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An Edge-Preserving Super-Precision for Simultaneous
Enhancement of Spacial and Grayscale Resolutions

Hiroshi HASEGAWA†a), Member, Toshinori OHTSUKA††, Nonmember, Isao YAMADA††, Member,
and Kohichi SAKANIWA††, Fellow

SUMMARY In this paper, we propose a method that recovers a smooth
high-resolution image from several blurred and roughly quantized low-
resolution images. For compensation of the quantization effect we intro-
duce measurements of smoothness, Huber function that is originally used
for suppression of block noises in a JPEG compressed image [Schultz &
Stevenson ’94] and a smoothed version of total variation. With a simple
operator that approximates the convex projection onto constraint set de-
fined for each quantized image [Hasegawa et al. ’05], we propose a method
that minimizes these cost functions, which are smooth convex functions,
over the intersection of all constraint sets, i.e. the set of all images satis-
fying all quantization constraints simultaneously, by using hybrid steepest
descent method [Yamada & Ogura ’04]. Finally in the numerical exam-
ple we compare images derived by the proposed method, Projections Onto
Convex Sets (POCS) based conventinal method, and generalized proposed
method minimizing energy of output of Laplacian.
key words: super-resolution, Huber function, total variation, set-theoretic
approach, outer approximation, hybrid steepest descent method

1. Introduction

A great deal of effort has been devoted to derive a high-
resolution image from degraded low-resolution images hav-
ing potential redundancy [1], [2]. Such a technique is called
super-resolution and its application ranges from HDTV to
satellite/medical imaging.

Recently several challenges are shown to improve not
only the spacial resolution but also precision of each pixel,
namely bit-depth. In this paper, we call techniques to tackle
such a problem super-precision. Gunturk et al. demon-
strated that it is possible to compensate the effect of rough
quantization by using multiple images [3]. On the other
hand, super-resolution of MPEG video [4]–[6] is also an ex-
ample of the super-precision, because it is nothing but the
compensation of quantization error in the MPEG compres-
sion that consists of rough quantization after subtraction of
known vector, called motion compensation, and an orthogo-
nal transform, i.e. discrete cosine transform. These recovery
techniques would potentially improve compression of high-
resolution videos.

Since the quantization constraint leads to numerous lin-
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ear inequalities and the recovered image is large in general
for super-resolution, simple iterative scheme to derive a so-
lution is desirable. Indeed, conventional methods search for
an image satisfying all given quantization conditions [3],
[4] by Projections Onto Convex Sets (POCS) [7], that con-
sists of sequential convex projections onto half spaces de-
fined by these inequalities. The other approach [6] modi-
fies the original problem to an unconstrained maximization
of the multidimensional Gaussian function, which approxi-
mates the quantization error, so that a simple scheme such
as a steepest descent method resolves the problem. How-
ever, the set of all candidates for the solutions is generally
broad because the quantization interval would be large for
higher compression rates. In such a case, one of the most
natural approaches would be finding a visually natural im-
age among the set of all images satisfying given quantization
constraints. Indeed, ML-POCS [8] provides such a image by
iterative convex projections onto a convex set satisfying all
of given constraints, that is defined by low resolution images
and additive noise and essentially equivalent to the quanti-
zation constraints, and update to steepest descent directions.
However, the proof in [8] only guarantees convergence to
the optimal solution only if the convex projection onto a
convex set, in which each image satisfies all constraints si-
multaneously, can be computed, although the computation
is difficult in general because the set has complicated shape
when different blur and shift parameters are assumed.

In this paper, we propose a method that pursuits a
smooth high-resolution image among the set of all possi-
ble candidates defined by differently blurred and roughly
quantized low-resolution images. To derive a smooth image
while keeping the edge information, we introduce differen-
tiable functions, Huber function [9], [10] and a smoothed
version of total variation, where the former had been suc-
cessfully applied for suppression of block noises in a JPEG
compressed image [9]. By combining hybrid steepest de-
scent method [11] with a simple operator that approximates
the convex projection onto the constraint set defined for each
quantized image [12], the proposed method minimizes these
functions over the feasible set, the set of all images satisfies
all quantization constraints. Finally we demonstrate the ef-
fectiveness of the proposed method by showing a compar-
ison of images derived from the proposed method, POCS
based method, and generalizations of the proposed method
to minimize energy of output of Laplacian operator.

A preliminary version of this paper had been presented
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at an international conference [13].

2. Preliminaries

2.1 Notations

Let R and Z be the set of all real numbers and integers, re-
spectively. LetH be a Hilbert space equipped with its inner
product 〈·, ·〉H and induced norm ‖x‖2H := 〈x, x〉H , ∀x ∈ H .
A set C ⊂ H is convex provided that ∀u, u ∈ C, ∀ν ∈ (0, 1),
νu + (1 − ν)u ∈ C. dH (u,C) := minu∈C ‖u − u‖H =
‖u− PC(u)‖H . Given a nonempty closed convex set C ⊂ H ,
the convex projection PC : H → C assigns every u ∈ H
to the unique point PC(u) ∈ C such that dH (u,C) :=
minu∈C ‖u − u‖H = ‖u − PC(u)‖H .

Let g : H → R be a continuous convex function. In
this case, for every x ∈ H , there exists a vector t ∈ H sat-
isfying 〈y − x, t〉H + g(x) ≤ g(y) (∀y ∈ H). Such t ∈ H
is called a subgradient of g at x ∈ H . The set of all subgra-
dient of g at x is called subdifferential of g at x and denoted
by ∂g(x) � ∅. We often denote a selection of subgradient by
g′(x) ∈ ∂g(x) because it is a natural generalization of gra-
dient of g at x. Suppose that g has its nonempty level set:
lev≤0g := {x ∈ H | g(x) ≤ 0}, which is automatically closed
convex set. Then a mapping Tsp(g) : H → H defined by

Tsp(g)(x) :=

{
x − g(x)

‖t‖2 t (x � lev≤0g)
x (x ∈ lev≤0g).

is called a subgradient projection (relative to g). Tsp(g) is a
computationally efficient approximation of Plev≤0g.

2.2 Super-Precision

For all vectors u := (u1, . . . , uP), u := (v1, . . . , vP) in a P
dimensional Euclidean space RP, its inner product and in-
duced norm are respectively defined by 〈u, u〉 :=

∑P
k=1 ukvk

and ‖u‖ :=
√〈u, u〉. Hereafter for u := (u1, . . . , uP) ∈ RP,

its m th component um is equivalently denoted by u(m). Let
M,N, and L be positive integers. Suppose that we have a
vector x ∈ RL2 MN and a sequence (yk)k∈I:={1,2,...,K} ⊂ RMN

derived through lexicographically reordering pixels of an
unknown LM × LN high-resolution images and observed
M × N low-resolution images, respectively. Each low-
resolution image is assumed to be generated by :

yk = DHk x (k ∈ I), (1)

where Hk ∈ RL2 MN×L2 MN stands for a degradation such as
blur and sub-pixel shifts, and D ∈ RMN×L2 MN changes reso-
lution by averaging each L× L region. Hereafter we assume
that the shifts are sufficiently estimated by registration tech-
niques [1]. The shift can be exactly given if we employ a
system in [2, Fig. 8]. In order to focus on compensation of
the quantization effect, we also assume that the blur is given
or estimated for example by using depth information [14],
although the estimation of blur is more difficult than that of

the shifts [2]. Then each low-resolution image yk is quan-
tized after conversion

zk := Q(Tk(yk)) (k ∈ I)

where Q is a quantization operator with quantization inter-
vals (qm)MN

m=1 such that

(Q(u))(m) = qm ×
⌊
u(m)
qm
+

1
2

⌋
(1 ≤ m ≤ MN),

and Tk(y) := S k(y)+ tk is an operator that consists of known
linear transformation S k : RMN → RMN and known constant
shifts tk ∈ RMN . A typical example of such an operator Tk is
the MPEG compression scheme where S k is the DCT trans-
form and tk is the motion estimation. If a camera system
has a large quantization interval because of limited system
capability, it would be the other example such that Tk = I.
Hereafter we assume that Tk = I and tk = 0 for notational
simplicity. The latter assumption is justified because tk is
nothing but an offset of the quantization and Tk can be a part
of the linear operator DHk in (1).

Throughout this paper, we consider next problem: re-
cover x from given quantized data (zk)k∈I⊂Z and sufficiently
estimated (Hk)k∈I.

The first solution is given by Gunturk et al. [3]. First
they define constraint sets

C(k,m,n) := {x ∈ RL2 MN | (QDHk x)(m, n) = zk(m, n)}
with (m, n) th pixel x(m, n) of the image x. Each C(k,m,n) is
a halfspace and the convex projection PC(k,m,n) : RLM×LN →
C(k,m,n) onto it can be easily computed. Then they charac-
terize the set of all candidates for solutions, which is the
set of all images coincide to the observed images (zk)k∈I af-
ter degradation by the operator QDHk, as the intersection⋂

k∈I
⋂M

m=1
⋂N

m=1 C(k,m,n). An image in the intersection is de-
rived as convergent point of the following iterative scheme

xn+1 = PC(K ,M,N) . . . PC(1,1,2) PC(1,1,1) xn (n = 0, 1, . . .)

for any x0 ∈ RLM×LN .
If a large quantization interval qm is employed for

higher compression rate or limitation of sensor ability, the
intersection becomes broad in general and includes visually
unnatural images. A candidate to avoid selection of such
images would be introduction of some additional measure-
ment. Indeed, Elad and Feuer [8] proposed a method to
minimize a quadratic function over a data-fidelity set. How-
ever, their method can not be applied if the intersection is
not simply enough to compute the convex projection onto
it (See Appendix). In the next section we present a method
that gives a smooth image satisfying all of the given quanti-
zation constraints.

Remark 1: In general, image recoveries, especially super-
resolution, are severely affected by the estimation error in
motion, blur, and noise. The problem considering here is
rather robust to the additive noises to the low resolution
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images since the large quantization interval is usually em-
ployed for the compression, whereas the exact estimations
are necessary for motion and blur as assumed in this sec-
tion. Even if there are some errors in estimation of these
parameters, the first assumption in the next section will hold
and the considering problem is still valid because the large
quantization interval defines broad constraint sets.

3. Proposed Edge-Preserving Super-Precision Subject
to Quantization Constraints

Let constraint sets in terms of quantized data (zk)k∈I⊂Z be

Ck :=
{
x ∈ RL2 MN |QDHk x = zk

}
≡

M⋂
m=1

N⋂
n=1

C(k,m,n) � ∅ (k ∈ I).

An equivalent expression of each set as a level set is given
by

lev≤0(gk)

=

{
x ∈ RL2 MN

∣∣∣∣∣
gk(x) := max

1≤m≤L2 MN
{|(DHk x − zk)(m)|} − qm

2
≤ 0

}
≡ Ck.

A subgradient projection Tsp(gk) relative to each gk is given
by the following scheme [12]. Let

Ψk :=
{
x ∈ RL2 MN |

〈
x, (DHk)TΩk x

〉
≥ 〈

PDHkCk (DHk x) ,Ωkx
〉 }
,

where DHkCk := {DHk x | x ∈ Ck} = {u ∈ RMN | u(m) ∈
zk(m) + [− qm

2 ,
qm

2 ]}, PDHkCk : RMN → DHkCk is the convex
projection onto hyper-cuboid DHkCk, and

Ωk x := PDHkCk (DHk x) − DHk x.

Then an operator approximating the convex projection onto
Ck given by

Tsp(gk)(x) = PΨk (x)

:= x +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if DHk x ∈ Ck,
‖Ωk x‖2

‖(DHk)TΩk x‖2 (DHk)TΩk x

otherwise.

The set of all candidates for the solution characterized
as an intersection⋂

k∈I
Ck =

{
x ∈ RL2 MN

∣∣∣∣∣max
k∈I
gk(x) ≤ 0

}
.

As we stated at the end of previous section, further selec-
tion in the intersection to pursue smoothness is necessary.
The following differentiable functions are candidates for the
measurement of smoothness.

1. Huber function
The objective function to be minimized is

Θ1(x) :=
LM∑
m=1

LN∑
n=1

4∑
l=1

ρ((δ�(x))(m, n))

where a smooth approximation of | · |

ρ(t) :=

{
t2 if |t| < α
2α|t| − α2 otherwise

with a fixed small α > 0, and

(δ1(x))(m, n) := x(m, n + 1) − 2x(m, n)
+x(m, n − 1)

(δ2(x))(m, n) :=
1
2

x(m − 1, n + 1) − x(m, n)

+
1
2

x(m + 1, n − 1)

(δ3(x))(m, n) := x(m + 1, n) − 2x(m, n)
+x(m − 1, n)

(δ4(x))(m, n) :=
1
2

x(m + 1, n − 1) − x(m, n)

+
1
2

x(m − 1, n + 1).

Note: The above Huber function provides a MRF
(Markov Random Field) called Huber MRF, which can
be applied to a MAP super-resolution as an image prior
[10]. The effect of selection of α, see [10, Fig. 14].

2. a smooth approximation of total variation
A smoothed version of total variation is straightfor-
wardly derived by approximating | · | by ρ

Θ2(x) :=
LM∑
m=1

LN∑
n=1

{ρ2(x(m + 1, n) − x(m, n))

+ ρ2(x(m, n) − x(m, n + 1))}1/2,
where x(LM + 1, n) := x(LM, n) (n = 1, . . . , LN) and
x(m,N+1) := x(m, LN) (m = 1, . . . , LM), respectively.

These measurements Θ1 and Θ2 are smooth convex
functions and satisfy a condition so called edge-preserving
(a function φ is called edge-preserving if φ(t) < t2 as t → ∞
[5]).

Hereafter we propose a method that minimizes the
measurements over the intersection. This minimization is
resolved by the direct application of the following fact.

Fact 1: (A version of hybrid steepest descent method
for quasi-nonexpansive mapping) [11, Prop.6] Assume
dim(H) < ∞. Suppose Φ : H → R is a continuous
convex function with lev≤0Φ � ∅. Let Φ′ be a selection
of the subdifferential ∂Φ and let Φ′ be bounded on any
bounded set. Suppose K be a bounded closed convex set
such that lev≤0Φ ∩ K � ∅. Assume the Gâteau derivative
Θ′ of Θ : H → R is κ-Lipschitzian over K, i.e. ∃κ > 0,
‖Θ′(x) − Θ′(y)‖ ≤ κ‖x − y‖ for all x, y ∈ K. Then by us-
ing any u0 ∈ H and any (λn)n≥1 ⊂ [0,∞) satisfying (H1)
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limn→∞ λn = 0 and (H2)
∑

n≥1 λn = ∞, the sequence gen-
erated by un+1 := PKTα(un) − λn+1Θ

′(PKTα(un)) satisfies
limn→∞ d(un, Γ) = 0, where Tα := (1 − α)I + αTsp(Φ) and
Γ := arginflev≤0Φ∩KΘ(x) � ∅ (Note: The iterative scheme
does not require the inversion of Θ′′(x) at any x ∈ H . This
is notable advantage of the hybrid steepest descent method
because the inversion of Θ′′(x) is often computationally in-
tensive even in a simplest case where Θ is a quadratic func-
tion. The necessity of the conditions (H1) and (H2) for
limn→∞ d(un, Γ) = 0 is discussed in [11, Remark 1]. The
speed of convergence of (d(un, Γ))

∞
n=0 can be raised by em-

ploying reasonable step sizes (λn)n≥1 in the initial stage). �

Algorithm 1: (Proposed Edge-Preserving Super-Precis-
ion) Let Θ = Θ1 or Θ2, Tsp(Φ) := Tsp(gk0 ) with k0 :=

argmaxk∈Igk(x), and K := [0, μ]L2 MN where μ is given maxi-
mum intensity. Apply Fact 1 to derive the unique minimizer
x of Θ over K ∩⋂k∈ICk. �

Remark 2: As shown in the numerical examples, Θ1 is
suitable for almost smooth images whereas Θ2 is effective
when given image consists of several regions with constant
intensities.

4. Numerical Examples

4.1 Recovery from Roughly Quantized Still Images

Example 1. For the image “Lenna” (shown in Fig. A· 1(a))
x ∈ (R ∩ [0, 255])512×512 (μ = 255 means 8 bits/pixel), we
have low-resolution images (yk)12

k=1 ⊂ (R ∩ [0, 255])256×256

by application of mutually different sub-pixel shifts, the 2-D
Gaussian blur whose variance is

σ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3.0 for y1, . . . , y4
6.0 for y5, . . . , y8
9.0 for y9, . . . , y12,

and downsampling after averaging each 2×2 region (namely,
L = 2). Then the low-resolution images are equally quan-
tized with a uniform quantization interval qm = 16 (See
Fig. A· 1(b)). This interval means the bit-depth is 3 bits.

Next we recover a high-resolution image by applying
the algorithm. In this example, for the function ρ, we em-
pirically employ α = 3. In addition to the comparison
of the proposed method and the conventinal POCS based
method [3] (derived images are shown in Figs. A· 1(d), (e)
and Fig. A· 1(c),respectively), we introduce the following
differentiable function that stands for smoothness.

3. energy of output of Laplacian
A discrete version of Laplacian is given by δ1(·)+δ3(·).
Being a high-pass filter, minimization of squared out-
put Θ3(x) := ‖δ1(x) + δ3(x)‖2 will produce smooth im-
age.

The above function Θ3 violates the condition of edge-
preserving whereas Θ1 and Θ2 satisfy the condition. It can
also be minimized by Algorithm 1 and the derived image is

shown in Fig. A· 1(f).
It can be verified that the proposed method provides

more smooth images while keeping the edge information
compared with the conventional POCS based method. From
the viewpoint of PSNR, defined for an original image x and
its estimate x̂ by

PSNR := −10 log10
‖x − x̂‖2

2552L2 MN
,

minimization of Θ1 and Θ2 provides better results than that
of Θ3. Minimization of Θ2 is slightly better than the other
in terms of PSNR, however it seems that the derived image
is over-smoothed. Indeed, the face of the woman seems like
a plate. On the other hand, with minimization of Θ1, almost
exact recovery is provided for smooth regions, for example
the face and the shoulder.

Example 2. For an image of a flag (shown in Fig. A· 2(a))
x ∈ (R∩[0, 255])400×298, similar to the previous example, we
have low-resolution images (yk)12

k=1 ⊂ (R∩[0, 255])200×149 by
applying mutually different sub-pixel shifts, the 2-D Gaus-
sian blur whose variance is

σ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4.0 for y1, . . . , y4
8.0 for y5, . . . , y8
16.0 for y9, . . . , y12,

and quantized low-resolution images are derived where
quantization interval qm = 16 (See Fig. A· 2(b)). For the
other parameters such as α, we employ the same value as
the previous example.

The results are shown in Fig. A· 2. Contrary to the pre-
vious example, the original image has clear edges around
the characters and the flag. In such a case, as shown in
Figs. A· 2(i)–(k) and PSNRs, minimization of Θ2 is suitable
for recovery.

4.2 Recovery from Compressed Movie

As noted in Sect. 2.2, the proposed method can be applied
to compressed movies where Tk stands for the motion com-
pensation and the DCT transform. For a sequence of im-
ages of a distant view (8th frame is shown in Fig. A· 3(a))
(xn)8

n=1 ⊂ (R ∩ [0, 255])192×288, we have low-resolution im-
ages (yn)8

n=1 ⊂ (R ∩ [0, 255])96×144 by applying mutually
different sub-pixel shifts, the 2-D uniform Gaussian blur
whose variance is σ2 = 4.0, DCT after the motion com-
pensation relative to the first frame, and finally quantized
low-resolution images are derived where quantization inter-
val qm = 16 (See Fig. A· 3(b)). This interval means bit-depth
is 4 bit.

Then with all frames, x8 is estimated by the proposed
method as shown in Figs. A· 3(c) and (d). Since the origi-
nal image consists of several flat regions with clear edges,
minimization of Θ2 provides a better result.

5. Conclusion

In this paper, we proposed a method that recovers a smooth
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high-resolution image from several blurred and roughly
quantized low-resolution images. We introduced two cost
functions to pursue smoothness while keeping edge infor-
mation. Then it has been shown that iterative operations
based on hybrid steepest descent method generate a se-
quence that converges to an unique minimizer of the cost
function over the set of all candidates characterized by ob-
served quantized images. It was verified in the numerical ex-
amples that the proposed method provides visually natural
images compared with a conventinal POCS-based method
and minimization of squared output of Laplacian.
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Appendix: Practical Limitation of the Method in [8]

Here we demonstrate a simple example that sequential pro-
jections onto two constraint sets and update to steepest de-
scent direction of a cost function, a straightforward gener-
alization of [8], fail to converge to the minimizer over the
intersection of these two sets. Let a quadratic cost function
with two variable x, y be

f (x, y) :=
1
2

⎧⎪⎪⎨⎪⎪⎩
(
x − 13

8

)2

+

⎛⎜⎜⎜⎜⎝y −
√

3
8

⎞⎟⎟⎟⎟⎠2⎫⎪⎪⎬⎪⎪⎭ .
Suppose that we have two halfspaces

V1 :=

⎧⎪⎪⎨⎪⎪⎩(x, y)

∣∣∣∣∣∣ y ≥
√

3
3

x

⎫⎪⎪⎬⎪⎪⎭
V2 :=

⎧⎪⎪⎨⎪⎪⎩(x, y)

∣∣∣∣∣∣ y ≤ −
√

3
3

x

⎫⎪⎪⎬⎪⎪⎭ .
The unique minimizer of f over V1 ∩ V2 is (0, 0). For a

starting point (x0, y0) := ( 3
8 ,−

√
3

8 ), we have

(x0, y0) − 1
2
∇ f |(x,y)=(x0,y0) = (1, 0)

PV1 (1, 0) =

⎛⎜⎜⎜⎜⎝3
4
,

√
3

4

⎞⎟⎟⎟⎟⎠
PV2

⎛⎜⎜⎜⎜⎝3
4
,

√
3

4

⎞⎟⎟⎟⎟⎠ = (x0, y0),

where 1
2 is introduced for convergence of conventional

steepest descent methods.
The above equations implies that, even if we combine

the steepest descent update and the sequential projections,
the generated sequence can not converge to the minimizer
of f over V1 ∩ V2. Thus the method in [8] requires further
assumption that given closed convex sets can be replaced
by its intersection, which is simply enough to compute the
convex projection onto it. However, for example, blurring
in image recovery provides convex sets with complicated
shapes and it is computationally intensive task to derive the
convex projection onto their intersection. This means that
the method in [8] can not be applied to practical situations
in general.
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(a) Original image. (8 bits/pixel) (b) Blurred and quantized image.
(3 bit/pixel) (PSNR 26.7 dB)

(c) POCS based method.
(PSNR 29.0 dB)

(d) Huber function. (PSNR 29.7 dB) (e) Smoothed total variation.
(PSNR 29.9 dB)

(f) Squared output of Laplacian.
(PSNR 29.5 dB)

(g) Difference between (a) and (b). (h) Difference between (a) and (c).

(i) Difference between (a) and (d). (j) Difference between (a) and (e). (k) Difference between (a) and (f).

Fig. A· 1 Results and recovery errors (“Lenna”).
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(a) Original image. (8 bits/pixel) (b) Blurred and quantized image.
(4 bits/pixel) (PSNR 23.5 dB)

(c) POCS based method.
(PSNR 27.9 dB)

(d) Huber function. (PSNR 27.8 dB) (e) Smoothed total variation.
(PSNR 29.2 dB)

(f) Squared output of Laplacian.
(PSNR 27.8 dB)

(g) Difference between (a) and (b). (h) Difference between (a) and (c).

(i) Difference between (a) and (d). (j) Difference between (a) and (e). (k) Difference between (a) and (f).

Fig. A· 2 Results and recovery errors (A flag).
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(a) Original image. (8 bits/pixel) (b) Blurred and compressed image.
(4 bits/pixel) (PSNR 26.4 dB)

(c) Huber function. (PSNR 30.3 dB) (d) Smoothed total variation. (PSNR 30.7 dB)

(e) Difference between (a) and (b).

(f) Difference between (a) and (c). (g) Difference between (a) and (d).

Fig. A· 3 Results and recovery errors (a distant view of Tokyo Bay).
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