding to parts and products is smaller
than that of m or equal to that of m.

Figure 11 shows equivalence of markings. There is no
place corresponding to parts and products in Fig. I1.
Each number assigned place represents a time when
the token comes to be able to get out. Each number
in parenthesises represents sojourn time. In Fig. 11 (a),
marking time is 10 because transition ¢, becomes en-
able at time 10. Sojourn time of the token in place p;
is 15 — 10 = 5. The marking (b) is equivalent marking
for the marking (a) because number of token for each
place in marking (b) is equal to that of marking (a) and
sojourn time of each token for each place in marking
(b) is smaller than that of marking (a) or equal to that
of marking (a). The marking (c) is not equivalent mark-
ing for the marking (a) because sojourn time of token
for place ps is longer than that of marking (a). The
marking (d) is not equivalent marking for the marking
(a), because number of token for place p; in marking
(d) is not equal to that of marking (a).

15(5) 12(2) 10(0) 8(0) 18(3) 17(2) 15(0} 13(0)

5 5 B B
1= ty
marking time = 10 marking time = 15
(a) (b)
15(0) 13(0) 20(5) 10(0) 18(3) 15(0) 13(0)
HORIORIOR HORIORIOR
tl tZ t]_ t2
marking time = 15 marking time = 15
(c) (@)

Fig. 11 Equivalence of markings.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 4 APRIL 1998

When a marking m at step 3 in algorithm L1 is
compared with its parent marking and number of tokens
in places corresponding to products changes, we exam-
ine repetitive process. Repetitive process is detected by
searching a marking m’ satisfying following conditions
on list along the path from m to initial marking my.
e Condition 1

m isa equivalent marking of m.

e Condition 2

Number of tokens in every place corresponding to
products and parts changes between m’ and m.

Here condition 1 guarantees that we can perform
firing sequence between m' and m from m with same
firing timing. Condition 2 expresses that loading of all
parts and production of product are done. The reason
why we detect repetitive process using marking is that
we do not have to consider length of repetitive process.
A scheduling algorithm considering repetitive process
is given as follows.

Algorithm L2
STEPI. Put the initial marking mg on the list OPEN .
STEP2. If OPEN is empty, terminate with failure.

STEP3. Remove the first marking m from OPEN
and put m on the list CLOSED.

STEP4. When marking m satisfies following condi-
tion, examine a repetitive process.

a: Number of token in the place for major prod-
uct is equal to maximum value for one of
marking in OPEN.

b: Number of tokens in each place for products
about marking m is different from one of
parent marking.

If repetitive process is detected, generate marking
m” firing transition according to repetitive pro-
cess. Set pointers from m” to m. Compute g(m")
and put m” on the list CLOSED. Regard m" as
m. Empty list OPEN.

STEPS. If m is final marking, construct the path from
the initial marking to the final marking and ter-
minate.

STEP6. Find the enable transition of the marking m

STEP7. Generate the next marking, or successor, for
each enabled transition, and set pointers from the
next marking to m. Compute g(m') for every
successor m . Control tokens in control places by
the supervisor.

STEPS. For every successor m’ of m, do the follow-
ing.

INABA et al: TIMED PETRI NET BASED SCHEDULING FOR MECHANICAL ASSEMBLY

Table 5 Production time of tasks.

[Task [A[R] Tak [A]PR]
tMD [2] 2] 52 || 4 4
1M || 4 | 3 6eemn || 3| 4
oM || 33 [62 | 4 | 5
oM [24 T || 3] 4
sMD | 3 [3 [7om2) || 4 | 5
s | 2[4 s [3] 3
aMp || 4 [4o || 31 3
a2y [2[5 [[ioamy || 2 | 2
soMD || 2 | 3

Fig. 12 An assembly network for a product.

a: If m’ is already on OPEN, direct its poipter
along the path yielding the smallest g(m).

b: If m' is already on CLOSED, direc its
pointer along the path yielding the smallest
g(m’). If m' requires pointer redirection,
move m’ to OPEN.

¢: If m is not on either OPEN or C’LOSIED,
compute h(m) and f(m) and put m on
OPEN.

STEPY. Reorder OPEN in the increasing magnitude
of f. If number of elements in list OPEN is
greater than Lgpen, eliminate the markings of
which value f is larger, so that number of ele-
ments is smaller than Lopen,.

STEP10. Go to STEP2.

Here, Loper 1s capacity of list OPEN.

This algorithm does not detect the repetitive opera-
tion with a marking including less number of products
in OPEN, since this kind of solution is likely to far
from optimal solution.

6. Example

We show an example of scheduling for assembly se-
quence with two assembly machines M, and M,. Ta-
ble 5 shows execution time of tasks for products P; and
P,. P; and P, consist of four parts and their assembly
network is given in Fig. 12. In Table 5, we assume that

623

© :A subassembly in

@ :A subassembly in
the common stack

the common stack

(a) P1 (b) P2
I L J. 1 1] L L L L l 1 1 1 1 I
| | | |
M1 [p2:t1| p2:es | | pz2:es | P1:tiof
2 3 3 2
-
2 4
.
AB AB BCD ABCD BCD ABCD
1 1 1 11 1

(c) production schedule

Fig. 13 Assemble schedule of example.

task 8, 9 and 10 can be executed by only M;. Cost of
transferring task is [per one subassembly. The charac-
teristics of machines for each product is follows.

Py: There is no explicit relation between execution time
by machine 1 and 2.

Py: Execution time of M7 is smaller than that of My at
each task.

We consider to assemble a product P; and a product P
concurrently using same set of common stack, assem-
bly machine and transferring robot. Figure 13 shows
the solution of this scheduling problem. We can iden-
tify the effectiveness of scheduling considering both se-
quence planning and machine allocation concurrently.
All tasks of P, are allocated to My, because execution
time of M; is smaller than that of A5 at each task.

7. Evaluation of Computational Amount
7.1 Effect of Estimate Function

In order to confirm the effectiveness of proposed esti-
mate function we compare the solution and calculation
time based on (22) with them based on (21) in case of
assembling two products of which assembly network is
given by Fig. 12. Costs of assembly step in the products
take random value of which range is from 2 to 7. Cost
of transferring task is 1 per one subassembly. Calcula-
tion times listed on Table 6 are average time of 50 trials.
The computer used for calculation is CELEBRIS GL
6200 (pentium pro 200 MHz).

624

Table 6 Execution time (1).

Equation (21)

Equation (22)

production time 15.1 15.4
execution time 12.2 s 39s
Table 7 Execution time (2).
consideration of consideration
repetitive process | without
Tepetitive process
production time 215.3 215.2
execution time 339 s 1108.6 s

In Table 6, we can not identify difference of so-
lution between Egs.(21) and (22). But calculation
time using Eq.(22) is smaller than the solution using
Eq.(21). Thus, effectiveness of Eq. (22) is verified.

7.2 Effect of Searching a Repetitive Solution

In order to confirm the effectiveness of detecting the
repetitive solution, we compare the solution and cal-
culation time taking into account the repetitive process
with the case not considering the repetitive process in
case of assembling 30 products of which assembly net-
work is given by Fig. 12. Costs of assembly task in the
products take random value of which range is from 2
to 7. Cost of transferring task is 1 per one subassem-
bly. Limitation of capacity for list OPEN is 200 and
the supervisor is used in both cases. Calculation times
listed on Table 7 are average time of 30 trials in which
we can calculate solutions within two hours. We cal-
culated solutions using the computer CELEBRIS GL
6200 (pentium pro 200 MHz).

In Table 7, we can not identify difference of solu-
tion between two algorithms, but calculation time con-
sidering repetitive process is much smaller than that of
normal search. Thus, effectiveness of considering repet-
itive process is verified.

8. Conclusion

In this paper, we have proposed a new scheduling
method in which sequence planning and machine al-
location are considered simultaneously. First of all,
we have proposed a modeling method for an assem-
bly sequence including a manufacturing environment.
By using the model based on timed Petri Net, we can
always obtain feasible sequences without any consider-
ation. Secondly, we have shown a guideline in order to
determine the estimate function in A* algorithm for as-
sembly scheduling. By using proposed estimate function
the calculation time would be reduced with little loss
of accuracy of solution. Thirdly, a new search method
based on combination of A* algorithm and supervi-
sor has been proposed. Fourthly, we have proposed

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 4 APRIL 1998

a new technique which can take into consider the repet-
itive process in manufacturing system so as to improve
the calculation time. Finally, numerical experiments
of proposed scheduling algorithm has been shown and
effectiveness of proposed algorithm has been verified.
Our future work is evaluation of computational amount
about size of assembly systems.

References

[1] S.M. Johnson, .“Optimal two-and-three-stage production
schedules with setup times included,” Nav. Res. Log. Quart.,
vol.1, no.l, pp.61-68, 1954.

[2] J.R. Jackson, “An extension of Johnson’s results on job-lot
Scheduling,” Nav. Res. Log. Quart, vol.3, no.3, pp.201-203,
1956.

[3] J.H. Blackstone, D.T. Phillips, and G.L. Hogg, “A State-of-
the-art survey of dispatching rules for manufacturing job
shop operations, international journal of production re-
search,” vol.20, no.1, pp.27-45, 1982.

[4] K. Tanaka and N. Ishii, “Scheduling and Simulation,”
SICE, 1955.

[5] D.Y. Lee and F. DiCesare, “Petri Net-Based Heuristic
Scheduling for Flexible Manufacturing,” Petri Nets in Flex-
ible and Agile Automation, ed. MengChu Zhou, Kluwer
Academic Publishers, Boston, pp.149—188, 1995.

[6] D.Y. Lee and F. DiCesare, “Scheduling flexible manufac-
turing systems using Petri Nets and heuristic search,” IEEE
Trans. Robotics and Automation, vol.10, no.2, pp.123-132,
1994,

[7] A.Inaba, T. Suzuki, and S. Okuma, “Generation of assem-
bly or disassembly sequences based on topological opera-
tions,” Trans. of the Japan Society of Mechanical Engineers
(C), vol.63, n0.609, pp.1795-1802, 1997.

[8] M.F. Sebaaly and H. Fujimoto, “Integrated planning and
scheduling for multi-product job-shop assembly based on
genetic algorithms,” Proc. of the 6th IFIP TC5/WGS5.7 In-
ternational Conference on Advances in Production Manage-
ment Systems-APMS ’96, Kyoto, Japan, pp.557-562, 1996.

AKkio Inaba was born in Gifu, Japan,
in 1961. He received the BE degree in
Electronic Engineering from Gifu Univer-
sity, Japan in 1983. From 1984 to 1989, he
was with Gifu Prefectural Industrial Tech-
nology Research Center. Since 1990, he
has been with Gifu Prefectural Metal Re-
search Institute. His current research in-
terests are in discrete-event-system and the
areas of robotics. Mr. Inaba is a member
of the Information Processing Society of
Japan, the Society of Instrument and Control Engineers of Japan,
and the Robotic Society of Japan.

INABA et al: TIMED PETRI NET BASED SCHEDULING FOR MECHANICAL ASSEMBLY
625

Fumiharu Fujiwara was born in Osaka,
Japan, in 1963. From 1982 to 1988, he
was in the Department of Call Physiology,
National Institute for Physiological Sci-
ences, Okazaki. Since 1988, he has been
an Research Assistant of the Department
of Electrical Engineering of Nagoya Uni-
versity. He received the BE in Electrical-
Electronic Engineering from Meijo Uni-
versity, Japan in 1991. His main works
are management and maintenance of com-
puters and development of programming.

Tatsuya Suzuki was born in Aichi,
Japan, in 1964. He received the BE,
ME and PhD degrees in Electronic-
Mechanical Engineering from Nagoya
University, Japan in 1986, 1988 and 1991,
respectively. Since 1991, he has been an
assistant Professor of the Department of
Electrical Engineering of Nagoya Univer-
sity. His current research interests are in
motion control, discrete-event-system and
learning systems. Dr.Suzuki is a member
of the Institute of Electrical and Electronics Engineers, the Insti-
tute of Electrical Engineers of Japan, the Society of Instrument
and Control Engineers of Japan, the Robotic Society of Japan,
and Institute of System Control and Information Engineers.

Shigeru Okuma was born in Gifu,
Japan, in 1948. He received the BE,
ME and PhD degrees in Electrical En-
gineering from Nagoya University, Japan
in 1970, 1972 and 1978, respectively. He
also received the ME degree in Systems
Engineering from Case Western Reserve
University, Cleveland, OH in 1974. From
1977 to 1984, he was with the Depart-
ment of Electrical Engineering of Na-
goya University as an Assistant Professor.
From 1985 to 1990, he was with the Department of Electronic-
Mechanical Engineering of Nagoya University as an Associate
Professor. Since December 1990, he has been a Professor of the
Department of Electrical Engineering of Nagoya University. His
research interests are in the areas of robotics, power electron-
ics and emergent soft computers. Dr.Okuma is a member of the
Institute of Electrical Engineers of Japan, the Society of Instru-
ment and Control Engineers of Japan, the Robotic Society of
Japan, Institute of System Control and Information Engineers,
and [EEE.

