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An Iterative MPEG Super-Resolution with an Outer
Approximation of Framewise Quantization Constraint

Hiroshi HASEGAWA†a), Member, Toshiyuki ONO††, Student Member, Isao YAMADA††, Member,
and Kohichi SAKANIWA††, Fellow

SUMMARY In this paper, we present a novel iterative MPEG super-
resolution method based on an embedded constraint version of Adaptive
projected subgradient method [Yamada & Ogura 2003]. We propose an
efficient operator that approximates convex projection onto a set charac-
terizing framewise quantization, whereas a conventional method can only
handle a convex projection defined for each DCT coefficient of a frame.
By using the operator, the proposed method generates a sequence that ef-
ficiently approaches to a solution of super-resolution problem defined in
terms of quantization error of MPEG compression.
key words: super-resolution, MPEG video, set-theoretic approach, outer
approximation, adaptive projected subgradient method

1. Introduction

The objective of super-resolution of movies is to recover un-
derlying high-resolution images from low-resolution movies
by utilizing potential redundancy [1], [2]. Because of re-
cent widespread of HDTV system and digital video, it is
newly required for super-resolution to compensate degrada-
tion caused by MPEG compression as well as to improve
resolution [3]. In [4], Altunbasak et al. proposed a set-
theoretic approach that can explicitly handle effect of MPEG
compression. For each DCT coefficient of a frame, they de-
fined the set of all high-resolution images satisfying a con-
straint on the coefficient. Then by using POCS [5], a high-
resolution image satisfying all constraints is picked up from
the intersection of these sets. They also showed that real-
time operation can be realized by using a DSP. However, the
method still has room for improvement. Firstly, the method
handles an enormous number of constraint sets, where such
formulation is computationally inefficient in general. Sec-
ondly, derived image suffers from noises caused by insuffi-
cient estimation owe to MPEG quantization. Finally, paral-
lel algorithm is more desired, whereas POCS is essentially
serial algorithm, because image recovery problems require
huge computational load in general.

To resolve these difficulties in the above set-theoretic
MPEG super-resolution, in this paper, we present a novel
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iterative MPEG super-resolution method based on an em-
bedded constraint version of Adaptive projected subgradient
method [6], [7]. At first, we define an efficient operator that
approximates a convex projection onto the set of all high-
resolution images satisfying a framewise quantization con-
straint. Then we present an MPEG super-resolution method
which provides a sequence efficiently approaching to the set
of all images satisfying all given constraints, where each it-
erative operation of the proposed method is accelerated by
utilizing a property of a linear variety on which the estima-
tion is restricted. Restriction of total variation in [8] is also
introduced for denoising without corruption of edge infor-
mation. Simulation result shows that the proposed method
realizes resolution improvement and noise suppression as
well.

A preliminary version have been presented at an inter-
national conference [9].

2. Preliminaries

2.1 Notations

Let R and Z be the set of all real numbers and integers, re-
spectively. For all vectors u := (u1, . . . , uP), u := (v1, . . . , vP)
in a P dimensional Euclidean space RP, its inner product
and induced norm are defined by 〈u, u〉 :=

∑P
k=1 ukvk and

‖u‖ :=
√〈u, u〉. A set C ⊂ RP is convex provided that

∀u, u ∈ C, ∀ν ∈ (0, 1), νu + (1 − ν)u ∈ C. Given a
nonempty closed convex set C ⊂ RP, a convex projection
PC : RP → C maps u ∈ RP to the unique vector PC(u)
such that d(u,C) := minu∈C ‖u − u‖ = ‖u − PC(u)‖. For
u := (u1, . . . , uP) ∈ RP, its m th component um is equiv-
alently denoted by u(m). Let M,N, L be positive integers
such that M/8,N/8 ∈ Z. Suppose that we have sequences
(xk)k∈Z ⊂ RL2 MN and (yk)k∈Z ⊂ RMN derived through lexi-
cographically reordering pixels of LM × LN high-resolution
images and related M × N low-resolution images, respec-
tively. Each low-resolution image is assumed to be gener-
ated by :

yk = DHk xk (k ∈ Z), (1)

where Hk ∈ RL2 MN×L2 MN denotes a degradation such as blur
and D ∈ RMN×L2 MN changes resolution by averaging each
L × L region. In a case of MPEG video sequences, each
observed yk is compressed by
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gk = Q
(
T (yk − uk)

)
(k ∈ Z), (2)

where T ∈ RMN×MN denotes 8 × 8 block DCT [10], Q :
R

MN → RMN is a quantization operator defined for u ∈ RMN

by

(Q(u))(m) = qm ×
⌊
u(m)
qm
+

1
2

⌋
(1 ≤ m ≤ MN),

and uk is a low-resolution image predicted by applying mo-
tion compensation to the other special images called key
frames [3]. If the image itself is key frame, uk = 0. If high
compression rate is required, large value is assigned to qm.
Note that for any compression rate we have the exact value
of qm as a priori knowledge.

Finally, we obtain (gk)k∈Z and (uk)k∈Z as compressed
video sequence. When the sequence is played back, we have
degraded low-resolution images as follows.

dk := uk + T−1gk ∈ RMN (k ∈ Z)

Hereafter, we assume that uk = 0 (k ∈ Z) by replacing gk
with gk + Tuk. This modification do not affect the following
discussion.

Throughout this paper, we consider next problem of
MPEG super-resolution: recover xk from given MPEG datas
(g�)�∈Ik⊂Z by utilizing potential redundancy.

To denote the redundancy, we introduce the next rela-
tion, a generalization of the relation in [4], between neigh-
boring high-resolution images:

x� = B(�,k)xk +G(�,k)ck

= [B(�,k) G(�,k)]

(
xk

ck

)
(� ∈ Ik), (3)

where ck ∈ RUk (Uk ≤ KL2 MN) denotes the newly in-
troduced pixels in (x�)�∈Ik , and B(�,k) ∈ RL2 MN×L2 MN and
G(�,k) ∈ RL2 MN×Uk stand for mapping of pixels between xk

and x�. Hereafter, as in [4], we assume that (B(�,k))�∈Ik are
given or satisfactory estimated through the motion compen-
sation. The matrices (G(�,k))�∈Ik simply stand for the com-
ponents of x� that have no relation with these of xk. Thus
(G(�,k))�∈Ik are immediately derived as a result of the estima-
tion of (B(�,k))�∈Ik . Since xk would be recovered from pre-
viously obtained MPEG datas (g�)�≤k, we can assume that
� ≤ k, ∀� ∈ Ik. Then each estimation ĉk of ck can be
obtained from previously estimated x̂�. In the following,
we employ x and c as parameters for the sake of frame-
wise projection that will be defined later in (7), and identify
xc ∈ RL2 MN+Uk with (xT cT )T for notational simplicity.

Remark 1: The conventional method in [4] assumed a re-
lation

x� = A(�,k)xk (� ∈ Ik), (4)

where A(�,k) ∈ R
L2 MN×L2 MN (� ∈ Ik) denotes mo-

tion mapping such as transformation, and defined DCT-
coefficientwise constraint sets, ∀1 ≤ m ≤ MN,

C(�,k,m) :=
{
x ∈ RL2 MN

∣∣∣∣
(T DH�A(�,k)x − g�)(m) ∈

[
−qm

2
,

qm

2

]}
.

Then they generated a sequence (x(n)
k )n≥0 by

x(n+1)
k = PC(�n ,k,mn ) x

(n)
k (5)

where PC(�,k,m) is the convex projection onto C(�,k,m) and
(�n,mn) is a circularly assigned pair of numbers in Ik ×
{1, 2, . . . ,MN}. The sequence converges weakly to some
point in the intersection

⋂
�∈Ik ,m∈{1,...,MN}C(�,k,m). �

3. Proposed MPEG Super-Resolution with an Outer
Approximation of Framewise Quantization Con-
straint

Next equation results from MPEG compression scheme in
(2) :

Q

(
T DH�[B(�,k) G(�,k)]

(
xk

ck

))
=: Q

(
W(�,k)xck

)
= g� (� ∈ Ik),

where W(�,k) ∈ RMN×(L2 MN+Uk). For each k ∈ Z and � ∈ Ik,
we define a constraint set in terms of framewise quantization
Q by

C(�,k) :=
{

xc ∈ RL2 MN+Uk

∣∣∣∣ W(�,k)xc − g� ∈ HC
}
,

whereHC := [− q1

2 ,
q1

2 ]×· · ·×[− qMN

2 ,
qMN

2 ] is a hyper-cuboid.
In the following, we assume that C(�,k) � ∅. Closedness and
convexity of C(�,k) are obvious.

Because the convex projection onto the above set re-
quires high computational cost in general, we define an
outer approximation Ψ(�,k) ⊂ RL2 MN+Uk of C(�,k) in terms of
xc � C(�,k) (See Fig. 1) by

Ψ(�,k)(xc) :=
{
u ∈ RL2 MN+Uk

∣∣∣∣ 〈u,WT
(�,k)∆

DCT
(�,k) xc

〉
≥

〈
Pg�+HC

(
W(�,k)xc

)
,∆DCT

(�,k) (xc)
〉}
, (6)

where Pg�+HC : RMN → RMN is the convex projection onto
hyper-cuboid g� +HC := {g� + u|u ∈ HC} defined for u ∈
R

MN by

Fig. 1 An outer approximation of framewise quantization constraint and
a projection onto a separating hyperplane.
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(Pg�+HC(u))(m)

:=


g�(m) +

qm

2
if u(m) > g�(m) +

qm

2
g�(m) − qm

2
if u(m) < g�(m) − qm

2
u(m) otherwise,

and ∆DCT
(�,k) : RL2 MN+Uk → RMN such that

∆DCT
(�,k) (xc) := Pg�+HC

(
W(�,k)xc

) −W(�,k)xc.

The convex projection of xc � C(�,k) onto Ψ(�,k)(xc) is
nothing but the orthogonal projection onto the boundary of
Ψ(�,k)(xc). Since the boundary separates xc and Ψ(�,k)(xc), it
is called separating hyperplane. The convex projection pro-
vides an operator that efficiently approximates the convex
projection onto C(�,k).

PΨ(�,k)(xc)(xc)

:=



xc if xc ∈ C(�,k),

xc +

∥∥∥∥∆DCT
(�,k) (xc)

∥∥∥∥2

∥∥∥∥WT
(�,k)∆

DCT
(�,k) (xc)

∥∥∥∥2
WT

(�,k)∆
DCT
(�,k) (xc)

otherwise

(7)

Remark 2:

1. In more general case where two Hilbert spaces and a
linear operator, that is a mapping from one space to the
other, are given, an outer approximation can be given
as in (6) (See Appendix A).

2. If rank (W(�,k)) = MN, namely the matrix being full
row rank, the assumption C(�,k) � ∅ is justified. More-
over, in such a case, the boundary of Ψ(�,k)(xc) and
C(�,k) have a nonempty intersection. Then the boundary
of Ψ(�,k)(xc) becomes a supporting hyperplane. (See
Corollary 1 in Appendix A)

3. As for the efficiency of the proposed operator, see Ap-
pendix B �

Next constraint is necessary to handle the additional
parameter c of xc.

Vk :=

{
xc =

(
x
c

)
∈ RL2 MN+Uk

∣∣∣∣∣∣ c = ĉk

}

Let Mk := {(xT 0T )T |x ∈ RL2 MN} ⊂ RL2 MN+Uk be a linear
subspace parallel to the linear variety Vk. The convex pro-
jection ontoMk is PMk (xc) := (xT 0T )T .

Additionally we introduce a restriction in total varia-
tion which efficiently suppresses noise while keeping edge
information [8]. The constraint set is defined for given
threshold σtv(≥ 0) by

Ctv :=
{

xc ∈ RL2 MN+Uk

∣∣∣∣ tv(x) − σtv ≤ 0
}
,

where tv : RL2 MN → R is the total variation given by (See
[8, Eq. (12)])

tv(x) :=
LM−1∑

p=1

LN−1∑
q=1

{|x(p + 1, q) − x(p, q)|2

+ |x(p, q + 1) − x(p, q)|2}1/2

+

LM−1∑
p=1

|x(p + 1, LN) − x(p, LN)|

+

LN−1∑
q=1

|x(LM, q + 1) − x(LM, q)|

=:
LM−1∑

p=1

LN−1∑
q=1

‖Γ(p,q)x‖ +
LM−1∑

p=1

|Γ(p,LN)x|

+

LN−1∑
q=1

|Γ(LM,q)x|

with difference matrices (Γ(p,q))1≤p≤LM−1,1≤q≤LN−1 ⊂ {−1,
0, 1}2×L2 MN , (Γ(p,LN))1≤p≤LM ⊂ {−1, 0, 1}1×L2 MN , (Γ(LM,q))

1≤q≤LN ⊂ {−1, 0, 1}1×L2 MN , and (p, q) th pixel x(p, q) :=
x((p − 1)LN + q). It is also shown that an outer approx-
imation Ψtv(xc) ⊂ RL2 MN+Uk can be given as a halfspace,
satisfying Ctv ⊂ Ψtv(xc),

Ψtv(xc) :=



{
x ∈ RL2 MN+Uk | 〈xc − x, t〉 ≥ tv(xc) − σ

}
if xc � Ctv

R
L2 MN+Uk

otherwise,

where t is a selection of subgradient, which is given by

t :=
LM−1∑

p=1

LN−1∑
q=1

u(p,q) +

LM−1∑
p=1

u(h)
(p,LN) +

LN−1∑
q=1

u(v)
(LM,q)

with

u(p,q) :=

{
0 if Γ(p,q)x = 0
ΓT

(p,q)Γ(p,q)x/‖Γ(p,q)x‖ otherwise

u(h)
(p,LN) :=

{
0 if Γ(p,LN)x = 0
ΓT

(p,LN)Γ(p,LN)x/|Γ(p,LN)x| otherwise

u(v)
(LM,q) :=

{
0 if Γ(LM,q)x = 0
ΓT

(LM,q)Γ(LM,q)x/|Γ(LM,q)x| otherwise.

Then subgradient projection PΨtv(xc )
: RL2 MN+Uk →

R
L2 MN+Uk , that is an economical approximation of PCtv is

given by

PΨtv(xc) :=

(
u
c

)

with

u :=

 x − (tv(x) − σ)t
‖t‖2 if tv(x) > σ

x otherwise.

Finally, the set of all xc satisfying given constraints
is characterized as (

⋂
�∈Ik

C(�,k)) ∩ Ctv ∩ Vk. We assume
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(
⋂
�∈Ik

C(�,k))∩Ctv ∩Vk � ∅. This assumption would be jus-
tified especially when large value is assigned qm to achieve
high compression rate, because qm controls the volume of
each C(�,k) and large qm means broad C(�,k). Application of
an embedded constraint version of Adaptive projected sub-
gradient method (See [7, Example 5]) generates a sequence
efficiently approaching to the intersection.

Algorithm 1: For any xc
(0)
k ∈ Vk, generate a sequence

(xc
(n)
k )n≥0 ⊂ RL2 MN+Uk by the following equation

xc
(n+1)
k :=



xc
(n)
k if Θ′n

(
xc

(n)
k

)
∈ M⊥k

xc
(n)
k − λn

Θn

(
xc

(n)
k

)
∥∥∥∥PMk

(
Θ′n

(
xc

(n)
k

))∥∥∥∥2

×PMk

(
Θ′n

(
xc

(n)
k

))
otherwise,

where λn ∈ [0, 2] and

Θn (xc) :=
K−1∑
t=0

wtd
(
xc,Ψ(�t ,k)(xc

(n)
k )

)
+wKd

(
xc,Ψtv(xc

(n)
k )

)
Θ′n (xc) :=

K−1∑
t=0

wt

xc − P
Ψ(�t ,k)(xc

(n)
k ) (xc)∥∥∥∥xc − P

Ψ(�t ,k)(xc
(n)
k ) (xc)

∥∥∥∥
+wK

xc − PΨ
tv(xc

(n)
k

)
(xc)∥∥∥∥∥xc − PΨ

tv(xc
(n)
k )

(xc)
∥∥∥∥∥

with Ik =: {�0, . . . , �K−1} and (wt)K
t=0 such that wt ≥ 0 and∑K

t=0 wt = 1.

Remark 3:

1. Algorithm 1 has a Monotone approximation property
[7, Theorem 2]. Namely, ∀λn ∈ (0, 2), ‖u − xc

(n+1)
k ‖ <

‖u − xc
(n)
k ‖ holds for ∀u ∈ ⋂

�∈Ik
C(�,k) ∩ Ctv ∩ Vk. (For

further discussion about the convergence, see [6])
2. Since efficiency of algorithm is important as in state-

ment 2 of Remark 2, Vk is embedded so that PMk ac-
celerates the update.

3. At each step of Algorithm 1, a weighted average of the
projections is used to generate the sequence. Therefore
the projections can be computed independently, and the
proposed method can be executed on parallel process-
ing systems.

4. Numerical Example

We generate two distinct MPEG datas (gk)20
k=1, by downsam-

pling and compression of original high-resolution images
(xk)20

k=1. The original high-resolution images are obtained
by clipping out from given grayscale still pictures. All pix-
els in xk shift, relative to xk−1, from bottom-right to top-left
by (1,2) (k:even) or (2,1) (k:odd).

In practical MPEG compression scheme the quantiza-
tion intervals are dynamically changed so that generated

stream satisfies given bitrates, and different types of key
frames exist. However, for simplicity, in this section we
employ a simplified compression scheme with fixed quan-
tization intervals. Key frames are 1, 6, 11, 16 th frames
and we employ pixelwise motion estimations. For each
8 × 8 region, the quantization interval qm at (p, q) th po-
sition is given by 2�(p+q−1)/2� (1 ≤ p, q ≤ 8). The matri-
ces (Hk)20

k=1, (B(�,k))(�,k)∈{Z∩[1,20]}2 , (D(�,k))(�,k)∈{Z∩[1,20]}2 are as-
sumed to be exactly estimated. Let tvorg be total variation
of each original image to be recovered. Then the proposed
method is applied to the following two examples.

Example 1: The sequence of the original images is gen-
erated from a grayscale picture, a short range view (Main
gate of Tokyo Institute of Technology) with M = 144,N =
96, L = 2,Ik = {k, k − 1, . . . , k − 7} (k = 8, 9, . . . , 20).
For blurring, we applied a two dimensional Gaussian fil-
ter with variance 20 that is truncated to 5 × 5 and normal-
ized. The original image x20 and the compressed image
are shown in Figs. 2(a) and (b), respectively. The thresh-
old of total variation σtv is determined so that we can sup-
press the quantization noise. Because the compressed im-
ages already lose the information of high-frequency compo-
nents partially, the threshold must be smaller than the origi-
nal value tvorg to derive denoising effect. If there is no blur,
namely Hk = I (k ∈ Z), it seems that σtv = 0.8 × tvorg

gives good result for the quantization interval. (After 160
iterations, we have a result in Fig. 2(c)).

Because of the low-pass characteristic of the Gaus-
sian filter, the information of high-frequency components
is severely degraded after quantization, and the inverse of
the filter tends to enhance errors of high-frequency com-
ponents. In this case, the recovered images in Figs. 2(d)
and (e) are derived after 160 iterations. Because of the
loss of high-frequency components, the recovered images
are slightly degraded compared with Fig. 2(c), and smaller
threshold σtv = 0.75 × tvorg gives better result.

For comparison we applied a POCS based method that
is straightforwardly derived by generalizing the relation in
(5) between xk and x� from (4) to (3) :

xc
(n+1)
k = PVk PC(�n ,k,MN) PC(�n ,k,MN−1) · · ·PC(�n ,k,1) xc

(n)
k

(n ≥ 0)

where �n is circularly assigned number in Ik. The num-
bers of frames processed in each iteration of the proposed
method and the POCS based method are different. How-
ever, parallel processing systems are now becoming popular
in these days, and the proposed method can assign each pro-
jection onto the outer approximation to each processor of
the system.

After 160 iterations, we have the image in Fig. 2(f).
Quantization noises are found around edges whereas they
are suppressed in Figs. 2(d) and (e). The wave-like noises,
caused by estimation error in the previous frame, at the bot-
tom and the right hand side of Fig. 2(f) are more severe than
than these of Figs. 2(d) and (e). This improvement owes to
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(a) Original high-resolution image. (b) Compressed low-resolution image.
(PSNR=29.02 dB)

(c) Proposed with σtv = 0.8×σorg

without blur. (PSNR=33.19 dB)

(d) Proposed with σtv = 0.75×σorg.
(PSNR=31.75 dB)

(e) Proposed with σtv = 0.8 × σorg.
(PSNR=31.45 dB)

(f) Conventional. (PSNR=30.42 dB)

(g) Difference between (a) and (d). (h) Difference between (a) and (e). (i) Difference between (a) and (f).

Fig. 2 A short range view (Main gate of Tokyo Institute of Technology).
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(a) Original high-resolution image. (b) Compressed low-resolution image. (PSNR=30.29 dB)

(c) Proposed with σtv = 0.8 × σorg. (PSNR=36.07 dB) (d) Conventional. (PSNR=35.52 dB)

(e) Difference between (a) and (c). (f) Difference between (a) and (d).

Fig. 3 A distant view (Tokyo Bay).

the restriction on total variation where such a constraint is
impossible to introduce to the conventional method. The
PSNRs also show that the proposed method improves the
quality of the recovered image.

The difference to the original images are illustrated in
Figs. 2(g), (h), and (i). They shows 10×abs(x20− x̂20) where
x̂20 is the derived image and abs is a operator that computes
absolute value of each component of given vector. The fac-
tor 10 is introduced only to enhance the difference. We can
also verify that the proposed method especially suppresses
the quantization noise around edges.

Example 2: The sequence of the original images is gener-
ated from a grayscale picture, a distant view (Tokyo Bay)
with M = 96,N = 144, L = 2,Ik = {k, k − 1, . . . , k − 7} (k =
8, 9, . . . , 20). Here we assume that Hk is an identity matrix

(no blur). In this case, the sequential projections of POCS
realize maximum efficiency (See Appendix B).

The threshold is fixed to σtv = 0.8 × tvorg. We have
the images in Figs. 3(c) and (d) after 80 iterations of the
proposed method and the POCS based method, respectively.
The difference to the original images are also illustrated in
Figs. 3(e) and (f). They demonstrates that the denoising ef-
fect of the proposed method around edges. The PSNRs also
show that the proposed method improves the quality of the
recovered image.

5. Conclusion

In this paper, we proposed an operator that efficiently ap-
proximates a convex projection onto the framewise con-
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straint set. Then we also proposed a MPEG super-
resolution method based on the Adaptive projected subgra-
dient method, where each iterative operation is consisted
of the proposed operators and is accelerated by utilizing a
property that one of constraint sets becomes a linear variety.
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Appendix A: A Scheme to Derive an Outer Approxi-
mation

Let H1 and H2 be Hilbert spaces with inner products
〈·, ·〉1, 〈·, ·〉2 and induced norms ‖x‖1 :=

√〈x, x〉1 (x ∈
H1), ‖y‖2 :=

√〈y, y〉2 (y ∈ H2), respectively. Let L :
H1 → H2 be a bounded linear operator with L∗ : H2 → H1

satisfying 〈Lx, y〉2 = 〈x, L∗y〉1 (x ∈ H1, y ∈ H2). Sup-
pose that C′ ⊂ H2 be a nonempty closed convex set and
C := {x ∈ H1 | Lx ∈ C′}. If C′ � ∅, C is also closed and
convex because of boundedness of L. We assume that C′ is
simple enough to give an explicit expression of convex pro-
jection PC′ : H2 → C′. For arbitrary fixed x0 ∈ H1, we

define a set V(x0) by

V(x0) := {x ∈ H1 | 〈Lx − Lx0, PC′(Lx0) − Lx0〉2
= ‖PC′(Lx0) − Lx0‖22}. (A· 1)

Lemma 1: V(x0) in (A· 1) is a hyperplane inH1. �

Proof: For any u ∈ V(x0), we have

〈u − x0, L
∗(PC′(Lx0) − Lx0)〉1

= 〈L(u − x0), PC′(Lx0) − Lx0〉2
= ‖PC′(Lx0) − Lx0‖22.

The above equation shows that V(x0) is a hyperplane.
(Q.E.D.)

Let a halfspace H−(x0) be

H−(x0) := {x ∈ H1 | 〈Lx − Lx0, PC′(Lx) − Lx0〉2
≥ ‖PC′(Lx) − Lx0‖22}. (A· 2)

We call V(x0) a separating hyperplane when x0 � H−(x0)
and C ⊂ H−(x0). If C ∩ H−(x0) � ∅, V(x0) is specially
called supporting hyperplane.

Theorem 1: For arbitrary fixed x0 � C, V(x0) in (A· 1) is a
separating hyperplane. �

Proof: Since Lx0 � C′, we have PC′(Lx0) � Lx0 and

〈Lx0−Lx0, PC′(Lx0)−Lx0〉2 = 0 < ‖PC′(Lx0)−Lx0‖22.
(A· 3)

On the other hand, for any y ∈ C′, y = {y − PC′(Lx0)} +
PC′(Lx0). Because PC′ is a convex projection, it holds that

〈y − PC′(Lx0), PC′(Lx0) − Lx0〉2 ≥ 0.

Hence, if there exists x ∈ H1 such that y = Lx, we have

〈y − Lx0, PC′(Lx0) − Lx0〉2
= 〈{y − PC′(Lx0)} + {PC′(Lx0) − Lx0},

PC′(Lx0) − Lx0〉2
= 〈y − PC′(Lx0), PC′(Lx0) − Lx0〉2

+‖Lx0 − PC′(Lx0)‖22
≥ ‖Lx0 − PC′(Lx0)‖22. (A· 4)

Eqs. (A· 3) and (A· 4) shows that V(x0) is a separating hy-
perplane. (Q.E.D.)
The next corollary is straightforward.

Corollary 1: V(x0) in Eq. (A· 1) is a supporting hyper-
plane when PC′(Lx0) is included in the range of L. �

Finally, we have a convex projection onto V(x0), which is
easy to compute and is an economical approximation to the
convex projection onto C.
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(a) Projection onto the proposed outer
approximation. (PSNR=28.02 dB)

(b) A cycle of sequential projections
onto pixelwise constraint sets. (PSNR
= 27.56 dB)

Fig. A· 1 Image recovery from single observed image with limited number of operations.

Appendix B: Efficiency of the Proposed Operator

Since only small number of iterations is available in real-
time applications, efficiency of each iteration is important.
A measure of such an efficiency would be the ratio between
the distances to given set before/after the operation. Unfor-
tunately the exact distance to the framewise constraint set
C(�,k) is hard to compute. Thus we employ the distance in
DCT domain or PSNR, a function of distance to the original
image, as measures of the efficiency.

For simplicity, suppose that Ik = {k}. In this case we
have Uk = 0 and the dimension of ck is zero. In a spe-
cial case that H� = I (no blur), the sequential projection
of the conventional method PC(�,k,MN) PC(�,k,MN−1) · · ·PC(�,k,1) pro-
vides the exact projection onto the framewise constraint set
C(�,k) because the DCT operator T is an orthogonal trans-
form and the row vectors of D are orthogonal to each other.
However their orthogonality are not valid if H� � I and the
efficiency of the proposed method is verified by the follow-
ing experiments.

• Let gk ∈ R64×64 be an MPEG data that is ob-
tained from a 128 × 128 grayscale photo of the
sky. Suppose that Hk stands for a normalized uni-
form 2-D Gaussian blur with zero-mean and vari-
ance 20. We employ ‖∆DCT

(k,k) (·)‖, which denotes dis-
tance in DCT domain to C(k,k), as a measure of effi-
ciency of each iteration. For randomly generated 100
high-resolution images (x(n))100

n=1, we compute ensem-
ble averages of (i)‖∆DCT

(k,k) (x(n))‖ for the original points,

(ii)‖∆DCT
(k,k) (PΨ(k,k)(x(n))(x(n)))‖ for the proposed operator,

(iii)‖∆DCT
(k,k) (P(k,k,MN) · · ·P(k,k,1)(x(n)))‖ for cyclic applica-

tion of the conventional projection. Then a ratio of (ii)
to (i) is 0.107, whereas the ratio of (iii) to (i) is 0.394.
• We applied the proposed operator and a cycle of the

sequential projection of POCS based method to the im-
age x1 of the Example 1. After the result of 20 iter-
ative operations of the proposed method, we have im-

ages in Fig. A· 1. Because only one image is employed
for recovery and severe blurring is applied, the qual-
ity of the images are not satisfactory. However, the
Euclidean distance to the original image is reduced to
3367.7 (PSNR=28.02 dB) whereas that by the POCS
based method is 3552.2 (PSNR=27.56 dB). Note that
the distances to the constraint set are smaller than these
values.

NOTE: We also tested with the other images and the
proposed operator always realizes better PSNRs for all
images.
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