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Discrete Simulation of Reactive Flow with Lattice Gas Automata

Kazuhiro YAMAMOTO†, Nonmember

SUMMARY Normally, flow field is described with governing equa-
tions, such as the Navier-Stokes equations. However, for complex flow
including multiphase and reactive flow such as combustion, this approach
may not be suitable. As an alternative approach, Lattice Gas Automata
(LGA) has been used to simulate fluid with mesoscopic particles by assum-
ing that space and time are discrete, and the physical quantities take only
a finite set of values. In this study, the model for combustion simulation is
proposed, with the reaction probability depending on the local temperature
to simplify the chemical reaction. Here, counter-flow twin flames are sim-
ulated. In order to validate this approach, some results of non-reactive flow
are presented, compared with those by solving Navier-Stokes equations.
key words: LGA, reaction probability, combustion, counter-flow flame

1. Introduction

Recently, since computer performance has drastically
increased in the last decade, numerical simulation has been
a powerful means to investigate combustion phenomena.
Especially, direct numerical simulations (DNS) have been
widely used [1], [2], because it is possible to examine the
phenomena directly without any models. We can select
flame characteristics and turbulence freely for modeling tur-
bulent combustion, which is difficult in experimental stud-
ies. However, when we simulate turbulent flames with
detailed chemistry in two or three-dimensional geometry,
the computational costs of such a treatment would be too
much. Also, it is tough to handle phase transition in spray
combustion. An alternative approach may be needed in
combustion simulation.

In conventional CFD code, hydrodynamics are nor-
mally described by partial differential equations with the
Navier-Stokes equations. Recently, the methods have been
proposed to describe the fluid at a more microscopic level
by assuming that it is composed by mesoscopic particles.
One of them is called Lattice Gas Automata (LGA) [3]–[7].
The space and time are discrete and the physical quanti-
ties take only a finite set of values. Properties such as den-
sity and velocity are determined by the collective behavior
of many particles. This simplified kinetic model is con-
structed so that the macroscopic averaged properties obey
the desired macroscopic equations. It has been applied to
complex phenomena such as erosion and multiphase flow.
Reactive flow has been also simulated [8], [9]. The reac-
tive lattice gas scheme is well presented in Ref. [10]. So
far, this general algorithm for reactive flow is to change the
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particle number based on the probability regardless of the
state of reactive species. In combustion field, the chemical
reaction is described using Arrhenius-type reaction, which
is strongly affected by temperature.

In this study, the LGA model for combustion field is
proposed. Two particles of reactant and product are consid-
ered, and the transition between two particles is determined
by the reaction probability depending on the local temper-
ature. Here, counter-flow flames are simulated, which is
considered to be important for modeling turbulent combus-
tion [11], [12]. In order to validate this approach, some
results of non-reactive flow are obtained, compared with
those by solving Navier-Stokes equations.

2. Numerical Method

2.1 LGA (Lattice Gas Automata)

LGA is a kind of cellular automata (CA). From this per-
spective, the lattice gas method is often called lattice gas
cellular automata. In the late 1940s, Cellular automata (CA)
have been proposed by Neumann to model the mechanisms
of self-reproduction in living organisms [13]. This model
is an idealization of a physical system in which space and
time are discrete and the physical quantities (i.e. the states
of automaton) take only a finite set of values. Formally, it
can be defined as:
(1) A regular lattice of cells (or sites) covering a portion of
a d-dimensional space.
(2) A set of Boolean variables attached to each site of the
lattice and giving the current state of automata.
(3) A rule that specifies the time evolution of the cells
according to the current state of the nearest neighbor cells.
To obtain the state of the automaton at the next iteration, the
same rule (homogeneous CA) is applied synchronously to
all the cells. The neighborhood (i.e. the range of the rule) is
a parameter.

It should be noted that sufficiently large cellular
automata often show seemingly continuous macroscopic
behavior. Thus, they can potentially serve as models for
continuum systems such as fluids. By Frisch et al. [4], [5],
the FHP model has been proposed to model a fluid as a fully
discrete molecular dynamics. They have used a hexagonal
lattice for symmetry of the lattice to succeed in obtaining the
correct Navier-Stokes equation by starting from the lattice
gas automata. So far, this method has been applied to a large
range of scientific problems including diffusion processes,
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wave propagation, and multi-component fluids [6]. Because
of its simple numerical approach, it has been recognized as
a powerful way to solve problems with a high degree of data-
parallelism, which is appropriate for parallel computation.

2.2 Numerical Approach

In this study, FHP III model is adopted, introduced by
Frisch, Hasslacher, and Pomeau [4], [5]. It consists of
a hexagonal (triangular) lattice with particles residing on the
node (see Fig. 1). A set of Boolean variables, ni(x, t) (i = 0
to 6), describing the particle occupation, is defined. The lat-
tice with unit lattice space, where there are seven directions
at each node, are

�e0 = (0, 0),

�ei =

(
cos

(
(i − 1)π

3

)
, sin

(
(i − 1)π

3

))
, (i = 1, . . . , 6),

where �ei is the local velocity vector, and each particle has
the same mass and velocity of unity. As shown in Fig. 1, the
local averaging is conducted in sub-domain to obtain macro-
scopic quantities such as velocity and density.

Starting from the initial state, the configuration of each
particle of reactant or product evolves in two sequential
sub-steps of collision and propagation. For simulation of
reactive flow, the transition between two particles is needed,
which is explained later. The first step is collision.

ni(�x, t∗) = ni(�x, t) + Ωi(n(�x, t)), (i = 0, . . . , 6),

where, ni is the Boolean occupation number describing the
presence or absence, and Ωi is the collision operator. This
collision occurs just after particles arrive at a node at t = t∗.
They interact and change their directions according to scat-
tering rules, which preserves mass and momentum (see
Fig. 2 (a)). The collision rules are shown in Table 1, listing
only the cases such that mass flux in the x- and y-directions,
jx and jy, are positive. Configurations with four parti-
cles and more are obtained by duality replacing particles
by holes and holes by particles. The first three columns

Fig. 1 FHP model and hexagonal lattice.

give the number of particles and the total momentum. The
fourth column shows the different configurations, the legal
collisions exchanging configurations appearing within the
same row, and the last column gives the number of different
configurations obtained by the application of the symmetry
group.

At the next time step (t = t + 1), each particle moves
to the nearest node in the direction of its velocity, shown in
Fig. 2 (b). It is called streaming propagation.

n1(�x + �ei, t + 1) = ni(�x, t∗), (i = 0, . . . , 6).

Thus, the evolution equation of LGA is as follows:

ni(�x + �ei, t + 1) = ni(�x, t) + Ωi(n(�x, t)), (i = 0, . . . , 6).

To describe the particle motion at the wall, the bounce-
back rule is adopted to obtain zero velocity, by which the

Fig. 2 Microscopic movement of particles, (a) collision, (b) streaming
propagation.

Table 1 List of configurations for FHP III.
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particle bounces back when it reaches at the wall boundary.
The total particle density, ρ, and momentum, ρ�u, are defined
and given by

ρ =
∑

i

ni,

ρ�u =
∑

i

�eini.

For this FHP model, the transport coefficients and Reynolds
number are given by

cs =
√

3/7,

ν =
1
28

1
d(1 − d)

1
1 − 8d(1 − d)/7

− 1
8
,

Re =
UD
ν
,

where d is ρ/7, ν is kinematic viscosity, cs is sound speed,
and D is the grid number of the characteristic length. These
formulas are useful when we compare the results with those
by solving the N-S equation.

Here, the counter-flow flame was simulated by LGA,
which has been widely examined for modeling turbulent
combustion to investigate the interaction between flame and
flow [11], [12]. Figure 3 shows the schematic of counter-
flow twin flames. Two-dimensional rectangular coordinate
is used. The porous walls for mixture injection are located
at y = L and −L. The symmetry at the stagnation plane of
y = 0 was not assumed.

In LGA model, physical quantities are obtained by
averaging the particle motion in sub-domain. This proce-
dure is needed to eliminate statistical noise. When we take
the large sub-domain, the spatial resolution becomes worse.
However, there are the large fluctuation exists when the sub-
domain size is too small. Here, the sub-domain of 16 × 8

Fig. 3 Schematics of counter-flow twin flames and rectangular coordi-
nate.

nodes was used to obtain velocities and density through
averaging procedure. The total computational domain has
257,121 grids (801 × 321). Thus, there are 50 × 40 points
to determine the physical quantities. The inlet velocity at
the wall is 0.09, so that the Mach number, Ma, is 0.137.
Then, the Reynolds number, Re, is about 370.

3. Results and Discussions

3.1 Non-reactive Flow

First, the flow field in a non-reactive mixture was investi-
gated to examine the velocity fluctuation. The steady state
was achieved (about 5000 time steps). Figure 4 shows the
non-dimensional axial velocity at x/L = 2 and 4. It is found
that there exists the velocity fluctuation, which can be elim-
inated by time-averaging process for 100 time steps.

Also, the counter-flow was simulated with the follow-
ing Navier-Stokes equations by finite difference method.

∂tu + (u · ∇)u = −1
ρ
∇p + ν∇2u

Both results are shown in Fig. 5. These velocities are non-
dimensionalized with inlet velocity at the wall. As seen
in this figure, the fine counter-flow structure is observed in
LG simulation, and its flow field is similar to that by solving
the Navier-Stokes equations.

Next, these results were quantitatively compared,

Fig. 4 Non-dimensional axial velocity.

(a) N-S equation

(b) LGA

Fig. 5 Flow field in cold flow.
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Fig. 6 Distribution of non-dimensional axial velocity.

which is shown in Fig. 6 at three different axial positions.
It is found that the velocity obtained by LGA is almost the
same as that by N-S equation. Therefore, this counter-flow
can be simulated by this discrete model, as well as other
flow configurations including a Poiseuille flow and the flow
after a backward facing step etc. [6].

3.2 Reactive Flow

Next, the transition between two particles of reactant and
product was included for reactive flow simulation. Reac-
tant, A, and product, B have equal mass, and both tempera-
tures are 300 K (TA) and 2100 K (TB), respectively. There-
fore, the total mass is conserved even when the reaction oc-
curs. Here, it was assumed that the reaction occur based on
the reaction probability. That is, the reactant reacts to be-
come product with probability of p. To avoid the complex
collision rules, the backward reaction was also considered
so that the reactant and product do not exist together. Then,
the product becomes reactant with probability of (1 − p).

A→ B (forward reaction with probability of p)

B→ A (backward reaction with probability of (1−p))

Usually in combustion field, the reaction rate is changed by
temperature. Thus, in this model, the reaction probability
depends on the local temperature, T , which is obtained by
(NATA + NBTB)/(NA + NB), where Ni is the number of par-
ticle i at the specified node. As seen in Fig. 7, three cases of
different temperature dependence were considered.

Results obtained in case 1 are shown in Fig. 8, includ-
ing the profiles of velocity vector, temperature, mass frac-
tion of reactant, and reaction frequency. The mass fraction
of species i is obtained by ρi/(ρA+ρB), where ρi is the num-
ber density of particles existing per node. In Fig. 8 (a), the
unburned gas region exists outside, and burned gas region is
inside. The reaction zone, which is determined by reaction
frequency, is located at the boundary of two regions. From
these profiles, it is considered that reactants flow inward
from both walls at y = L and −L, and are transformed chem-
ically to products in the reaction zone. Then, both flow out-
ward along the x-direction. This configuration is very simi-
lar to the counter-flow premixed flames [14], [15].

Fig. 7 Variations of reaction probability with temperature.

(a) Velocity vector

(b) Temperature

(c) Mass fraction of reactant

(d) Reaction frequency

Fig. 8 Contour of reactive flow in case 1, t = 5000.

Next, temperature profiles in cases 2 (more reactive)
and 3 (less reactive) are shown in Fig. 9. In case 2, where
the reaction probability is higher than that in case 1, the high
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(a) Case 2

(b) Case 3

Fig. 9 Contour of temperature in cases 2 and 3, t = 5000.

temperature region is expanded. When the reaction proba-
bility is lower in case 3, the reaction region is extinguished.
Thus, the reaction probability controls the reaction intensity.
It was concluded that the combustion could be simulated by
this two-component LGA model.

4. Conclusions

In this study, Lattice Gas Automata (LGA) was applied
for combustion simulation, which simulates the fluid with
mesoscopic particles of reactant and product. In the reaction
model, the reaction probability was used. Three cases of
different temperature dependence were considered. Results
show that the flow field in non-reactive flow by LGA is quite
in agreement with that by solving Navier-Stokes equations.
The flame (reaction region) behavior is similar to the real
counter-flow flames. Although, the reaction model may be
improved, it is possible to simulate the combustion field by
this discrete model.
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