394

IEICE TRANS. INF. & SYST., VOL.E78-D, NO.4 APRIL 1995

| PAPER

An Analysis of Traceability in Requirements Documents

Kenji TAKAHASHI' and Shuichiro YAMAMOTO', Members

SUMMARY We study the correspondence between problem de-
scriptions and requirements specification documents derived from
them. Based on the results of this investigation, a model that integrates
the problem space and the requirements specification space is devel-
oped. This integration is based on a semantic network representation.
We also propose a model of the requirements elicitation process that is
consistent with our empirical studies of traceability in requirements
documents. In this process, analysts derived requirements specifica-
tions from incomplete and ambiguous problem descriptions given by
customers, identify missing information, completed it, and then decide
the system boundaries that define which part of the problem descrip-
tions to implement as the target system. The model can be used to
complete problem descriptions given by customers and determine the
system boundaries.

key words: requirements analysis, traceability semantic network, em-
pirical study

1. Introduction

The requirements elicitation process is the first phase of soft-
ware development. During this process, analysts learn about
the problem space in which target systems should operate
based on problem descriptions given by customers. The
analysts then determine the system boundaries that define
which activities in the problem descriptions should be
implemented as facilities of the target systems. However,
the problem descriptions are often incomplete and ambigu-
ous, and even customers do not know what facilities the tar-
get systems should provide. To compensate for this missing
information and to make design decisions, analysts employ
their experience and domain knowledge to make assump-
tions about the problem spaces and the target systems.
These assumptions cause three major problems in the
requirements elicitation process: poor traceability, inad-
equate domain knowledge, and imprecise capturing of cus-
tomers’ needs [1]. Correspondence between the problem de-
scriptions and the requirements specification documents are
difficult to trace because assumptions that are never explic-
itly recorded are added to the requirements specification
documents. This causes difficulties in understanding and re-
viewing the requirements, and in carrying out impact analy-
sis when modifying them. Neither the underlying domain
knowledge about the target systems nor their environments
are explicitly described in the requirements documents,
which makes the requirements elicitation process difficult to

Manuscript received April 7, 1994.
+ The authors are with NTT Software Laboratories,
Musashino-shi, 180 Japan.

support or automate. Lastly, the necessary features that the
target systems lack are seldom detected until the systems are
implemented, which leads to costly modifications from the
requirements documents through to the programs. Analysts
typically grope unsystematically for ways to discover all
customer needs. A more structured process model is needed
to support this process.

To understand and support the analysts’ informal as-
sumption-making process, we have analyzed the correspon-
dence between problem descriptions and requirements
specification documents produced by professional analysts.
This analysis shows how to compensate for the missing in-
formation and determine the system boundaries. The analy-
sis also explains the kinds of knowledge used in practice.
Based on these results, a model of the requirements elicita-
tion process is proposed to systematically support the proc-
€ss. ‘

2. An Analysis of Traceability in Requirements Docu-
ments

2.1 Procedure

To study the requirements analysis process, two professional
analysts were asked to produce a requirements specification
document from a short problem description and then to ex-
plain which part of the problem description each constituent
of the documents originated from and why. The analysts
were also asked which parts of the specification documents
were needed to complete the system requirements and why
they were included. The analysts were interviewed and
asked to explain their reasoning in detail.

The target system was a small transaction system for
managing technical conferences (Fig. A-1). The size of the
final program is about 6 KLOC. The problem description
was prepared in Japanese. As requirements specification
documents, data flow diagrams (DFDs) and data structured
diagrams (DSDs) were produced according to the Structured
Analysis [2]. Each analyst was responsible for one type of
diagram, but they frequently discussed design issues in the
process of producing the documents, and reviewed them
jointly.

Both the subjects were experienced professional ana-
lysts with more than five years experience in software devel-
opment, including more than a year in Structured Analysis.

TAKAHASHI and YAMAMOTO : AN ANALYSIS OF TRACEABILITY IN REQUIREMENTS DOCUMENTS

2.2 Results

Some constituents of the requirements specification docu-
ments (DFDs and DSDs) corresponded to parts of the prob-
lem description in a straightforward manner. However,
other constituents were added by the analysts based on their
assumptions. ‘

Our analysis shows that each bubble (or process) in the
DFDs corresponds to a verb phrase in the problem descrip-
tion. Such verb phrases occur in sentences that describe ac-
tivities to be implemented as facilities of the target system.
Some words in the problem description phrase, however, are
changed in the DFD process name into words that appropri-
ately represent the process of the computer system. They
retain the same meaning however.

Noun phrases related to the verb phrase, such as its ob-
jects, also correspond to data flows or data stores in DFDs.
The structures of these objects are described in DSDs. For
example, “Each session is given a room” is interpreted as a
“distribute rooms” process with data flows to and from a
“room management file.”

The analysis also shows which parts of the documents
were added to complete the system requirements, what deci-
sions were made to determine the system boundary, and
what kinds of knowledge these processes were based on.

Complements
The subject analysts constructed the “current” problem
space before some of the activities in it were supported or
replaced by the target system’s facilities. They completed
the problem description by adding missing information
about activities, things, and relationships. For example,
agents of activities are sometimes omitted in passive sen-
tences in the problem description. Necessary but adjunct ac-
tivities, such as exception-handling, also tend to be omitted.
Missing information falls into the following categories.
- agents of activities occurring in the problem space

(e.g., applications would be canceled by “applicants™)
- activities that need to be carried out in order to fulfill a part

of the problem description

(e.g., applications should be “checked™)
- things concerning activities and their inter-relationships

* sources of activities

(e.g., “rooms in the room management file” are distrib-

uted to sessions)

* targets of activities

(e.g., results of the review are sent to the “authors”)

« condition of activities

(e.g., rooms are assigned according to “time and capac-

ity”)

* results of activities

(e.g., “accepted papers” results after reviewing them)

» part-of relationships between things and other things

that aggregate related ones

(e.g., fee is a “part of call-for-participation”)

» kind-of relationships between things and other things

that abstract related ones

395

(e.g., capacity of a session is a kind of condition to de-
cide rooms)

* goal-subgoal relationships between activities

(e.g., “to generate call-for-papers” is a subgoal of “to
invite participants”)

* synchronization relationships between activities
(e.g., “to submit a paper” is asynchronous to “to review
a paper”)

* constraints between things

(e.g., “the number of participants” must not exceed “the
capacity”)

Determination of system boundaries

A system boundary determines which part of the problem
space is implemented as system facilities. Even when the
description of the problem space is complete, the system
boundary may remain undecided. To determine the bound-
ary, the subjects decided whether the agent of an activity
should be the target system or some other agents, such as a
user or external system. For example, the review of papers
should be done by humans. The management of rooms,
however, can be done by the target system.

Mutual complement of requirements specification docu-
ments ‘

The subjects detected errors by checking the consistency be-
tween each other’s documents. They also checked the con-
sistency between the DFDs and DSDs. The same data de-
pendencies were expressed differently in DFDs and DSDs,
so errors were detected by comparing the dependencies in
the DFDs with those in the DSDs or vice versa.

2.3 Consideration

Further analysis of the rationale for assumptions made by the
subjects shows that two kinds of knowledge are used in elic-
iting requirements: knowledge of the problem domain and
system implementation plans.

Problem domain model
The problem domain model represents who does what for
what purpose, and what things are in the domain where the

* target system operates. By using this model, the subjects

could infer the information missed out of the problem
description and understand the problem space. For example,
based on fragments of descriptions about “chairmen,”
“rooms,” and “time,” the subjects imagined a scenario of the
activities of chairmen, e.g., “chairman arranges a session.”
For this, the chairman must go to a “room™ at a particular
“time,” before which the chairman must know the room and
the time. Based on this scenario, the analysts added a new
requirement for a notification facility for rooms and time
slots to the requirements specifications.

System implementation plans
The subjects used system implementation plans, that is, tem-
plates of processes frequently found in systems for a do-

396

main, to implement activities in the domain. These plans
consisted of one or more abstract activities whose agent is
the target system, and the relationships between the activi-
ties. Requirements specifications were constructed by using
instantiated system implementation plans.

Our analysis reveals the following six plans for imple-
menting activities in the problem space.

- resource distribution plan that distributes finite resources
according to demands (e.g., rooms are distributed among
the sessions).

- editing and printing plan that merges different kinds of
data into a certain format, such as a table, and prints it out.
(e.g., programs of tutorials and technical sessions are
merged into a call-for-papers).

- data storing plan that stores data to retrieve and use when
the information is generated and used asynchronously
(e.g., applications are stored because an application is not
always received and canceled sequentially).

- input analyzing plan that checks external inputs and accu-
mulates them (e.g. application forms are checked before
being processing).

- notification plan that notifies externals, such as users.
(e.g., results of reviews are sent to authors).

- constraints maintenance plan that maintains constraints
between things (e.g., the number of attendees is managed
to keep it within the capacity limit).

3. A Model of the Requirements Elicitation Process

A model of the requirements elicitation process has been de-
veloped based on our analysis (Fig. 1). This model consists

Problem space

IEICE TRANS. INF. & SYST., VOL.E78-D, NO.4 APRIL 1995

of a problem space and a system requirements specification
space. The problem space represents the space where the
problems to be solved occur. When analyzing information
systems, such as the technical conference management sys-
tem used in this analysis, the tasks in work places — that is,
who does what for what purpose — are represented in the
problem space. The system requirements specification
space represents the system requirements specifications of
target systems that solve the problems. Different aspects of
the system requirements specifications are documented in
different kinds of diagrams or formats. In this analysis, the
behavioral aspects of the system specification are repre-
sented in the DFDs.and the structural aspects in the DSDs.

Analysts elicit requirements specifications by using
these two spaces opportunistically. They first read and inter-
pret problem descriptions to construct the problem space by
inferring the missing information about activities in the
problem description and relating that information to the
problem domain model. Next, the analysts recognize activi-
ties to which system implementation plans can be applied
and supply the missing constituents of those plans to the
problem description to finalize the system requirements
specification space.

In this model, system requirements specifications are
specified by deciding which activities in the problem space
are implemented as system facilities. Thus, the system re-
quirements specification space is part of the problem space.
The analysts also elaborate system specifications by using
complementary aspects of the system requirements specifi-
cation spaces represented as corresponding diagrams, such
as DFDs for the behavioral aspect.

Problem description

Interpretation

System Requirements Specification space

mutually complementing

» completing a behavior description
* relating behaviors

O‘Oﬁp recognizing system implementation plans
/ » completing system implementation plans

mutually complementing

gy

s
S FZFT) S S

Data Flow diagrams

Data Structure diagrams

Fig. 1 Overview of the requirements elicitation process model.

TAKAHASHI and YAMAMOTO : AN ANALYSIS OF TRACEABILITY IN REQUIREMENTS DOCUMENTS

Semantic networks are used to represent the problem
space and system requirements specification space in a uni-
form manner. The requirements elicitation process can be
modeled as operations on those networks, such as insertion
and deletion of nodes and arcs.

3.1 Semantic Network Representation

The requirements elicitation process model is represented by
using semantic network representation. This representation
is used for two reasons. First, it has been used to represent
the intellectual activities of humans in studies of artificial
intelligence and natural language processing [3], [4]. Thus,
it can be used to represent these activities in the problem
space. Next, semantic networks can be used to represent
various aspects of system requirements specifications in a
uniform manner [5], [6]. Because most requirement specifi-
cations documents are represented by network' diagrams,
such as DFDs and DSDs, these diagrams can be uniformly
represented by using the semantic network. This uniform
representation lets analysts detect inconsistencies between
different aspects of the specifications and to analyze the im-
pact of fixing them. ‘

Problem spaces and system requirements specification
spaces can also be integrated by representing both of them in
uniform semantic networks. This integration enables each
task of the elicitation process to be executed as an operation
of the semantic network.

Representation of problem spaces

A problem space consists of activities and their inter-rela-
tionships. Based on the concept of case grammar [7], an
activity is represented by an action and the things corre-
sponding to its cases: namely, an agent, objects, targets, re-
sults, and conditions. In a sentence, the verb phrase basi-
cally correspond to an action and the noun phrases to the
cases. There are three kinds of relationships between things:
kind-of, part-of, and constraint relationships; and two kinds
of relationships between activities: asynchronous and goal-
subgoal relationships. Based on this analysis, semantic net-

N

activities

397

works that represent the problem space should have the

eleven kinds of arcs listed below (also Fig. 2 and Fig. A-2).

These arcs and cases can be naturally enhanced by creating

or modifying them to fit the problem domains [8].

AGENT: relationship between an action and one of its
agents

OBYJ: relationship between an action and one of its objects

SOURCE: relationship between an action and the source of
an object

TO: relationship between an action and one of its targets

CAUSE: relationship between an action and one of its re-
sults

CONDITION: relationship between an action and one of its
conditions

GOAL.: relationship between an activity and one of the goal
activities to be accomplished through the activity

ASYNCHRO: relationship between an activity and a thing
that is used asynchronously by others

PART_OF: relationship between a thing and one of its con-
stituents

KIND_OF: relationship between two things of the same type

CONSTRAINT: relationship between a thing and something
that constrains it

Representation of system requirements specification

spaces

The system requirements specification space consists of ac-

tivities and things extracted from the problem space: activi-

ties to be implemented as facilities of the target system and

things related to the activities. Each aspect of the system

requirements specification space is represented in a different

kind of diagram. The space consists of the following:

- Actions to be implemented,

- Agents of the actions above and externals to the system,

- Things having a relationship except an AGENT relation-
ship with the actions above,

- Things having a PART_OF relationship with the things
above, and

- Relationships among these actions and things. (OBJ rela-
tionships fall into one of two categories depending on

Fig.2 Semantic network representation.

398

whether the object is an input or an output of the system.
An1_OBJ relationship is for an input and indicates that the
object already exists. An O_OB]J relationship is for an
output and indicates that the object results from the ac-
tion.)
Figure A-2 shows a part of the semantic network repre-
sentation, which corresponds to the third paragraph of the
problem description shown in Fig. A-1.

Representation of DFDs

The semantic network representation of a data flow diagram

is extracted from the system requirements specification

space. This is done by removing the intermediate constitu-

ents of data structures not appearing in the DFD (Fig. A-3).

This semantic network representation corresponds to a DFD

as follows:

- An action and things that have I_OBJ or O_OBJ relation-
ships with the action correspond to a process

- Things that have I_OBJ, CONDITION, or SOURCE rela-
tionships with actions correspond to input data flows.

- Things that have O_OBJ or CAUSE relationships with ac-
tions correspond to output data flows. Things that have
PART_OF relationships with these things correspond to
input data flows.

- Constituents of output flows correspond to those of input
flows or data stores.

- Constituents of input flows correspond to those of output
flows or data stores.

- Things that have an ASYNCHRO relationship with ac-
tions correspond to data stores.

Representation of DSDs

The semantic network representation of a data structure dia-

gram is also extracted from the system requirements specifi-

cation space. It represents the part-of relationships between

things in the space (Fig. A-4). In the network, however,

DSD modifiers, such as selection, are not currently repre-

sented because part-of relationships are sufficient to repre-

sent the system’s functionality. Correspondences between

the semantic network representation and a DSD are as fol-

lows:

- Things that have no PART-OF relationship with other
.things correspond to a root node of a data structure

- Things that have PART-OF relationships with these things
above correspond to constituents of that data structure.

3.2 Representation of Requirements Knowledge

The knowledge analysts used to elicit requirements is repre-
sented by the semantic networks. There are two kinds of
knowledge: problem domain models and system implemen-
tation plans. Problem domain models represent knowledge
about activities and things in a problem domain. These mod-
els can be represented by a semantic network and problem
spaces are a part of them. System implementation plans are
also represented as a set of “abstracted” activities and related
things in these networks. Names of nodes in the semantic

IEICE TRANS. INF. & SYST., VOL.E78-D, NO.4 APRIL 1995

network are abstracted to be independent of problem do-
mains. System requirements specification spaces consist of
instantiated plans.

3.3 Requirements Elicitation Process Model

The tasks in the requirements elicitation process are repre-
sented as operations in the semantic networks. There are
three tasks in this process: inferring missing information
from problem descriptions, determining the system bound-
aries, and validating consistency among system require-
ments specifications.

Inferring missing information from problem descrip-
tions :

In the problem space, each activity is first completed by
identifying essential cases not described in the problem de-
scription and filling them out. Next, relationships between
activities are formed, such as goal-subgoal and synchroniza-
tion relationships. These operations are based on the prob-
lem domain space model. System implementation plans are
also used to complete the problem space. They are identified
in the problem space, and any missing constituents are added
to the semantic network.

Determining system boundaries

After completing the problem spaces, the analysts determine
which part of the spaces should be implemented as system
facilities (Fig. A-2). There are two steps in this process: se-
lecting candidates from the entire problem space, and then
determining which: activities to implement based on these
candidates.

In the first step, the analysts identify a minimal set of
candidate activities that are explicitly described in problem
descriptions, and extend the minimal set by adding candi-
dates to make use of information created by the set. They
first focus on the goal-subgoal structure of activities in the
problem space. Each leaf node, that is, a node in the lowest
layer of the structure, corresponds to a system implementa-
tion plan. If an activity in the problem description is detailed
enough to correspond to a system implementation plan, it is
selected as an implementation candidate. Otherwise, the
analysts must refine the activities so they are detailed
enough to correspond to the plans. The analysts also select
as additional candidates those activities that use the informa-
tion resulting from activities already selected as candidates
and activities that are under leaf nodes of activities in the
problem description.

For example, the activities, “make a presentation” and
“distribute rooms,” are described in the problem description
(Fig. 3). The latter corresponds to the resource distribution
plan and creates information about “time” and “room.” An
activity, “be sent a notification about the room and time,” is
a leaf node of the goal, “make a presentation,” and uses the
room and time information. Thus, this activity is imple-
mented as a system facility, even if it is not directly referred
to in the problem description. An analyst compensates for

TAKAHASHI and YAMAMOTO : AN ANALYSIS OF TRACEABILITY IN REQUIREMENTS DOCUMENTS

write a
presentation
manuscript,

go to the
room at the
e
know the .
oom and time,

notification
plan

make a presentation

399

legend

activity
in problem
description

Tesource
distribution
plan

goal_subgoal

system
implementatio;

plan

Fig.3 Determining system boundaries.

/

\\\\\\\\\\“’/ff////
S\, Detect 7,

l I Data Flow Diagram

a dataflow /

oF %,
4// eﬂcten%\\
J’//f/ﬂ\\\\\\

Semantic network representation of DFD

E::

Data Structure Diagram

PART OF

Semantic network representation of DSD

conS|stency checking
Fig. 4 Consistency checking between DFDs and DSDs.

these intermediate activities — such as “know the room and
time” and “go to the room at the time” — to elicit this facility
in his mind.

Next, according to constraints (such as performance
and cost) and user intentions, the analysts determine which
of the candidate activities are to be implemented as system
facilities. This process has yet to be closely investigated.

Validating consistencies among the system requirements
specifications
System requirements specifications are elaborated through
reviews from various aspects represented in different dia-
grams. These diagrams are complementary to each other,
representing the same or related information. For example,
DFDs and DSDs represent the same data dependencies in
different ways. By representing these shared or related
pieces of information in a uniform semantic network and
comparing them, analysts can check the validity of consis-
tencies between the diagrams.

For instance, errors in the diagrams can be detected by
comparing the data dependencies represented in the DFD

and DSD (Fig. 4). As a sanity check, the analysts use a heu-
ristic concerning data dependencies of DFDs; “constituents
of output data flows of a process should be included in input
data flows; conversely those of input data flows should be
included in output data flows.” According to this heuristic,
this DFD states that X consists of a and b, whereas the DSD
says that X consists of a, b, and c. In this way, a possible
deficiency of data flow c is found by comparing these two
representations. This heuristic is too restrictive, though, in
the sense that it detects dataflows that are not necessarily
incorrect. It is true that input and output dataflow constitu-
ents do not always match (e.g. those of a filtering process).
However, unmatched constituents are usually few and, if
any, analysts have only to check the validity of a few de-
tected unmatched constituents, which reduces the analysts’
works and ensures the validity of the requirements specifica-
tion diagrams. In addition, detected relationships between
unmatched constituents are utilized in creating different
kinds of programs, such as entity-relationship diagrams
(ERDs).

Further validation of unmatched dataflows could be

400

done by a consistency check between DFDs and ERDs,
since ERDs define the cardinality of input and output
dataflows and their semantic relationships.

4. Related Work

Other researchers are working on semantic network repre-
sentations of system requirements specifications. By using a
semantic network, they can uniformly represent various as-
pects of system requirements specifications, such as the be-
havioral and structural aspects. ARIES [9], TINA [5], and
PRISMA [6], are three systems of this kind. CARD [8] gen-
erates requirements specifications from pseudo-natural lan-
guage by using case grammar. These systems mainly deal
with modeling system requirements rather than eliciting re-
quirements.

Leite et al. [10] have developed the Viewpoint Resolu-
tion Method for validating and constructing a problem
space. This method, however, does not provide any means
to derive system requirements specifications. Goal-directed
concept acquisition [11] deals with problem spaces and sys-
tem requirements specification spaces and accounts for our
findings. This acquisition method focuses on deriving for-
mal requirements specifications from given goals. On the
other hand, our model focuses on exploring and finding
missing goals, and representing them in relatively informal
diagrams. Formalism in the goal-directed acquisition
method may provide a good basis for formalizing our model.

Maiden and Sutcliffe [12] have proposed a model that
consists of a taxonomy of goal-types and heuristics to iden-
tify each goal-type. These goal-types and heuristics match
our model well and will be useful in guiding the process of
deriving the goal-hierarchy of our requirements semantic
network.

5. Conclusion

By analyzing the correspondences between a problem de-
scription and requirements specification documents, we
have developed a model of the requirements elicitation proc-
ess based on semantic networks. This model integrates the
problem space and the system requirements specification
space. This integration helps analysts complete the problem
space and determine system boundaries.

Towards Requirements Elicitation Support System
Based on this requirements elicitation process model, two
facilities of requirements elicitation support systems are pro-
posed. Eachis based on the uniform semantic network rep-
resentation. The first is for mutual translation and consis-
tency checking between the problem space and system re-
quirements specification space, and among the various as-
pects of the requirements specification space.

The second type of support involves facilities using do-
main knowledge and system implementation plans. Some
examples are facilities for completing activities and their re-
lationships by using domain knowledge, for completing sys-

IEICE TRANS. INF. & SYST., VOL.E78-D, NO.4 APRIL 1995

tem requirements by using system implementation plans, for
suggesting goal-subgoal trees and system implementation
plans corresponding to given activities, and for checking the
feasibility of system requirements specifications according
to estimated performance and costs.

In order to develop this support system, further investi-
gation of analysts’ activities is needed. In the model, ana-
lysts are assumed to thoroughly know a problem domain
space. In practice, however, the analysts often encounter
novel domains. In'such a case, the analysts can elicit re-
quirements in novel domains based on similar cases they
have experienced. Case-based reasoning/learning [13] in
the requirements elicitation process should be analyzed to
solve the knowledge acquisition problem in developing
knowledge-based support facilities.

In our analysis and in the majority of real projects, the
problem description is given to analysts in natural language.
Because automated interpretation and translation are not yet
feasible, humans should interpret the description and build a
problem space [14]. The semantic network representation,
however, is too complex for analysts and customers to
handle. We need formal but sophisticated media, such as
VRDL [15], for better communication between customers
and analysts.

For simplicity, our model does not include a structured
representation of the DFDs. Structures of DFDs could be
represented by introducing structured representation to the
system requirements specification spaces.

Acknowledgement

From NTT Software Laboratories, we thank Sadahiro Isoda,
Shigeki Goto and Masaki Itoh for their advice and support in
conducting the research and Atusko Oka for her support in
carrying out the analysis. We also thank Colin Potts and
Jeffrey Donnel of the Georgia Institute of Technology for
their valuable comments in developing this idea.

References

[1] Lubars, M., Potts, C. and Richer, C., “A review of the state of
the practice in requirements modeling,” Proc. the first Inter-
national Symposium on Requirements Engineering (RE 93)
(San Diego, California), pp. 2-14, 1993.

[2] Yourdon, E., Modern Structured Analysis, Yourdon Press,
1989.

[3] Woods, W., “What’s in a link: foundations for semantic net-
works,” Studies in cognitive science, pp. 35-82, Academic
Press, 1975.

[4] Sowa, J. F. (ed), Principles of semantic network, Morgan
Kaufmann, 1991.

[5] Jordan, K. and Davis, A., “Requirements engineering
metamodel: an integrated view of requirements,” Proc.
COMPSAC ’91 (Tokyo, Japan), pp. 472-478, 1991.

[6] Niskier, C., Maibaum, T. and Schwabe, D., “A look through
PRISMA: towards pluralistic knowledge-based environments
for software specification acquisition,” Proc. 5th International
Workshop on Software Specification and Design (IWSSD-5),
pp. 128-136, 1989.

[7]1. Fillmore, C. J., “Lexical entries for verbs,” Foundation of lan-

TAKAHASHI and YAMAMOTO : AN ANALYSIS OF TRACEABILITY IN REQUIREMENTS DOCUMENTS

(8]

(9]

guage, vol. 4, no. 4, pp. 373-393, 1968.

Ohnishi, A. and Agusa, K., “CARD: A software requirements
definition environment,” Proc. Ist Int. Symp. Requirements
Engineering (San Diego, California), pp. 90-93, 1993.
Johnson, W. L. and Feather, M., “Using evolution transforma-
tions to construct specifications,” Automated software design,
pp- 65-91, AAAI Press, 1991.

Appendix

401

Technical conference management system

Design a system that manages a technical conference.

[10] Leite, J. and Freeman, P. A., “Requirements validation through
viewpoint resolution,” IEEE Trans. Software Eng., vol. 17, no. The technical conference consists of technical sessions
12, pp. 1253-1269, 1991. and tutorials. The tutorials are held on the first two

[11] Dardenne, A., Fickas, S. and Lamsweerde, A.V., “Goal-direct- days and t{le tekc.hnica.lfsessions on the .othe.r days.
ed concept acquisition in requirements elicitation,” Proc. zélsesl;fmzr:n dwoanélrl:esssci)onstechnical sesslons; paper
IWSSD-6 (Como, Ttaly), pp. 14-21, 1991. P :

[12] Sutcliffe, A. G. and Maiden, N. A. M., “Bridging the Require- A program committee reviews papers, those selects
ments Gap: Policies, Goals and Domains,” Proc. of IWSSD-7 some to be presented, and assigns those selected to
(Redondo Beach, California), [EEE Comp. Soc. Press, pp. 52- appropriate sessions. It also plans several tutorials
55. 1993. and holds them for two days. Each tutorial is given a

[13] IEEE Expert: special issue on case-based reasoning, Oct. 1992. g;lceh asfl;c;tig;eri,s agil;?e(;lmé Ezlt?e lti}f;%?;g’ ;r:)iqa EE:

[14] Reubenstein, H. B. and Waters, R.C., “The Requirements Ap- and papers. ’ ! ’ ’
prentice: Automated Assistance for Requirements Acquisi-
tion,” IEEE Trans. Software Eng., vol. 17, no. 3, pp. 226-240, The conference is announced two months before being
Mar. 1991. held to invite attendees of technical sessions and

[15] Ohnishi, A., “A Visual Software Requirements Definition tutorials.

Method,” Proc. 1st Int. Conf. Requirements Engineering (Col-
orado Springs, Colorado), IEEE Comp. Soc. Press, pp.194-
201, 1994.

The program committee decides on the fees. All fees
are paid through a bank. There are discounts for
applicants who pay more than one month before,
students, and members of related associations. When
applications are canceled, the amount remaining after
the cancellation fee is subtracted is returned to the
applicant.

airperso
selection
result

selection
result

paper
selection
result

program
committes,

resolution

condition

Fig. A-1 Problem description of a technical conference management
system.

AGENT AGEN il

e N
present telol\M originate
in problem
descriptior

AGENT

* system

added by
4 'v boundary

analysts

-

)

Fig. A2 An example of semantic network representation (an excerpt corresponding to the third para-
graph of Fig. A-1).

IEICE TRANS. INF. & SYST., VOL.E78-D, NO.4 APRIL 1995

402
nofification
/ notification notification
selection results . o
capacity
o time chairman room ‘ paper room
room distribution selection | |distribution selection | | distribution
result distribute result result © | __result result
rooms e : = .
time room time room
notification notification
to author to chairman
room et
room management file management selac t(t) "
E— result resu
Fig. A-3 Resulting DFD. - ~
. . chairman paper
session time room capacity selection selection
result result

Fig. A-4 Resulting DSD.

Kenji Takahashi is a senior research en-
gineer of NTT Software Laboratories. His
research interests include requirements engi-
neering and hypermedia supportfor collabo-
rations in software developement. Taka-
hashi received a BS and an MS in computer
science from Tokyo Institute of Technology
in 1984 and 1986, respectively. He was a
visiting scientist in the College of Comput-
ing at Georgia Institute of Technology from
1992 to 1993. He is a member of IPS]J, the
IEEE Computer Society and ACM.

i
L

Shuichiro Yamamoto is a senior re-
search engineer, supervisor, of NTT Soft-
ware Laboratories. He is currently engaged
in the methodology development for distrib-
uted information systems. He contributed
significantly to the design and implementa-
tion of CASE tools for the information sys-
tems of NTT. Mr. Yamamoto received a
B.S. in information engineering from
Nagoya Institute of Technology in 1977, and
an M.S. in information engineering from
Nagoya University in 1979. He is a member of IEEE, IPSJ and JSAIL

