
3030
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

PAPER Special Section on VLSI Design and CAD Algorithms

RTOS-Centric Cosimulator for Embedded System Design

Shinya HONDA†, Takayuki WAKABAYASHI†, Nonmembers, Hiroyuki TOMIYAMA††a),
and Hiroaki TAKADA††, Members

SUMMARY With the growing design complexity of contemporary em-
bedded systems, real-time operating systems (RTOSs) have become one of
important components of such complex embedded systems. This paper
presents an RTOS-centric hardware/software cosimulator which we have
developed for embedded system design. One of the most remarkable fea-
tures in our cosimulator is that it has a complete simulation model of an
RTOS which is widely used in industry, so that application tasks including
RTOS service calls are natively executed on a host computer. Our cosimu-
lator also features cosimulation with functional simulation models of hard-
ware written in C/C++ and cosimulation with HDL simulators. A case
study with a JPEG decoder application demonstrates the effectiveness of
our cosimulator.
key words: RTOS, cosimulation, embedded systems

1. Introduction

Nowadays, real-time operating systems (RTOSs) have be-
come one of the most important components of embedded
systems due to the growing complexity of the system func-
tionality as well as the increasing time-to-market pressures.
With this trend, a demand for fast cosimulation of hardware
and embedded software including an RTOS is also becom-
ing stronger in order to validate the functionality of the over-
all systems. For this purpose, we have developed a fast hard-
ware/software cosimulator which fully supports services of
an RTOS. Since the RTOS model plays a central role in
our cosimulator, we call our cosimulator an RTOS-centric
cosimulator.

The RTOS model in our cosimulator is provided to a
system designer in the form of C/C++ source code. Appli-
cation software tasks written by the designer are compiled
and linked with the RTOS model to generate an object code
which is directly executable on the host computer. Due to
the native execution, the speed of our cosimulator is much
higher than that of traditional cosimulation which uses an
instruction-set simulator (ISS) of the target processor for
software execution. It should be noted that simulation using
our cosimulator is basically untimed, but timed simulation is
also possible by inserting a delay function into the software
code.

Manuscript received March 19, 2004.
Final manuscript received August 5, 2004.
†The authors are with the Department of Information and Com-

puter Science, Toyohashi University of Technology, Toyohashi-shi,
441-8580 Japan.
††The authors are with the Department of Information Engineer-

ing, the Graduate School of Information Science, Nagoya Univer-
sity, Nagoya-shi, 464-8603 Japan.

a) E-mail: hiroyuki@acm.org

Our cosimulator supports two types of hardware simu-
lation. One is cosimulation with functional hardware mod-
els written in C or C++. This enables fast functional val-
idation of the overall systems. The other is cosimulation
with HDL simulators, e.g., ModelSim [1]. Using this ability,
register-transfer level (RTL) design implementation of the
hardware can be simulated together with embedded software
(i.e., RTOS and application tasks). In this case, our cosim-
ulator works as a testbench which generates input data to
and receives output data from the hardware in an interactive
manner. Thus, the hardware design can be validated effi-
ciently.

Our cosimulator supports all the services of the
µITRON 4.0 standard [2], [3]. µITRON is one of the most
popular RTOSs in Japan for small- to middle-scale embed-
ded systems. µITRON is not a specific RTOS product, but
is an application programming interface (API) standard. It
only defines a set of API functions, and implementation
of the function bodies may differ among µITRON-based
RTOSs. It is reported in [3] that over 40% of RTOSs used
in Japan are based on the µITRON standard. Our simula-
tor implements all of 91 API functions which are defined by
µITRON 4.0 Standard Profile. Therefore, one can use the
same application code for both simulation and final imple-
mentation if a µITRON-based RTOS used in the implemen-
tation. Due to this, the design productivity can be signifi-
cantly improved.

In summary, our RTOS-centric cosimulator features

• native (hence, fast) software execution on a host com-
puter,
• cosimulation with functional hardware models in

C/C++,
• cosimulation with HDL simulators, and
• complete support of RTOS services.

To our knowledge, no other cosimulator satisfies all of the
above features.

This paper is organized as follows. Section 2 surveys
related work on hardware/software cosimulation with RTOS
supports. Section 3 describes principles and implementation
of the RTOS-centric cosimulator which we have developed.
A case study using a JPEG decoder application is presented
in Sect. 4. Section 5 concludes this paper with a summary.



HONDA et al.: RTOS-CENTRIC COSIMULATOR FOR EMBEDDED SYSTEM DESIGN
3031

2. Related Work

Hardware/software cosimulation has been studied around
the world for more than a decade, and a number of commer-
cial cosimulators have come onto the market. The cosimula-
tors are currently one of indispensable CAD tools in the de-
sign of embedded systems and systems-on-chip. However,
since the traditional cosimulators do not feature explicit sup-
ports for RTOSs, a designer needs to use an ISS in many
cases to run embedded software including an RTOS. Due
to the slow execution speed, extensive simulation of large
software is impossible.

In the recent years, several research efforts have been
made to model RTOSs for system-level design and cosimu-
lation. SoCOS presented in [4] is a system-level design en-
vironment where the OSAPI library provides generic RTOS
system calls to application software. OSAPI is a virtual
RTOS to enable native execution of embedded software.
After simulation-based validation, the OSAPI calls are re-
placed with the system calls of the actual RTOS used in the
final implementation to obtain the final software code. In
[5], a similar approach is presented. A main difference is
that the RTOS model in [5] is build upon an existing system-
level design language, i.e., SpecC [6], so that existing CAD
tools such as simulators can be used. Techniques presented
in [7] also use the SpecC language to model the preemp-
tive behavior. In [8], an OS model is proposed for fast and
time-accurate cosimulation. The model focuses on accu-
rately modeling the RTOS overhead during task execution as
well as the preemptive behavior. In [9], a method which au-
tomatically generates RTOS-dependent software from Sys-
temC description is presented. The method replaces Sys-
temC’s constructs for concurrency and communication with
corresponding RTOS service calls. In this sense, it can be
considered that SystemC involves a simple RTOS model in
itself.

A common weakness of these OS models is that they
support only a limited set of RTOS services in order to make
the models generic and independent of specific RTOSs.
µITRON-based RTOSs, for example, have more than 90 ser-
vice calls. These services may need to be fully utilized in
order to write high-quality software. However, the RTOS
model in [5], for example, supports only 16 service calls.
Therefore, it is easily imagined that the quality of soft-
ware automatically generated by these previous methods is
lower than that of hand-crafted RTOS-dependent software.
Since the RTOS-centric cosimulator which we have devel-
oped fully supports RTOS services, such high-quality soft-
ware can be designed and simulated. Instead, our simu-
lator has a different weakness that it can be used only for
µITRON-based platforms.

In fact, our RTOS-centric cosimulator is not a replace-
ment of the cosimulators with generic RTOS modeling, but
is complementary to them. The cosimulators with generic
RTOS modeling can be used in the high-level design phases
where the RTOS to be used in the implementation is not

determined yet. After RTOS selection, the software is re-
fined into RTOS-dependent code. Of course, the RTOS-
dependent software needs to be cosimulated to verify the
correctness of its functionality. So far, the RTOS-dependent
software has been executed using an ISS, so the cosimu-
lation speed is slow. With our RTOS-centric cosimulator,
however, the RTOS-dependent software can be cosimulated
at a very high speed. After the cosimulation-based func-
tional validation, cycle-accurate cosimulation will be done
using an ISS. Thus, our cosimulator fills the gap of abstrac-
tion between system-level RTOS-independent cosimulation
and cycle-accurate cosimulation.

Some RTOSs have their simulation models for native
execution on a host computer. For example, VxWorks from
WindRiver Systems [10] has its simulation model named
VxSim. Our cosimulator is similar to the RTOS simulation
models. To our knowledge, however, the RTOS simulation
models do not explicitly support cosimulation with hard-
ware. On the other hand, our cosimulator supports cosim-
ulation with standard HDL simulators as well as untimed
hardware models in C or C++.

A different approach to embedded software design is
presented in [11], where an application-specific RTOS and
its simulation model is automatically generated. In their ap-
proach, application software is analyzed first, and then only
the RTOS services used in the application are included in the
final RTOS. The work is similar to ours in the sense that a set
of services which can be used in application software is pre-
defined. The major difference is that the work in [11] puts a
special focus on customizing an RTOS while our cosimula-
tor is based on a standard RTOS.

3. RTOS-Centric Cosimulator

The RTOS-centric cosimulator which we have developed
implements all the services defined in µITRON 4.0 Standard
Profile. In this section, an overview of µITRON is presented,
and then our cosimulator is described in detail.

3.1 µITRON

µITRON is a set of APIs which has been standardized
mainly in Japan. µ ITRON is designed for small- to middle-
scale embedded systems such as consumer electronic prod-
ucts, mobile devices, automotive electronic control systems,
and so on. µITRON-based RTOSs have been widely used
in industry, especially in Asian countries. It is reported in
[3] that over 40% of RTOSs used in Japan are based on the
µITRON standard. The latest formal release at present is
µITRON 4.0. The minimal set of µ ITRON APIs is called
Standard Profile, and µITRON 4.0 Standard Profile includes
91 API functions in total†.
µITRON employs a priority-based preemptive schedul-

ing policy, and the priority of tasks can be changed at run-
time. µITRON 4.0 Standard Profile states that the number

†In this paper, the term µITRON often refers to µITRON 4.0
Standard Profile depending on the context.



3032
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

of priority levels must be at least 16. µITRON supports
several basic synchronization and communication mecha-
nisms, such as semaphores, events, data queues, and mail-
boxes. Dynamic memory allocation using so-called mem-
ory pools is supported in µITRON. Since µITRON is de-
signed for small embedded systems, virtual memory or dy-
namic module loading is not supported. Interrupt handling
is one of important mechanisms in RTOSs. µITRON pro-
vides a number of API functions for defining interrupt han-
dlers, allowing and prohibiting interrupts, changing inter-
rupt masks, and so on. The number of interrupt levels is not
determined by µITRON but implementation-dependent. µ
ITRON has three types of time event handlers, i.e., cyclic
handlers, alarm handlers, and overrun handlers. Cyclic han-
dlers are invoked periodically, alarm handlers are invoked at
a specified time, and overrun handlers are invoked when the
execution time of a task exceeds a specified time.

In addition, µITRON provides a number of services
which are necessary for industrial use. More detailed docu-
ments on µITRON are found in [3].

3.2 Cosimulator Overview

In the rest of this section, we describe our RTOS-centric
cosimulator which is based on the µITRON standard. The
cosimulator implements all the services defined in µITRON
4.0 Standard Profile. Figure 1 shows the overall organiza-
tion of our RTOS-centric cosimulator. The shaded parts in
the figure are included in the cosimulator.

The cosimulator is developed in the C and C++ lan-
guages and runs on Microsoft Windows-based computers.
The cosimulator is freely available as a part of the TOP-
PERS/JSP Kernel package [12]†. The TOPPERS/JSP Ker-
nel is a µITRON-based RTOS kernel which we have devel-
oped earlier, and it is freely available for both research and
commercial purposes.

The RTOS model, consisting of the RTOS kernel and
HAL (hardware abstraction layer) in Fig. 1, is provided to
a system designer in the form of C/C++ source code. Ap-

Fig. 1 Organization of the RTOS-centric cosimulator.

plication tasks which are written in the C language by the
designer are compiled and linked with the RTOS model, in
order to generate an object code which is directly executable
on the Windows-based host computer. Our RTOS-centric
cosimulator supports cosimulation with functional hardware
models written in C or C++, which enables fast validation
of the overall system functionality. Cosimulation with stan-
dard HDL simulators is also supported so that RTL hardware
designs can be validated efficiently.

3.3 Task Management

Application tasks and the RTOS model are compiled to-
gether using a native C/C++ compiler on a host computer,
and an object file is generated. The object file is executable
directly on the host computer. Thus, from a viewpoint of the
host computer, the object code (i.e., application tasks and the
cosimulator) is no more than an application process, and is
scheduled in a time-sharing manner with the other Windows
applications.

Within the cosimulator, each of the application tasks
is implemented as a thread on the host computer, and the
RTOS kernel schedules the threads in a priority-based pre-
emptive manner. This thread-based implementation facil-
itates debugging of the application tasks since the context
of each task, such as mode (running, ready, waiting, sus-
pended, etc.), program counter, contents of stack memory,
and so on, can be easily monitored with normal C/C++ de-
buggers. If all the tasks are linked into a thread, it is not
easy to retrieve and monitor the contexts of individual tasks
without RTOS-specific support tools.

3.4 Timer

Unlike the reference simulator of SystemC [13] or SpecC
[6], our RTOS-centric cosimulator does not have a global
timer for managing simulation cycles. Therefore, our
cosimulator does not support cycle-accurate execution of
software. Instead of the global clock for simulation, our
cosimulator uses the timer of the host computer running on
MS-Windows. In Fig. 1, the arrow labeled (a) denotes the
system call to the host computer for getting the time.

In our cosimulator, the period of timer ticks is cus-
tomizable, but it must be equal to or longer than 1 mil-
lisecond. If an application task executes a system call,
dly tsk(100), the RTOS kernel suspends the execution of the
task for 100 milliseconds in the real time on the host com-
puter. It should be noted that the system call does not mean
that the task waits for 100 simulation cycles.

3.5 Cosimulation Mechanism

As mentioned earlier, our cosimulator supports two types
of hardware models, i.e., functional simulation models in

†The ability to communicate with HDL simulators is not in-
cluded in the current release.



HONDA et al.: RTOS-CENTRIC COSIMULATOR FOR EMBEDDED SYSTEM DESIGN
3033

C/C++ and hardware designs in HDL. The functional simu-
lation models are compiled with a native C/C++ compiler
to generate object code which is executable on the host
computer. The HDL designs are simulated on HDL sim-
ulators which support PLI (Programming Language Inter-
face) or FLI (Foreign Language Interface)†. It should be
noted that both functional simulation models and HDL sim-
ulators can be executed simultaneously, and the number of
the functional models and that of HDL simulators can be
more than one. For example, it is possible to cosimulate a
software model (consisting of the RTOS model and applica-
tion tasks), two functional hardware models, and three HDL
simulators simultaneously.

In our cosimulator, as shown in Fig. 1, Inter-Process
Communication Manager (IPCM) manages communication
between the software model and the hardware models.
IPCM is based on the Component Object Model (COM)
technology developed by Microsoft Corporation [14]. COM
is an object-oriented interface technology which enables bi-
nary software components to interact with other software
components in order to realize higher-level services. In our
cosimulator, the software model, functional hardware mod-
els, and HDL simulators run as different processes on the
host computer. Each of the software model, the functional
hardware models and the HDL simulators interacts with
IPCM through COM. Then, communication between the
software and the hardware is performed by way of IPCM.
µITRON defines a set of guidelines for designing hard-

ware devices and their drivers. In the guidelines, it is rec-
ommended that all devices (except a timer and a primary se-
rial I/O port) be accessed through memory-mapped I/O. The
guidelines also define a hardware abstraction layer (HAL)
which includes a set of functions for memory-mapped I/O
accesses. For example, a function, sil reb mem(mem), reads
1-byte data from the device which is mapped to the address
pointed by mem. Our RTOS-centric cosimulator assumes
that hardware devices and the drivers are designed based on
the guidelines.

Let us assume that sil reb mem(mem) is executed in the
software. First, the RTOS model sends a request message to
IPCM through COM. The message includes the access type
(read or write), the size of required data, and the address.
IPCM has a memory-map table, and based on the table and
the received address, IPCM sends the request message to
the corresponding functional hardware model or HDL sim-
ulator. The requested data is then sent from the hardware
to the software by way of IPCM. Thus, IPCM serves as a
router of the messages and data. In Fig. 1, communication
based on memory-mapped I/O is depicted by arrow (b). In-
terrupts from the hardware to the software are also handled
by IPCM, and are depicted by arrow (c) in Fig. 1.

The cosimulation mechanism with IPCM is flexible in
several points. First, our cosimulator can simulate any num-
ber of hardware models simultaneously as long as there
is no conflict in the address map. Also, it is possible to
simulate both C/C++ models and HDL models simultane-
ously. Second, a C/C++ model can be easily replaced with

an HDL model or vice versa without modifying application
tasks, provided the address map of the hardware remains
unchanged. This ability facilitates validation of hardware
designs. Finally, the RTOS model can be easily replaced
with an ISS running on a µITRON-based RTOS by adding
the HAL-COM interface to the ISS, without modifying ap-
plication tasks or hardware models. Thus, our cosimulator
enables plug-and-play of software models as well as hard-
ware models. This is due to the flexible communication
mechanism of IPCM as well as the complete supports of
the µITRON standard.

3.6 Profiler

Another remarkable feature in our cosimulator is the pro-
filer to collect various data during execution. The data in-
cludes start/finish times and return code (if any) of applica-
tion tasks, interrupt handlers, time event handlers, service
calls, and so on. Such data is useful to debug or optimize
the designs.

The obtained data can be displayed at runtime on a win-
dow (i.e., named Profile Viewer in Fig. 1). The profiler is im-
plemented within HAL, and the profiled data is sent to the
viewer through IPCM. Of course, profiling requires some
amount of overhead on simulation speed and memory re-
quirement. In order to reduce the overhead, the profiler can
be enabled and disabled during simulation. Therefore, only
the necessary data can be obtained with the minimal over-
head.

It should be noted that much more information can be
obtained by using normal C/C++ debuggers if the cosim-
ulator is compiled with the debugging option enabled, i.e.,
the “-g” option for many C compilers. It is also possible to
embed any C code for profiling into the cosimulator, since
the source code of the cosimulator is available.

4. Design Example

In order to evaluate the effectiveness of our RTOS-centric
cosimulator, we designed a JPEG decoder system and sim-
ulated it with our cosimulator. The simulation was done on
dual Xeon 2.4 GHz processors with hyper-threading tech-
nology, running on MS-Windows XP. Figure 2 shows the
flow of the JPEG decoder where there are mainly four func-
tions: VLD, Dequantization, IDCT, and YUV2RGB. In ad-
dition, there is a function, Display, to display the decoded
image on a window of the host computer.

Fig. 2 A JPEG decoder example.

†At present, only the ModelSim HDL simulator [1] is sup-
ported in our cosimulator.



3034
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.12 DECEMBER 2004

Table 1 Cosimulation time of the JPEG decoder. All of the functions
are implemented in software.

CPU Utilization 100% 50% 25%
for the JPEG Task

Our Cosimulator 0.009 sec 0.008 sec 0.008 sec
ARMulator 23.8 sec 59.3 sec 125 sec

Table 2 Cosimulation time of the JPEG decoder. IDCT is implemented
in hardware, and is described as a functional simulation model in C.

CPU Utilization 100% 50% 25%
for the JPEG Task

Our Cosimulator 46 sec 49 sec 97 sec
ARMulator 71 sec 94 sec 141 sec

First, we implemented all of the functions in software
except the display function. The display function was de-
signed only for the simulation purpose, so it was written as
a functional simulation model in C/C++. A JPEG image
is decoded by software, and then the decoded image is sent
from the software to the display window through IPCM. The
overall JPEG decoder was implemented as an application
task. We compared cosimulation speed of our cosimulator
with that of an instruction-set simulator, ARMulator [15].
On ARMulator, the JPEG task was executed with the TOP-
PERS/JSP Kernel [12]. Note that we used the same JPEG
code for both our cosimulator and ARMulator without mod-
ification. Table 1 summarizes the results on the simulation
time. In this table, the first row labeled “CPU Utilization
for the JPEG Task” indicates the percentage of CPU time
allocated to the JPEG task on the target system. 100% uti-
lization means that there is no other application task. Even
in this case, there exist a few system tasks such as the timer
and the profiler. 50% means that another task exists while
25% means that three tasks exist in the target system, in ad-
dition to the JPEG task. The application tasks running con-
currently with the JPEG application include an infinite loop
whose body is empty. All of these application tasks had the
same priority level as the JPEG application on the RTOS.
Due to this, all of the application tasks (including the JPEG
task) were scheduled in a time-sharing manner. The timer
tick was set to 10 milliseconds, so that the application tasks
switch every 10 milliseconds. Table 1 demonstrates that our
cosimulator is three or four orders of magnitude faster than
the ISS.

Next, we changed hardware/software partitioning.
IDCT was moved from software to hardware, and we de-
scribed a functional simulation model of the IDCT func-
tion in C. The cosimulation time is shown in Table 2. With
our cosimulator, most of the cosimulation time was spent
for communication between the software and the hardware
when the CPU utilization was 100%. When the CPU uti-
lization was 50% and 25%, the simulation time presented in
Table 2 includes the time for simulating the other tasks.

Finally, we designed an IDCT circuit at the register-
transfer level in VHDL. The IDCT simulation model was
replaced with an HDL simulator, ModelSim [1], to simu-
late the RT-level IDCT design. Note that the JPEG appli-

Table 3 Cosimulation time of the JPEG decoder. IDCT is implemented
in VHDL, and is executed with an HDL simulator.

CPU Utilization 100% 50% 25%
for the JPEG Task

Our Cosimulator 182 sec 327 sec 333 sec
ARMulator 248 sec 961 sec 2,802 sec

Fig. 3 A snapshot of JPEG simulation with the RTOS-centric
cosimulator.

cation code did not require any modification from the one
cosimulated with the C-level hardware model. The simula-
tion speed is shown in Table 3.

A snapshot of this cosimulation is presented in Fig. 3,
where the software model (i.e., the RTOS model and the ap-
plication tasks), the HDL simulator, the C/C++ simulation
model of the display function, and the profiler were run-
ning simultaneously, with communicating with each other
through IPCM.

5. Conclusions

RTOSs have become one of necessities in the design of com-
plex embedded systems. In order to validate the overall
functionality of such embedded systems, RTOSs need to be
simulated together with application software and hardware.
We have developed a fast, flexible RTOS-centric cosimula-
tor for embedded system design. Our cosimulator features
complete supports of RTOS services, native execution of
software, cosimulation with functional hardware models in
C or C++, and cosimulation with HDL simulators. In this
paper we have described principles and implementation of
our cosimulator. We have also shown a case study using a
JPEG decoder example to demonstrate the effectiveness of
the cosimulator.

At present, the timing of communication and synchro-
nization is inaccurate in our cosimulator. Improvement of
timing accuracy remains as one of our future work.

Acknowledgment

This work was partially supported by JSPS Grant-in-Aid for
Young Scientists (B) #16700058.



HONDA et al.: RTOS-CENTRIC COSIMULATOR FOR EMBEDDED SYSTEM DESIGN
3035

References

[1] Mentor Graphics Corporation, http://www.mentor.com/
[2] H. Takada and K. Sakamura, “µITRON for small-scale embedded

systems,” IEEE Micro, vol.15, no.6, pp.46–54, 1995.
[3] ITRON, http://www.assoc.tron.org/itron/
[4] D. Desmet, D. Verkest, and H. De Man, “Operating system based

software generation for systems-on-chip,” Proc. Design Automation
Conference (DAC), pp.396–401, 2000.

[5] A. Gerstlauer, H. Yu, and D. Gajski, “RTOS modeling for system
level design,” Proc. Design Automation and Test in Europe (DATE),
Embedded Software Forum, pp.130–135, 2003.

[6] SpecC Technology Open Consortium, http://www.specc.org/
[7] H. Tomiyama, Y. Cao, and K. Murakami, “Modeling fixed-priority

preemptive multi-task systems in SpecC,” Proc. Workshop on Syn-
thesis and System Integration of Mixed Information Technologies
(SASIMI), pp.93–100, 2001.

[8] Y. Yi, D. Kim, and S. Ha, “Virtual synchronization technique with
OS modeling for fast and time-accurate cosimulation,” Proc. Int’l
Conference on Hardware/Sofware Codesign and System Synthesis
(CODES+ISSS), pp.1–6, 2003.

[9] F. Herrera, H. Posadas, P. Sanchez, and E. Villar, “Systematic
embedded software generation from SystemC,” Proc. Design Au-
tomation and Test in Europe (DATE), Embedded Software Forum,
pp.142–147, 2003.

[10] WindRiver Systems Inc., http://www.wrs.com/
[11] S. Yoo, G. Nicolescu, L. Gauthier, and A.A. Jerraya, “Automatic

generation of fast timed simulation models for operating systems in
SoC design,” Proc. Design Automation and Test in Europe (DATE),
pp.620–627, 2002.

[12] TOPPERS Project, http://www.toppers.jp/
[13] SystemC Open Initiative, http://www.systemc.org/
[14] Microsoft Corporation, http://www.microsoft.com/
[15] ARM Corporation, http://www.arm.com/

Shinya Honda received the B.E. and M.E.
degrees in information and computer sciences
from Toyohashi University of Technology, Ai-
chi, Japan, in 2000 and 2002, respectively. Cur-
rently he is a Ph.D. candidate at the Depart-
ment of Electronic and Information Engineer-
ing, Toyohashi University of Technology. His
research interests include system-level design
automation and real-time operating systems. He
received the best paper award from IPSJ in 2003.
He is a member of IPSJ.

Takayuki Wakabayashi received the B.E.,
M.E. and Ph.D. degrees through his research
life in information and computer sciences from
Toyohashi University of Technology. His re-
search interests include development environ-
ments for embedded systems, codesign, cosim-
ulation, PC-simulation and rapid prototyping.

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu Uni-
versity in 1999. From 1999 to 2001, he was a
visiting postdoctoral researcher with the Center
of Embedded Computer Systems, University of
California, Irvine. From 2001 to 2003, he was
a researcher at the Institute of Systems & In-
formation Technologies/KYUSHU. In 2003, he
joined the Graduate School of Information Sci-
ence, Nagoya University, as an assistant profes-
sor, where he is now an associate professor. His

research interests include system-level design automation, architectures
and compilers for embedded systems and systems-on-chip. He is currently
serves as an editorial board member of International Journal on Embedded
Systems. He has also served on the organizing and program committees of
several premier conferences including ICCAD, ASP-DAC, CODES+ISSS,
HLDVT, SCOPES and so on. He is a member of ACM, IEEE, and IPSJ.

Hiroaki Takada is a Professor at the Depart-
ment of Information Engineering, the Graduate
School of Information Science, Nagoya Univer-
sity. He received his Ph.D. degree in Informa-
tion Sciece from University of Tokyo in 1996.
He was a Research Associate at University of
Tokyo from 1989 to 1997, and was an Assis-
tant Professor and then an Associate Professor at
Toyohashi Univesrity of Technology from 1997
to 2003. His research interests include real-time
operating systems, real-time scheduling theory,

and embedded system design. He is a member of ACM, IEEE, IPSJ, and
JSSST.


