
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010
679

PAPER Special Section on Knowledge-Based Software Engineering

Proposal for Requirement Validation Criteria and Method Based on
Actor Interaction

Noboru HATTORI†,††a), Shuichiro YAMAMOTO†††, Tsuneo AJISAKA††, Members,
and Tsuyoshi KITANI†, Nonmember

SUMMARY We propose requirement validation criteria and a method
based on the interaction between actors in an information system. We fo-
cus on the cyclical transitions of one actor’s situation against another and
clarify observable stimuli and responses based on these transitions. Both
actors’ situations can be listed in a state transition table, which describes
the observable stimuli or responses they send or receive. Examination of
the interaction between both actors in the state transition tables enables us
to detect missing or defective observable stimuli or responses. Typically,
this method can be applied to the examination of the interaction between a
resource managed by the information system and its user. As a case study,
we analyzed 332 requirement defect reports of an actual system develop-
ment project in Japan. We found that there were a certain amount of defects
regarding missing or defective stimuli and responses, which can be detected
using our proposed method if this method is used in the requirement defi-
nition phase. This means that we can reach a more complete requirement
definition with our proposed method.
key words: requirements analysis, requirements validation, completion
criteria, actor relationship analysis

1. Introduction

The requirement definition phase largely affects the success
or failure of software development projects. Mogyorodi in-
troduced a study by James Martin, which states that the root
cause of 56 % of all bugs identified in projects are defects
introduced in the requirement definition phase, and roughly
half of these bugs were due to requirements that were com-
pletely omitted [1]. The amount of effort it takes to fix bugs
that arise from requirements is even higher at 82 %.

A unified modeling language (UML) is often used to
describe software requirements. Use-cases are used for cap-
turing domain-level requirements, and the domain model,
i.e., the domain layer of software objects, is also used. How-
ever, these notations mainly describe software functions and
data separately and are insufficient for analyzing problems
in the real world. Detailed analyses conducted in the re-
quirement definition phase are often omitted in documents
to maintain a level of abstraction. Svetinovic et al. found
that the domain model produced from use-case models by

Manuscript received July 4, 2009.
Manuscript revised October 19, 2009.
†The authors are with R&D Headquarters, NTT DATA COR-

PORATION, Tokyo, 135–8671 Japan.
††The authors are with the Graduate School of Systems Engi-

neering, Wakayama University, Wakayama-shi, 640–8510 Japan.
†††The author is with Headquarter of Information and Communi-

cation Services Information and Communication Planning Office,
Nagoya University, Nagoya-shi, 464–8601 Japan.

a) E-mail: hattorinb@nttdata.co.jp
DOI: 10.1587/transinf.E93.D.679

different modelers, for the same systems, can differ from
one another. One reason for this lies in the difficulty of dis-
covering concepts in a problem domain [2]. As a result, gaps
between requirements and software functions are often clar-
ified after the development phase is finished. Jackson also
claims that focusing on the problem is important, and prob-
lem frames help us do this, instead of drifting into inventing
solutions [3].

We propose requirement validation criteria and a
method based on the interaction between actors, i.e. con-
cerned parties that depend on each other in an organiza-
tional context. Information systems as well as humans can
be regarded as actors. We focus on cycles of stimuli and re-
sponses from one actor to another. Each actor has situations
described in a state transition table, which lists observable
stimuli or responses the actors send or receive. This method
is expected to clarify stimuli and responses and related situa-
tions of actors in the real world, which is difficult to exhaus-
tively define using UML and to validate the completeness
of stimuli and responses between actors. This completeness
means that all responses of the concerned party to all stimuli
in all realizable classes of situations are defined. This is one
of the elements included in completeness defined in the rec-
ommended practice for software requirements specifications
(SRS) in IEEE Std.830-1998 [4].

There have been empirical studies in which a well-
defined scope, or decomposing, sizing, and managing
features are significantly related to the success of the
project [5], [6]. Each feature is generally described in a se-
quence of stimuli-response pairs [4]. Therefore, the clarifi-
cation of stimuli and responses at an early phase is important
for the success of a system development project.

In Sect. 2, we describe the components for describing
requirements that are applicable to functional requirements.
In Sect. 3, we describe our proposed requirement validation
criteria and method based on actor interaction. In Sect. 4,
we explain our proposed method with an example of a coin
parking service in Japan. In Sect. 5, we show an industrial
case study and evaluate the effectiveness of our method. We
analyzed requirement defect reports of a system develop-
ment project in a Japanese company to see if these defects
could be detected if our proposed method is used for the
requirements review at the requirements definition phase.
In Sect. 6, discussion related to our industrial case study in
Sect. 5 is described. In Sect. 7, we discuss related work, and
finally, in Sect. 8, we make our conclusions and explain our

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

680
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

future work.

2. Requirements Elicitation Based on Model of Actor’s
Situation

In this section, we propose components for describing soft-
ware requirement specifications. The functional require-
ments for software can be thought of as follows. “An actor,
in a certain situation, instructs a stimulus, which is input into
a specified process and corresponding output. Then it is sent
as a response to the actor, which is in a certain situation.”.

Figure 1 shows this structure. The requirement compo-
nents are defined as follows.

(1) Actor
A concerned party who explicitly or implicitly requests to
start a software function and receives responses from that
software.
(2) Actor’s pre-situation
An actor’s situation when he/she/it sends the corresponding
stimulus to that function.
(3) Observable Stimulus
An event that triggers the function.
(4) Input
Signals, data, etc. that are related to the observable stimulus
and received by the system.
(5) Processing
Operation of the function actually achieved by the informa-
tion system.
(6) Output
An output of the operation result of the function created by
an output screen, transmission message, etc.
(7) Observable response
The output to the actor for sending the result of the function.
(8) Actor’s post-situation
A situation in which an actor receives the result of the func-
tion.

For the complete elicitation of functional requirements,
the components shown in Fig. 1 must be completely defined.
It is necessary to consider the completeness of the relation-
ship between each component as well as the completeness
of the component.

By analyzing functional requirements with these re-
quirement component descriptions, we cannot only clarify
these components but also analyze their relationship with
one another. Therefore, we can set requirement validation
criteria based on these components. This means that if we
can completely define actors, actor’s situations, observable

Fig. 1 Components for describing requirements.

stimuli and responses, input, processing, and output, we can
completely define the requirements.

However, we believe it is not practical to define all
combinations of these components. Therefore, we propose
a method for dealing with this explosion of combinations.

3. Requirement Validation Criteria and Method Based
on Actor Interaction

[Premise]
The number of situations of an actor in a system is not in-
finitely divergent, i.e., they are finite. An actor’s situations
are cyclical through interacting with the system.

This assumption is practical. For example, in resource
management systems, a requestor reserves, cancels, utilizes,
and makes a payment and releases a resource. In this case,
the requestor and the resource can be regarded as actors. It
is reasonable to assume cycles of an actor’s situation. Under
this premise, we propose a method for dealing with the ex-
plosion of combinations of requirement component descrip-
tions, which was explained in Sect. 2.

3.1 Completion Criteria for Elicitation of Actor’s Situa-
tion

By the premise described in the previous section regarding
the cycle of an actor’s situation, we can define a set of an ac-
tor’s situations using a state transition table, where the ver-
tical dimension indicates the current states, the horizontal
dimension indicates the next states, and the cells contain the
observable stimuli and responses that will lead to a particu-
lar state. Therefore, we can validate the completeness of an
actor’s situation if we can validate the completeness of this
state transition table.

There are two types of actors, active and passive. An
active actor sends a stimulus to another actor and receives
the corresponding response. A passive actor receives a stim-
ulus from the active actor and sends the corresponding re-
sponse. There are observable stimuli and responses shared
by information systems as well as actors in the real world.
These stimuli and responses are implemented as informa-
tion systems. There are observable stimuli and responses
shared only by actors in the real world but not shared by
information systems.

3.2 Completion Criteria for Elicitation of Observable
Stimuli and Responses

With the same method described in Sect. 3.1, we can vali-
date the completeness of an information system’s status with
observable stimuli and responses.

3.3 Completeness of Interaction between Actors

Each actor’s situation changes when he/she/it interacts with
another. This means that each actor’s state transition table
has to be complete, i.e., every stimulus and response as a

HATTORI et al.: PROPOSAL FOR REQUIREMENT VALIDATION CRITERIA AND METHOD BASED ON ACTOR INTERACTION
681

result of an actor interaction has to be included in the state
transition table. The completeness of an actor’s situation
state transition table without considering interactions with
other actors is meaningless.

3.4 Requirement Validation Method Based on Actor Inter-
action

The three types of completeness described above can be val-
idated in the following steps.
Step 1. Focus on relationship between actors and classify
them as active or passive.
Step 2. Elicit both actors’ cyclical situations regarding in-
teraction with another actor.
Step 3. Elicit courses of observable stimuli and responses
in accordance with the cyclical transitions of both actors’
situations elicited in Step 2.
Step 4. Construct both actors’ state transition tables from
the cyclical situations elicited in Step 2 and the stimuli and
responses elicited in Step 3.
Step 5. Confirm that there are no missing statuses, stim-
uli, or responses by examining the interactions between the
active and passive actors with their state transition tables.

Before the execution of these steps, organizational IT
requirements engineering concerns, organizational actors
and dependencies between them should be analyzed using
goal-oriented approaches such as the i* framework [7] or
the actor relationship matrix method [8]. After the execu-
tion of this method, the analysis results including poten-
tial requirement defects detected with this method should
be validated by stakeholders such as customers of the sys-
tem typically at requirement review meetings. This method
is supposed to be used repeatedly and iteratively.

3.5 Guidelines for the Proposed Method

In Step 1, typically, managed resources and the information
system can be passive actors, and their users can be active
actors. Focusing on interactions between resources and their
users is effective when we elicit actor’s situations or courses
of stimuli and responses.

In Step 2, a typical pattern of statuses of both active
and passive actors can be described as follows.
{No interaction, Starting interaction, Being interactive, Fin-
ishing interaction}

If the resource is to be reused by another user, such as
a rental commodity or space, the resource often returns to
the initial status. If the resource is to be used only once,
the resource finally leads to statuses such as “Discarded”,
or “Expired”. These patterns can often be a starting point
for eliciting situations of analyzed resources and their users.
Actor’s situations can often be expected to be derived from
these typical patterns of statuses. If necessary, the statuses
should be integrated or subdivided and more statuses should
be added.

If we can elicit complete statuses in Step 2, it is not
necessary to elicit all courses of observable stimuli and re-

sponses in Step 3. Defective or missing stimuli/responses
can be detected by examining the state transition tables.
However, it is often that there are some statuses that can-
not be elicited in Step 2, and such statuses can be found
by eliciting the courses of observable stimuli and responses.
Examiners can use these courses when they trace the state
transition table to confirm its correctness in Step 5. There-
fore, it is preferable to elicit courses of observable stimuli
and responses as much as possible in Step 3.

In Step 5, for the examination of the interaction be-
tween active and passive actors, we can make a direct prod-
uct of the state transition table, i.e., the state transition ta-
ble that contains the direct product of sets of both actors’
statuses. The cells contain the observable stimuli and re-
sponses that will lead to a particular ordered pair of both
actors’ statuses.

We define X as the set of active actor’s statuses and Y
as the set of passive actor’s statuses. Then, X × Y , the direct
product of X and Y , can be defined as follows.

X × Y = {(x, y)|x ∈ X, y ∈ Y}
This is the set of all possible ordered pairs whose first com-
ponent is a member of X and whose second component is a
member of Y . If X has m-elements and Y has n-elements,
the corresponding direct product X × Y has m × n elements.

In the same way, when the number of actors is p and
the sets of each actor’s statuses are defined as Xi, the direct
product of these sets can be defined as follows.

p∏

i=1

Xi = {(x1, . . . , xp)|x1 ∈ X1,, xp ∈ Xp}

This is the set of all possible ordered n-tuples. An ordered
n-tuple is a set of n objects arranged in a specified order.

There are some rules that the direct product of the state
transition table must satisfy. An examiner can detect defects
when the direct product of the state transition tables does not
satisfy the following rules.

(1) The direct product of state transition tables must be
traced from the ordered n-tuple of all actors’ initial statuses
to all ordered n-tuples of all actors’ statuses with stimu-
lus/response pairs.
(2) The direct product of state transition tables must be
traced from all ordered n-tuples with stimulus/response pair
to the ordered n-tuple of all actors’ final statuses.

Examiners can also detect defects when they find that
some courses of observable stimuli and responses elicited
in Step 3 cannot be traced in the direct product of the state
transition tables if the courses are correct.

However, the state transition table cannot be validated
based only on the examiner’s knowledge. It is necessary
for stakeholders, such as customers, to validate each cell in
the direct product of the state transition tables. The exam-
iners and the stakeholders should understand the meanings
of current and next status and determine if a cell contains a
observable stimulus/response pair.

682
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

It is often practical for examiners to omit an ordered
n-tuple of statuses with no stimuli or responses because the
number of elements of the direct product of each actor’s sta-
tuses often becomes very large. When the examiners de-
termine whether they can omit a certain ordered n-tuple of
statuses or not, they should understand the meaning of the
statuses of each actor and consider whether these statuses
cannot occur simultaneously in the real world.

3.6 Potential Detectable Ability of Proposed Method

Requirements can be defined with the components described
in Sect. 2. Therefore, if defects regarding an actor’s situa-
tion or observable stimuli/responses are detected, defects of
other related components may be detected. For example, if
a missing stimulus is detected, defects of input, processing,
or output may be detected.

Moreover, if we examine the cycles of an actor’s situ-
ation against that of another actor, we may be able to find
hidden relationship with still other actors or hidden new ac-
tors. They may be necessary to finish the cycles of the ac-
tor’s situation when the actor cannot finish the cycles alone.

4. Example

In this section, we explain our proposed method by applying
it to the requirement definition of a coin parking system in
Japan. In coin parking, each parking space is equipped with
a locking device, which activates automatically soon after a
car parks in that space. The locking device deactivates when
the driver pays the fee using an automatic payment system.

We can define two actors, the driver, as an active actor,
and the parking space, as the passive actor. Figure 2 shows
the interactions between the driver and the parking space.

The set of driver’s statuses regarding the use of the
parking space is {Driving, Grace period, Parking}. The grace
period is the period given to the driver to exit before the car
is re-locked into the space. The grace period is usually about
3 minutes in the real world. The set of parking space’s sta-
tuses regarding being used by the drivers is {Vacant, Parked
with locking device off, Parked with locking device on}.

The set of observable stimuli and responses found in
the real world is {Entrance, Lock on, Payment, Lock off,
Exit}. Courses of observable stimuli and responses are de-
scribed as follows.

(1) The driver enters the parking space, makes a payment
and exits the parking space.
(Driving)⇒ Entrance to parking space⇒ Lock on parking
space ⇒ Payment ⇒ Lock off parking space ⇒ Exit from
parking space⇒ (Driving)

Fig. 2 Interactions between driver and parking space.

(2) The driver enters the parking space but exits within the
grace period.
(Driving)⇒ Entrance to parking space⇒ Exit from parking
space⇒ (Driving)
(3) The driver completes payment, but he/she does not exit
from the parking space within the grace period. This is re-
garded as the driver parking again.
(Driving)⇒ Entrance to parking space⇒ Lock on parking
space ⇒ Payment ⇒ Lock off parking space ⇒ Lock on
parking space⇒ (Parking again)

Table 1 is the state transition table of a driver based on
these cyclical transitions of his/her situations with the park-
ing space. Table 2 is the state transition table of the park-
ing space based on these cyclical transitions of its situations
with the driver.

We then confirm that there are no missing stimuli and
responses by examining interactions between the driver and
the parking space with their state transition tables. Table 3
is the direct product of two state transition tables, i.e., Ta-
bles 1 and 2. The number of statuses in the direct product
is the number of status products of the two transition ta-
bles. In Table 3, an ordered pair of statuses with no regular
stimuli or responses is omitted. For example, the status of

Table 1 State transition table of driver.

Table 2 State transition table of parking space.

Table 3 Direct product of state transition tables of driver and parking
space.

HATTORI et al.: PROPOSAL FOR REQUIREMENT VALIDATION CRITERIA AND METHOD BASED ON ACTOR INTERACTION
683

Table 4 Direct product of state transition tables of manager, driver, and parking space. (when illegal
abandonment of car occurs)

a parking space cannot be “Vacant” when the driver’s sta-
tus is “Parking” or “Grace period”. Therefore, the ordered
pairs of these statuses, i.e. (Parking, Vacant) or (Grace pe-
riod, Vacant), can be omitted. From the direct product of the
state transition tables, we can validate the completeness of
regular stimuli and responses.

There are irregular stimuli in the real world such as
forcibly exiting the parking space by destroying the lock-
ing device, illegal abandonment of a car, and incomplete
payment due to the lack of small change. In these cases,
it is necessary to include the manager of the parking space.
We then examine the interactions between the manager and
the parking space. We can also follow the steps mentioned
above when we examine these interactions. Table 4 is the
direct product of the state transition tables of the driver,
parking space, and manager of the parking space when the
parked car is regarded as illegally abandoned because the
allotted time expired. In this case, the observable stim-
uli/responses such as “Forced lock off” and “Forced exit”
by the manager are included in the table.

5. A Case Study

In this section, we verify the following hypothesis to vali-
date the effectiveness of our proposed requirement valida-
tion criteria and method described in Sect. 3.

5.1 Hypothesis

We set the following verification hypothesis.
We can detect requirement defects or find missing re-

quirements with the following steps.
Step 1. Elicit managed resources as passive actors and their
users as active actors
Step 2. Examine users’ cycles of situations regarding the
use of managed resources

5.2 Experimentation

5.2.1 Outline of Analyzed System

We analyzed the development project for the core business
system of a Japanese company. We describe our analysis
and the effects we achieved using a virtual information sys-
tem with basically the same business structure or workflow
as the one we analyzed.

(1) The information system is of a Japanese retailer.
(2) The information system sells various items on the Inter-
net.
(3) This system takes orders directly from customers
through the Internet.
(4) There are operation managers for this system.
(5) Sometimes, operation managers suspend accepting or-
ders from the customers.

For instance, operation managers suspend accepting or-
ders when the number of orders is expected to be much
higher than the expected number of arrival of goods. The
operation managers also resume accepting orders.

5.2.2 Outlines of Requirement Defects Report

First, we analyze the requirement defect report from the sys-
tem development project of the analyzed system to examine
which requirement component description causes require-
ment defects.

We analyzed 332 requirement defect reports made after
the requirement definition phase, i.e., in the design, imple-
mentation, or the test phase. Table 5 lists the results of this
analysis. More than 75 % of the requirement defects came
from the defects of input, processing and output, i.e., the
machine world. Table 6 lists examples of requirement de-
fects regarding an actor’s situations, observable stimuli, and

684
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Table 5 Analysis results of requirement defects from actual system de-
velopment project.

Table 6 Examples of requirement defects regarding actor’s situations,
observable stimuli, and responses.

responses.

5.3 Analysis of Actor Interactions

In this section, we describe the actor interactions regarding
this case study. Table 7 lists the combination of managed
resources and their users.

5.3.1 Interaction between Customer and Commodity
Space

Figure 3 shows the interaction between a customer and a
commodity space. A commodity space consists of the com-
modity itself and the information system that manages the
commodity.

The set of customer’s statuses regarding the use of
the commodity space is {Non-possession, Ordering, Pos-
session}, and the set of commodity space’s statuses re-
garding being used by the customer is {Out-of-stock and
non-reserved, Out-of-stock and reserved, In-stock and non-
reserved, In-stock and reserved, Possessed, Discarded}. In

Table 7 Combination of managed resource and user.

Fig. 3 Interaction between customer and commodity space.

this case study, the commodity space is required to receive
orders that is out-of-stock. Therefore, two statuses should
be defined when the commodity space is “non-reserved”.

The set of observable stimuli and responses shared
by the two actors are {Order, Order cancellation, Payment,
Sending of item, Return of item, Refund, Discarding item}
“Discarding item” is the stimulus that is not shared by the
information system, i.e., the stimulus is assumed to be sent
directly from the customer to the commodity.

Courses of observable stimuli and responses based on
the cycles of the customer’s situation regarding the com-
modity space are described as follows. Nos. 4 to 7 are the
courses of observable stimuli and responses including the
“arrival of item” event.

(1) The customer orders an item in stock, makes a payment
for it, receives it, and finally discards it.
(Non-possession)⇒ Order⇒ Payment/Sending of item⇒
Discarding item⇒ (Non-possession)
(2) The customer orders an item in stock, makes a payment
for it, receives it, but returns it and is refunded.
(Non-possession)⇒ Order⇒ Payment/Sending of item⇒
Return of item/Refund⇒ (Non-possession)
(3) The customer orders an item in stock but cancels the
order.
(Non-possession) ⇒ Order ⇒ Order cancellation ⇒ (Non-
possession)
(4) The customer orders an item that is out of stock. The
item arrives later, and the customer makes a payment for it,
receives it, and finally discards it.
(Non-possession) ⇒ Order ⇒ Arrival of item ⇒ Pay-
ment/Sending of item ⇒ Discarding item ⇒ (Non-
possession)
(5) The customer orders an item that is out of stock. The
item arrives later, and the customer makes a payment for it,
receives it, but returns it and is refunded.
(Non-possession) ⇒ Order ⇒ Arrival of item ⇒ Pay-
ment/Sending of item ⇒ Return of item/Refund ⇒ (Non-
possession)
(6) The customer orders an item that is out of stock. The
item arrives later, but the customer cancels the order.
(Non-possession)⇒ Order⇒ Arrival of item⇒ Order can-

HATTORI et al.: PROPOSAL FOR REQUIREMENT VALIDATION CRITERIA AND METHOD BASED ON ACTOR INTERACTION
685

cellation⇒ (Non-possession)
(7) The customer orders an item that is out of stock, but the
customer cancels the order before the arrival of the item.
(Non-possession) ⇒ Order ⇒ Order cancellation ⇒ (Non-
possession)

Table 8 is the state transition table of the customer
based on the cycle of the customer’s situations. Table 9 is
the state transition table of the commodity space.

Table 8 State transition table of customer.

Table 9 State transition table of commodity space.

Table 10 Direct product of state transition tables of customer and commodity space.

Table 10 is the direct product of the two state transition
tables, i.e., the direct product of Tables 8 and 9. In Table 10,
an ordered pair of two actor’s statuses with no regular stim-
uli or responses is omitted.

5.3.2 Interaction between Operation Manager and Com-
modity Space

Figure 4 shows the interaction between an operation man-
ager and a commodity space.

The set of statuses of the operation manager regarding

Fig. 4 Interactions between operation manager and commodity space.

686
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

the interaction with the commodity space is {Still not accept-
ing orders, Accepting orders, Suspending accepting orders,
No longer accepting orders}. The set of statuses is the same
as that of the operation manager and commodity space.

Courses of observable stimuli and responses based on
the cycles of the operation manager’s situation regarding the
commodity space are described as follows.

(1) An operations manager makes a request to the commod-
ity space to start accepting orders, and then he/she makes a
request to terminate accepting orders.
(Still not accepting orders) ⇒ Start of accepting orders ⇒
Termination of accepting orders⇒ (No longer accepting or-
ders)
(2) An operations manager makes a request to the commod-
ity space to start, suspend, and resume accepting orders. Fi-
nally he/she makes a request to terminate accepting orders.
(Still not accepting orders) ⇒ Start of accepting orders ⇒
Suspension of accepting orders ⇒ Resumption of accept-
ing orders⇒ Termination of accepting orders⇒ (No longer
accepting orders)
(3) An operations manager makes a request to the com-
modity space to start, suspend accepting orders, and finally
he/she makes a request to terminate accepting orders. (After
suspension, there was no resumption of accepting orders)
(Still not accepting orders) ⇒ Start of accepting orders ⇒
Suspension of accepting orders⇒ Termination of accepting
orders⇒ (No longer accepting orders).

Table 11 is the state transition of the operation man-
ager. Table 12 is the state transition table of the commodity
space. Table 13 is the direct product of the two state tran-
sition tables, i.e., the direct product of Tables 11 and 12.
This state transition table is the same as that of the operation

Table 11 State transition table of operation manager.

Table 12 State transition table of commodity space.

manager and commodity space.

5.3.3 Interactions among Customer, Operation Manager,
and Commodity Space

Both the customer and the operations manager interact with
the commodity space. Therefore, it is necessary to exam-
ine the cycles of the commodity space interacting with both
users. Table 14 is the direct product of the state transition
tables of these three actors. Due to lack of space, Table 14
shows only when the operation manager’s statuses are “Ac-
cepting orders” and “Suspending accepting orders”. The
cells with only parentheses are described in the diagonal el-
ements of the table which give statuses of multiple actors.

In Table 14, we made the direct product of all the
statuses of the three actors, even when the consumer sta-
tus is “Non-possession” and the status of the commodity
space is “Discarded”. When the consumer status is “Non-
possession” and the status of the commodity space is “Dis-
carded”, the ordered triple of these two actors’ statuses and
that of an operation manager is not effective, i.e., does not
need to be considered. The direct product of the state tran-
sition tables, such as Table 14, is thought used by human re-
viewers mainly in the requirement definition phase. Human
reviewers are expected to judge the effectiveness of each or-
dered n-tuple of different actors’ statuses by understanding
the meaning of observable stimulus or responses in the cell.

5.4 Detectable Requirement Defects

We can examine observable stimuli and responses and their
related state transitions exhaustively using the direct prod-
ucts of the state transition tables of actors. If the concerned
stimuli or responses can be detected explicitly in the cell of
the direct product of the state transition tables, we can judge
that the requirement defects can be detected with our pro-
posed method.

We describe three types of detectable defects, which
can be detected with our proposed method with the exam-
ples of the requirement defects in Table 6.

Table 13 Direct product of state transition tables of operation manager
and commodity space.

HATTORI et al.: PROPOSAL FOR REQUIREMENT VALIDATION CRITERIA AND METHOD BASED ON ACTOR INTERACTION
687

Table 14 Part of direct product of state transition tables of customer, operation manager, and com-
modity space.

Note 1. In the status of “Accepting orders”, both Order and Order cancellation should be accepted.
Note 2. In the status of “Suspending accepting orders,” Order should NOT be accepted but Order cancellation SHOULD be accepted.

5.4.1 Detection of Necessary Alterations of Observable
Stimuli or Responses in State Transition Tables

Detectable defects can be found in Nos. 3 and 4 in Table 6.
Table 14 is the direct product of the state transition tables of
the three actors when the status set by an operation manager
is “Accepting orders” and “Suspending accepting orders”.
The gray-colored cells in Table 14 reflect these defects.

When the status set by an operation manager is “Sus-
pending accepting orders”, it is not possible to accept
an “Order request” from the customer. We can consider
whether we should accept an “Order cancellation request”
or not with the direct product of the state transition tables.
Usually, an “Order cancellation request” should be accepted
even when the status set by an operation manager is “Sus-
pending accepting orders”. We can detect the necessary al-
terations regarding how to deal with observable stimuli or
responses from a customer by using the direct product of the
state transition tables including that of operation managers.

5.4.2 Detection of Missing Stimuli or Responses Neces-
sary to Finish the Cycles of User’s Situation against
Commodity Space

Detectable defects can be found in No. 5 in Table 6. Ta-
ble 16 is the direct product of the state transition tables of
the three actors when the status of the operation manager is
“No longer accepting orders”. No. 5 in Table 6 occurs in
the gray-colored cell in Table 15, i.e., when the status of the
customer is “Ordering” and the status of the commodity is
“Out-of-stock and reserved”. If all items arrive, even after
accepting orders has terminated, the cycles of the customer’s
situation can be completed. However, it is necessary to can-
cel existing orders because the items do not always arrive
in the commodity space. In this case, it is normal to cancel
orders from the commodity space, not from the customer.
By “Order cancellation”, the status of the customer transits
to “Non-possession” and the status of the commodity space
transits to “Out-of-stock and non-reserved”. If the project
members were conscious that the cycles of the customer’s
situation must be completed, the missing observable stimuli
or responses detected in No. 5 would have been detected.

688
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Table 15 Direct product of state transition tables when status set by operation manager is “No longer
accepting orders”.

Note 1. Normally it is the commodity space that should trigger “Order cancellation”.

Table 16 State transition table of operation managers.

Note 1. Stimuli from operation managers are unacceptable after the com-
modity space transits to the status after accepting the stimuli.
Note 2. Resumption is acceptable only when the status of the commodity
space is “Suspending accepting orders”.

5.4.3 Clarification of Observable Stimuli That Should be
Rejected in Certain Status

Detectable defects can be found in Nos. 6 and 7 in Table 6.
Observable stimuli that should be rejected can be clar-

ified by examining another type of state transition table. Ta-
ble 16 is the state transition table of the commodity space
where the vertical dimension indicates the observable stim-
uli, the horizontal dimension indicates the current states,
and the cells contain the next status. We judged that these
defects can be regarded as detectable as a result of clarifi-
cation of actor’s statuses and stimuli/responses of our pro-
posed method.

For example, once the commodity space receives the
“Start Request” from the operation manager, the commod-
ity space sends “Start Acceptance” to the operation manager
and leads to the status “Accepting orders”. We can con-
sider how the commodity space, with the state “Accepting

orders”, should do if it receives “Start Request” again in one
of the gray-colored cells in Table 16. We can consider what
the commodity space should do if it receives a request from
the operation manager, when the commodity space’s status
already transited to the status after the request has been re-
ceived. We can clarify what the commodity space should
do when it receives “Resumption Request” in each status by
considering the other gray-colored cells in Table 16.

5.5 Undetectable Requirements Defects

Undetectable defects can be found in Nos. 1 and 2 in Table 6,
which are the defect reports regarding the actor’s situation
when the operation manager is the actor.

In No. 1, it is necessary to clarify what kind of opera-
tion manager’s situation should produce the stimulus “Sus-
pension request”. For example, if the expected amount of
orders is more than N times larger than the expected amount
of arrivals, it may be necessary to suspend accepting orders.
Also, in No. 2, it is necessary to clarify what kind of oper-
ation manager’s situation should produce the stimulus “Re-
sumption request”. These situations should be elicited from
the stakeholders and are difficult to detect by the examiners.

It may be possible to clarify some cycles of the op-
eration manager’s situation based on the amount of orders
and arrivals. However, there still remain situations that are
difficult to clarify. For example, the suspension of receiv-
ing orders can occur due to heuristic decisions of operation
managers in real system operation. There are various un-
predictable situations and stimuli in the real world, and it is
often the operation managers who must first respond to such
stimuli.

In this case study, all defects regarding an actor’s situ-
ation were those of operation managers. However, there are

HATTORI et al.: PROPOSAL FOR REQUIREMENT VALIDATION CRITERIA AND METHOD BASED ON ACTOR INTERACTION
689

Table 17 Relationship between examined interactions and number of
detected defects.

other actors’ situations that cannot be detected with the pro-
posed method unless they are elicited from the stakeholders.

5.6 Results from Hypothesis Verification

Table 17 shows the relationship between the examined inter-
actions of the actors and the number of detected defects. In
this case study, all detectable defects are regarding observ-
able stimuli and responses. The ratio of defects that can be
detected with the proposed method to all defects is 7.2 %,
i.e., the ratio of all defects regarding observable stimuli and
responses in Table 5.

Therefore the hypothesis, which was set in Sect. 5.1,
was affirmed by this case study.

The reasons above are that, in requirement defects re-
ports of actual system development projects, there were a
number of defects that could be detected using the proposed
method. We could detect some defects by validating the
necessary alterations of observable stimuli or responses in
the direct product of the state transition tables of multiple
actors. We also could detect some missing observable stim-
uli or responses by examining whether the cycles of a user’s
situation are complete.

6. Discussion

6.1 Relationship between Examined Interactions and
Number of Detected Defects

Table 17 shows the relationship between the examined in-
teractions of the actors and the number of detected defects
regarding observable stimuli and responses. In Table 17, no
defects could be detected in the examination of the interac-
tions between the customer and the commodity space. Also,
in the examination of the interactions between the operation
manager and the commodity space, only the defects regard-
ing the observable stimuli, which should be rejected in cer-
tain statuses, were detected. All defects regarding missing
or defective stimuli and responses were detected in the ex-
aminations of the three actors, i.e., the customer, operation

Table 18 Work item and Man-hours of our analysis.

Table 19 Defect detection rate. (No. of defects/man-hour)

manager, and commodity space. It is obvious that this is be-
cause the examination of interactions becomes more difficult
and tends to be omitted as the number of actors increases.

6.2 Ratio of Detectable Defect in All Requirement Defect
Reports

In Table 5, the ratio of defects that can be detected with our
proposed method to all defects is 7.2 %, i.e., the ratio of de-
fects regarding observable stimuli and responses. This num-
ber may not seem high, but we believe that in the require-
ment definition phase, defects regarding observable stimuli
and responses are more severe than those in input, process-
ing, and output because they are produced as a result of real-
world analysis. We first heard this opinion from the project
manager of the analyzed system development project. We
believe that the requirement validation criteria and method
based on actor interaction can contribute to the improvement
in the quality of requirement definitions.

6.3 Efficiency of Requirement Defect Detection

Efficiency of a defect detection method is usually evaluated
by defect detection rate, i.e., the number of detected defects
per man-hour. In our case study, we did not first analyze
the requirement specifications but the requirement defect re-
ports after finishing the requirement definition phase. We
calculated the provisional defect detection rate of our pro-
posed method from the time required in our analysis.

Table 18 shows the work item and the time required
of our case study. In preparation phase, we analyzed 332
requirement defect reports, found defects regarding actor’s
situation, observable stimuli, and responses and then ana-
lyzed the requirement specifications. Then we performed
our method from Steps 1 to 5 in Sect. 3.4.

We consumed 149.5 man-hours and found 24 defects
regarding observable stimuli and responses are detectable.
The defect detection rate was 0.161 defects per man-hour.
Berlin et al. conducted an industrial case study of the veri-
fication and validation activities including inspection for re-
quirement specifications [9]. Table 19 lists their results. We
judged that their case study can be compared with ours be-
cause they calculated the defect detection rate divided by
the time spent for preparation as well as the review meet-
ings, they gathered data only from formal inspections, and
their requirement specifications are relatively mature. The

690
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Table 20 Effect of cost reduction to fix requirement defects at each development phase.

efficiency of our requirements defect detection method is al-
most the same as theirs.

6.4 Effect of Cost Reduction of Proposed Method

We calculated the assumed effect of cost reduction if our
proposed method was applied and all defects regarding ob-
servable stimuli and responses were detected in the require-
ment definition phase. We assume that the cost to fix a re-
quirement defect is unchanged if it is detected in the same
development phase. We define E, the total cost to fix re-
quirement defects, as follows.

E =
∑

Ci × Xi,

where Ci is the cost to fix a requirement defect phase and Xi

is the number of requirements frozen at each development
phase.

Table 20 shows the assumed numbers of requirements
frozen, the cost to fix requirement defects and change of
required cost at each development phase. In Table 20, we
referred to Mogyorodi [1] for the assumed value of relative
cost to fix a requirement defect. We referred to Sanker et
al. [10] for the assumed percentage of requirements frozen
because we could only obtain the number of requirement
defects after finishing the requirement definition phase.

In Table 20, the total cost to fix requirements defects
decreases by 356, although the cost increases by 24 at the
requirements definition phase. Our proposed method can be
used to reduce 5.99 % of the total cost for fixing requirement
defects. This means that our method can contribute to the
success of a software development project because it can
decrease the total cost of the development project.

7. Related Work

In goal-oriented approaches, the i* framework is popular
for analyzing dependencies between actors [7]. However,
validating the completeness of the model is reported to be
difficult, especially when this method is applied to an in-
dustrial case with a large number of actors [11]. Yamamoto
et al. proposes an actor relationship matrix method (ARM),
which clarifies the dependencies between actors in a cell of
the table [8]. ARM is a rather easy and practical method,

which enables requirement engineers to better ensure com-
pleteness of requirements between actors than with the i*
framework. Our proposed method is intended for more pre-
cise and complete analysis of requirements, especially for
an actor’s situation and related stimuli and responses.

A problem frame is a method for analyzing problems in
the real world rather than inventing solutions [3]. A problem
diagram is made up of requirements, real-world domains,
a machine, and the links of phenomena they share. Vari-
ous methods are proposed for describing further details of
each element. Classen et al. use Event Calculus [12], Seater
et al. use the Alloy Analyzer and its language [13], Salifu
et al. uses a state chart to describe events in real-world
domains and related behavior when they analyze require-
ments for context awareness applications [14], and in our
method, state transition tables are used for precise descrip-
tion of events, i.e., stimuli and responses in the real-world
domain.

Leveson describes the following seven types of com-
pletion criteria for requirement analysis [15].

(1) Human-Computer Interface Criteria
(2) State Completeness
(3) Input and Output Variable Completeness
(4) Trigger Event Completeness
(5) Output Specification Completeness
(6) Output to Trigger Event Relationships
(7) Specification of Transitions Between States

It seems difficult to validate completeness of all these types
due to the limitation of cost or scheduling. However, if these
completion criteria are not considered, the project may be
too optimistic in estimation of effort, cost, or scheduling.
Our proposed method can be used to validate Leveson’s
completion criteria effectively. By regarding a human op-
erator as an active actor and a computer as a passive actor,
we can validate the completeness of a trigger or stimulus
and output an event or response. We can also validate the
completion of a status by examining an actor’s situation.

State machine-based formalism, such as labeled transi-
tion systems (LTS), are expected to describe more complete
requirement specifications. Uchitel et al. propose an algo-
rithm for translating scenarios into behavioral specification
with LTS [16]. They also propose using partial LTS to clar-
ify the remaining definition of system behavior [17]. Our

HATTORI et al.: PROPOSAL FOR REQUIREMENT VALIDATION CRITERIA AND METHOD BASED ON ACTOR INTERACTION
691

proposed method can also be useful for translating require-
ment specifications into LTS.

8. Conclusions and Future Work

We proposed requirement validation criteria and a method
based on the interaction between actors. We focused on the
relationship between active and passive actors and stimuli
and responses between them. An active actor has cycles of
his/her/its situations against a passive actor, and both actors’
situations can be described in a state transition table, which
describes observable stimuli or responses the actors send or
receive. Examination with the direct product of the state
transition tables of the concerned actors enables us to detect
missing or defective requirements, i.e., missing or defective
observable stimuli or responses. As a case study, we ana-
lyzed requirement defect reports of an actual development
project of the core business system in a Japanese company.
We found that there are a certain amount of defects regard-
ing stimuli and responses, which can be detected with our
proposed method if this method is used in the requirement
definition phase.

For future work, we are planning to apply our proposed
method to an actual system development project from the
beginning of the requirement definition phase.

References

[1] G. Mogyorodi, “Requirements-based testing: An overview,” Proc.
39th International Conference and Exhibition on Technology of
Object-Oriented Language and Systems (TOOLS’01), pp.286–295,
2001.

[2] D. Svetinovic, D.M. Berry, and M. Godfrey, “Concept identification
in object-oriented domain analysis: Why some students just don’t
get it,” Proc. 13th IEEE International Conference on Requirements
Engineering (RE’05), pp.189–198, 2005.

[3] M. Jackson, Problem Frames: Analysing & Structuring Software
Development Problems, Addison-Wisley Professional (ACM Press),
2000.

[4] IEEE Computer Society, IEEE Recommended Practice for Software
Requirements Specifications, IEEE Std., 830–1998, 1998.

[5] J. Verner, K. Cox, S. Bleistein, and N. Cerpa, “Requirements en-
gineering and software project success: An industrial survey in
Australia and the U.S.,” Australian J. Information Systems (AJIS),
vol.13, no.1, pp.225–238, 2005.

[6] D. Damian and J. Chisan, “An empirical study of the complex re-
lationships between requirements engineering processes and other
processes that lead to payoffs in productivity, quality, and risk man-
agement,” IEEE Trans. Softw. Eng., vol.32, no.7, pp.433–453, 2006.

[7] i*: http://www.cs.toronto.edu/km/istar
[8] S. Yamamoto, K. Ibe, J. Verne, K. Cox, and S. Bleistein, “Ac-

tor relationship analysis for the i* framework,” Proc. 11th Interna-
tional Conference on Enterprise Information Systems, (ICEIS 2009),
LNBIP, vol.24, pp.491–500, Springer-Verlag, Heidelberg, 2009.

[9] T. Berling and T. Thelin, “An industrial case study of the verification
and validation activities,” Proc. 9th International Software Metrics
Symposium (METRICS’03), pp.226–238, 2003.

[10] K. Sankar and R. Venkat, “Total requirements control at every stage
of product development,” Proc. 15th IEEE International Require-
ments Engineering Conference (RE’07), pp.337–342, 2007.

[11] H. Estrada, A. Martı́nez, O. Pastor, and J. Mylopoulos, “An exper-
imental evaluation of the i* framework in a model-based software

generation environment,” CAiSE 2006, E. Dubois, K. Pohl, eds.
LNCS, vol.4001, pp.513–527, 2006.

[12] A. Classen, P. Heymans, and P.Y. Schobbens, “What’s in a feature:
A requirements engineering perspective,” Proc. 11th International
Conference on Fundamental Approaches to Software Engineering
(FASE’08), LNCS, vol.4961, pp.16–30, 2008.

[13] R. Seater and D. Jackson, “Requirement progression in problem
frames applied to a proton therapy system,” Proc. 14th IEEE Interna-
tional Conference on Requirements Engineering (RE’06), pp.166–
175, 2006.

[14] M. Salifu, Y. Yu, and B. Nuseibeh, “Specifying monitoring problems
in context,” Proc. 15th IEEE International Conference on Require-
ments Engineering (RE’07), pp.211–220, 2007.

[15] N. Leveson, SAFEWARE: System Safety and Computers, Addison-
Wesley, 1995.

[16] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of behavioral models
from scenarios,” IEEE Trans. Softw. Eng., vol.29, no.2, pp.99–105,
2003.

[17] S. Uchitel, J. Kramer, and J. Magee, “Behavior model elabora-
tion using partial labelled transition systems,” Proc. 11th ACM
SIGSOFT Symposium on Foundations of Software Engineering
(FSE’03), pp.19–27, 2003.

Noboru Hattori is an associate researcher,
at the Center for Applied Software Engineer-
ing, Research and Development Headquarters of
NTT DATA Corp. Currently he is also a Ph.D.
student at the Graduate School of Systems En-
gineering at Wakayama University. He received
his B.Ec from Keio University and joined NTT
DATA Corp. in 1989. He has worked in re-
search and development of communication pro-
tocols, empirical software engineering, and re-
quirements engineering.

Shuichiro Yamamoto is a Professor in
the Headquarter of Information and Commu-
nication Services Information and Communi-
cation Planning Office at Nagoya University,
Japan. Previously, he was engaged in the de-
velopment of programming languages, CASE
tools, network-based smart card environments,
and distributed application development plat-
forms. His research interests include distributed
information systems, requirements engineering,
ubiquitous computing, Knowledge creation and

Knowledge management. He joined NTT in 1979. He received his B.S. in
information engineering from Nagoya Institute of Technology in 1977, and
his M.S. and Ph.D. in information engineering from Nagoya University in
1979 and 2000. He joined NTT DATA Corp. in 2002 and had been Deputy
Senior Executive Manager (2002–2007). He had also?been Research Fel-
low and Director of Research at the Institute of System Science (2007–
2009), Research and Development Headquarters of NTT DATA Corp.

692
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Tsuneo Ajisaka is a Professor in the Faculty
of Systems Engineering at Wakayama Univer-
sity, Japan. He has been a researcher and edu-
cator of software engineering with Kyoto Uni-
versity (1985–1997, assistant/associate profes-
sor) and Wakayama University (1997–). His re-
search interests include software analysis/design
methods, requirements engineering, and pro-
gram comprehension. He received his B.S. in
physics and his M.E. and Ph.D. in informatics
from Kyoto University.

Tsuyoshi Kitani is Deputy Senior Execu-
tive Manager, Research and Development Head-
quarters, NTT DATA Corp. He started his re-
search career at a NTT Research Laboratory af-
ter receiving his B.S. in Electrical Engineering
from Keio University in 1983. At the labora-
tory, he did research in the area of natural lan-
guage processing, particularly word segmenta-
tion from Japanese text. After he joined NTT
DATA Corp. in 1988, he joined the Center for
Machine Translation, Carnegie Mellon Univer-

sity as a visiting researcher where he stayed from 1991 to 1993. His re-
search included information extraction, information retrieval and text cate-
gorization. He received his Ph.D. in electrical engineering from Keio Uni-
versity in 1995. He now sees software engineering R&D at NTT DATA
Corp.

