
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007
2853

PAPER
Function-Level Partitioning of Sequential Programs for Efficient
Behavioral Synthesis

Yuko HARA†a), Nonmember, Hiroyuki TOMIYAMA†, Member, Shinya HONDA†, Nonmember,
Hiroaki TAKADA†, Member, and Katsuya ISHII††, Nonmember

SUMMARY This paper proposes a behavioral level partitioning
method for efficient behavioral synthesis from a large sequential program
consisting of a set of functions. Our method optimally determines functions
to be inlined into the main module and the other functions to be synthe-
sized into sub modules in such a way that the overall datapath is minimized
while the complexity of individual modules is lower than a certain level.
The partitioning problem is formulated as an integer programming prob-
lem. Experimental results show the effectiveness of the proposed method.
key words: behavioral synthesis, function-level partitioning, integer pro-
gramming problem

1. Introduction

Due to the continuously increasing size of LSIs, the tra-
ditional Register-Transfer Level (RTL) design with Hard-
ware Design Languages (HDLs) is approaching to its limit
on design productivity. Behavioral synthesis (or high-level
synthesis), which automatically synthesizes an RTL circuit
from a behavioral description, is one of the most promising
solutions to improve the design productivity [1]. At present,
however, behavioral synthesis tools have not been widely
used in industry yet since the quality of automatically gener-
ated circuits is still inferior to that of human-designed ones,
especially, in the synthesis from large behavioral descrip-
tions.

This paper studies behavioral level partitioning which
divides a large behavioral description into a set of smaller
ones. Behavioral level partitioning yields a number of ad-
vantages such as reduced synthesis runtime, improved per-
formance, satisfaction of packaging or I/O constraints, and
so on [2]. In fact, most of the earlier studies on partition-
ing [1] aim at satisfying physical design constraints such as
packaging and I/O pins, but recently, improvement of per-
formance and synthesis runtime has become a more impor-
tant concern of designers.

In general, a large sequential description written in a
high-level programming language such as C∗ consists of a
set of functions (or procedures). Without behavioral level
partitioning, all the callee functions are inlined into their
callers, which results in a huge main function, and then, the
main function is fed by a behavioral synthesis tool. This

Manuscript received May 31, 2007.
Manuscript revised August 28, 2007.
Final manuscript received September 6, 2007.
†The authors are with the Department of Information Engineer-

ing, the Graduate School of Information Science, Nagoya Univer-
sity, Nagoya-shi, 464-8603 Japan.
††The author is with the Information Technology Center, Na-

goya University, Nagoya-shi, 464-8603 Japan.
a) E-mail: hara@ertl.jp

DOI: 10.1093/ietfec/e90–a.12.2853

produces an inefficient circuit with a long critical path delay
due to the complicated control path as well as multiplexers
in the datapath, or behavioral synthesis may not be com-
pleted within a practical time as we will see in our experi-
ments. Specifically, inlining is ineffective for large functions
which are called a number of times from different points of
the program text.

A straightforward approach to behavioral level parti-
tioning is to run behavioral synthesis for each function. This
function-based partitioning approach produces N hardware
modules (one main module and N − 1 sub modules) from a
program consisting of N functions. Some behavioral syn-
thesis tools which have been developed recently such as
SPARK [3] and CCAP [4] employ the function-based ap-
proach. However, this approach suffers from a large datap-
ath area because hardware resources (e.g., functional units,
registers, memories, etc.) cannot be shared among functions
even when only a single function is active at a time.

In our earlier work [5], we have proposed a 2-way
partitioning method based on integer programming. The
method optimally determines functions to be inlined into a
main module and ones to be synthesized into a sub module
in such a way that the overall datapath is minimized while
keeping the complexity of the control path lower than a cer-
tain level. The method enables resource sharing among mul-
tiple functions by merging them into one function. However,
the method assumes that there exists only a single sub mod-
ule in addition to a main module.

This paper proposes an improved method for behav-
ioral level partitioning. This work significantly improves
our previous method [5] in two ways. First, this work per-
forms N-way partitioning, where N denotes the number of
hardware modules∗∗, while the previous work does 2-way
partitioning. In addition, this work optimizes N, simultane-
ously with N-way partitioning.

In the last decade, Vahid has extensively studied behav-
ioral level partitioning for sequential programs [2], [6]–[8].
The partitioning approach presented in [2] consists of three
steps; procedure determination, pre-clustering and N-way
partitioning. The first two steps decide the appropriate gran-
ularity of procedures (functions) using various techniques
such as inlining, exlining [6], cloning [7], port calling [8],
and so on. After that, traditional N-way partitioning is per-
formed. Our method presented in this paper is different from

∗This paper assumes the C language as an input language for
behavioral synthesis.
∗∗N can be smaller than the number of functions in the input

program.

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers

2854
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

the work in [2] in several ways. First, our method simulta-
neously performs function inlining and N-way partitioning,
while the work in [2] achieves them in separate steps. Next,
we optimize the number of hardware modules at the same
time. Finally, we formally define the partitioning problem
using integer linear programming (ILP) in order that the op-
timal partitioning can be obtained.

The rest of this paper is organized as follows. Section 2
describes two traditional approaches for behavioral level
partitioning and their comprehensive comparisons in the
preliminary experiments. Section 3 presents an improved
method for function-based partitioning. Also, the prelim-
inary experiments to compare the traditional approaches
and the improved method are shown. Section 4 proposes
a function-level partitioning method based on integer pro-
gramming. Section 5 shows experimental results to demon-
strate the effectiveness of the proposed method. Section 6
concludes this paper with a summary and future work.

2. Traditional Methods

This section presents fundamental techniques for behavioral
synthesis and discusses their advantages and disadvantages.

2.1 Function Inlining

Function inlining is a well-known compiler optimization
technique which replaces function calls with the bodies of
the callee functions. Inlining is also widely used for behav-
ioral synthesis.

Let us consider an example program shown in Fig. 1(a).
This program consists of a main function and two functions,
f1 and f2, which are called from the main function. Fig-
ure 1(b) shows the FSM of a circuit which is synthesized
from the program in Fig. 1(a) with inlining. Note that func-
tion f1 is inlined twice since it is called twice from the main
function.

Inlining has several advantages. First, inlining en-
ables resource sharing among different functions, resulting
in small datapath area. Assume that function f1 requires
one adder and one multiplier, and function f2 requires two
adders and two multipliers. Since the two functions are im-
plemented in the same hardware module, they can share the
functional units, that is, two adders and two multipliers are
used in total. Second, no overhead of inter-module commu-
nication is necessary. Next, inlining extends the scope of
optimizations such as common sub-expression elimination,

(a) (b) (c)

Fig. 1 Traditional methods: (a) An example program, (b) Function
inlining, (c) Function-based partitioning without clustering.

constant propagation, copy propagation, dead-code elimina-
tion and so on. Finally, inlining also extends operation-level
parallelism.

Inlining, however, increases both the area and delay of
control path because the number of states in the main mod-
ule becomes large. Also, inlining may increase the datapath
delay due to multiplexers between functional units and reg-
isters. At worst, if the main function after inlining becomes
too large, behavioral synthesis may not be completed within
a practical time. These disadvantages become critical espe-
cially in the case of large functions are called a number of
times from different points of the program text.

2.2 Function-Based Partitioning without Clustering

A straightforward approach to behavioral level partition-
ing is to run behavioral synthesis for each function. This
function-based partitioning approach produces N hardware
modules (one main module and N − 1 sub modules) from a
program consisting of N functions.

Let us consider the same example program in Fig. 1(a).
The FSM of the circuit synthesized with this approach is
shown in Fig. 1(c), where one main module and two sub
modules are generated. Note that only a single module is
generated for function f1 even though it is called twice.

The main advantage of function-based partitioning is
that it can reduce the complexity of individual modules.
Thus, the area and delay of the control path can be reduced.
On the other hand, the function-based partitioning increases
the overall datapath area because hardware resources can-
not be shared among functions even when the same re-
sources are required by multiple functions. For example,
in Fig. 1(c), three adders and three multipliers are allocated
in total even though the two functions are sequentially exe-
cuted. Another disadvantage of this approach may degrade
the performance by inter-module communication.

2.3 Preliminary Comparisons between Function Inlining
and Function-Based Partitioning without Clustering

We preliminarily made comparisons to evaluate the advan-
tages and disadvantages of inlining and function-based par-
titioning without clustering. We used five benchmark pro-
grams consisting of two functions: a main function and a
double-precision floating-point addition function which is
called from the main function. The addition function is im-
plemented by using integers [9]. Fundamental structures of
these programs are almost the same except the number of
times the addition function is called. We compared circuit
area (equivalent gate count), clock period, the number of
states, the number of execution cycles, execution time and
behavioral synthesis time for the five programs. In the ex-
periments, we used commercial tools YXI eXCite 3.0 [10]
for behavioral synthesis and Xilinx ISE [11] for logic syn-
thesis. In these comparisons, we specified the constraint on
clock period as 50 MHz (20 ns) and Xilinx Virtex 2 as a tar-
get device.

The results of the preliminary experiments are shown
in Table 1. The first column represents the number of times
the addition function is called from the main function. In

HARA et al.: FUNCTION-LEVEL PARTITIONING OF SEQUENTIAL PROGRAMS FOR EFFICIENT BEHAVIORAL SYNTHESIS
2855

Table 1 Comparisons between function inlining and function-based partitioning without clustering.

No. of times applied gate clock No. of states exec. exec. beh. syn.
the addition function is called technique count period (ns) main module sub module cycles time (ns) time (s)

1 partitioned 68,636 36.310 8 61 26 944 248
inlined 62,775 36.310 61 — 21 763 237

2 partitioned 69,898 36.310 12 61 40 1,452 250
inlined 80,146 36.497 118 — 30 1,095 774

4 partitioned 69,236 35.937 20 61 68 2,444 252
inlined 101,312 37.082 232 — 48 1,780 4,661

8 partitioned 70,240 36.310 36 61 124 4,502 258
inlined — — — — — — —

16 partitioned 70,764 36.310 68 61 236 8,569 268
inlined — — — — — — —

the second column, the applied technique for the addition
function is described. When the addition function is called
once, inlining generates better circuit for both datapath area
and control path area (the number of states). However, as in-
creasing the number of times the addition function is called,
inlining leads to the increasing number of states in the main
module, which results in the larger control path and longer
synthesis time. Besides, when the addition function is called
eight times or more, behavioral synthesis does not finish
since the main function after inlining became too large.

Comprehensive comparisons between function inlining
and function-based partitioning without clustering show that
inlining results in a long critical path delay due to the com-
plicated control path as well as multiplexers in the datap-
ath. On the other hand, function-based partitioning leads
to an increase in the number of execution cycles due to the
inter-module communication, and the execution time also
becomes longer.

Based on the above results, it is not appropriate to in-
line functions which are called a number of times. On the
other hand, all the functions should not individually be par-
titioned because sharing no hardware resources makes the
circuit area larger. We will show the more shortcomings of
function-based partitioning without clustering in Sect. 3.

3. Sharing of Hardware Resources by Function-Based
Partitioning with Clustering

In this section, we explain a method called “function-based
partitioning with clustering,” which is an improvement of
both function inlining and function-based partitioning with-
out clustering.

3.1 Function-Based Partitioning with Clustering

As shown in Sect. 2.2, function-based partitioning is not ef-
ficient in terms of the datapath area. This drawback can be
suppressed by clustering functions.

Figure 2(a) shows the FSM of the circuit synthesized
from the same program in Fig. 1(a) with clustering. In
Fig. 2(a), two functions f1 and f2 are clustered into the
same sub module in order that they can share the hardware
resources. The number of states in the sub module is almost
the same as the sum of those of individual modules. Note
that the number of states for f1 is not doubled though f1
is called twice. Thus, clustering can keep the datapath area
small while suppressing the complexity of the control path.

(a) (b)

Fig. 2 Clustering: (a) Partitioning with clustering, (b) A refined program
for clustering.

Function clustering can be implemented by transform-
ing the original program in Fig. 1(a) into one shown in
Fig. 2(b). A function f merge is newly defined, which
calls either f1 or f2 depending on a parameter id. Next,
when synthesizing from f merge, f1 and f2 are inlined into
f merge, while f merge itself is not inlined into the main
function.

As shown above, clustering enables sharing of hard-
ware resources among functions and also results in a smaller
number of states than inlining does. However, the amount
of communication between modules is increased in order
to send id of the function to be called. This may degrade
the performance. In addition, the sub module requires ad-
ditional comparators to select the function to be executed.
Also, it should be mentioned that clustering too many func-
tions in the same module results in a complex control path.

3.2 Preliminary Comparisons between Three Techniques

We made preliminary comparisons to show that function-
based partitioning with clustering can generate more effi-
cient circuits than inlining and function-based partitioning
without clustering. We used a benchmark program consist-
ing of three functions: a main function, addition and sub-
traction functions for double-precision floating-point num-
bers [9]. The addition and subtraction functions are called
from the main function twice and once, respectively. The
hardware resources required by these two functions are al-
most same.

We compared the following five methods for the bench-
mark program:

partitioned without clustering: the addition and subtrac-

2856
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Table 2 Comparisons of traditional methods and function-based partitioning with clustering.

applied technique gate clock No. of states exec. exec. beh. syn.
add sub count period (ns) main module sub module cycles time (ns) time (s)

partitioned w/o clustering 136,427 35.937 18 61/61(add/sub) 61 2,192 494
inlined inlined 93,403 36.648 177 — 46 1,686 1,734

partitioned inlined 131,880 35.937 71 61 56 2,012 481
inlined partitioned 145,669 36.419 124 61 51 1,857 1,071

partitioned w/ clustering 88,599 36.497 21 121 67 2,445 793

tion functions are partitioned without clustering.
inlined/inlined: the addition and subtraction functions are

inlined into the main module.
partitioned/inlined: the addition function is partitioned

into a sub module and the subtraction function is in-
lined into the main module.

inlined/partitioned: the addition function is inlined into
the main module and the subtraction function is par-
titioned into a sub module.

partitioned with clustering: the addition and subtraction
functions are partitioned with clustering.

We compared circuit area (equivalent gate count),
clock period, the number of states, the number of execu-
tion cycles, execution time and synthesis time between five
methods shown above. We used the same synthesis tools
and constraints as described in Sect. 2.3. The results of the
preliminary experiments are shown in Table 2.

The circuit area generated by partitioned without clus-
tering is large since each module possesses the hardware
resources and cannot share them between modules. While
the area of the circuit generated by inlined/inlined is smaller
than that by partitioned without clustering since both func-
tions are inlined into the main module and can share the
resources. In addition, there is no inter-module communi-
cation, resulting in both the smallest number of execution
cycles and shortest execution time of all. However, the com-
plexity of the control path is increased due to the large num-
ber of states in the main module, which leads to the longest
time in behavioral synthesis.

In partitioned/inlined, its total time in behavioral syn-
thesis can be kept short, but these two functions cannot
share the resources, and therefore, the total area increases.
In inlined/partitioned, the hardware resources cannot be
shared between modules as in partitioned/inlined. In in-
lined/partitioned, a larger area is generated than in parti-
tioned/inlined since the complexity of the control path is
increased by inlining the addition function, which is called
twice from the main function, in addition to sharing no re-
sources between modules.

In partitioned with clustering, by partitioning after
clustering the two functions in a single function, it is pos-
sible to share the hardware resources required by both these
two functions as well as in inlining, and its datapath area
is moderated. Also, it can suppress the number of states,
which leads to the small control path. As a result, its total
area is the smallest among the five methods.

As shown in these preliminary comparisons, it is possi-
ble to moderate the circuit area by applying partitioning with
clustering for functions which require the same resources.
In addition, this method can decrease the number of states
in both modules compared with inlining, especially when

the same function is called several times. Thus, the advan-
tages of both inlining and partitioning without clustering are
available in partitioning with clustering. If too many func-
tions are clustered in the same module, however, the gener-
ated module has the large number of states, which leads to
the long delay and a large area of the control path and long
time in behavioral synthesis, similar to inlining. Therefore,
it is important to appropriately determine functions to be in-
lined into the main module and ones to be partitioned into
sub modules, when synthesizing from a large program with
a number of functions because it is not practical to cluster
all the functions in a single module.

4. Complexity-Constrained Partitioning

This section proposes a new behavioral level partitioning
method based on integer programming.

4.1 Problem Description

As discussed in the previous sections, function inlining is
effective in order to reduce execution cycles and datapath
area. However, the size of functions after inlining should
not exceed the limit manageable by synthesis tools.

Given a sequential program consisting of a set of func-
tions, we face the following questions:

• Which functions should be inlined?
• Which functions should be clustered into the same

module?
• How many modules are necessary?

This section proposes a behavioral partitioning method
that simultaneously solves these three questions in a sin-
gle combinational optimization framework based on integer
programming. Our goal is to minimize the overall datapath
area (i.e., the total cost of hardware resources), while keep-
ing the complexity (i.e., the number of states) of individual
modules lower than a certain level specified by a designer.

In our problem definition, the delay and area of the con-
trol path, which sometimes affect the overall critical path
delay and chip area, are not explicitly taken into account.
Instead, they are implicitly managed by means of the con-
straint on the number of states since it is known that the
number of states largely affects the delay and area of the
control path [12].

For simplicity, we assume that no function except the
main function calls other functions. Relaxation of this as-
sumption is one of our future works. At present, if a func-
tion f calls another function f’, either f or f’ needs to be
inlined into its caller before the partitioning step. For this
purpose, granularity selection techniques presented in [2]

HARA et al.: FUNCTION-LEVEL PARTITIONING OF SEQUENTIAL PROGRAMS FOR EFFICIENT BEHAVIORAL SYNTHESIS
2857

(a) (b)

Fig. 3 Partitioning example: (a) Call graph of a program, (b) Partitioning
result.

can be used.
Let us consider an example shown in Fig. 3(a).

Fig. 3(a) describes a call graph of a program consisting of
a main function and four functions which are called from
the main function. The number associated with each edge
denotes the number of function calls written in the pro-
gram text†. Our method generates a partitioning as shown in
Fig. 3(b), where function f1 is inlined into the main module,
functions f2 and f3 are clustered into the same sub module,
and function f4 is implemented in a different sub module.

4.2 Problem Formulation

In this section, we formulate the partitioning problem as an
integer programming problem. First, we define the follow-
ing notations:

NR: the number of hardware resource types
r j: hardware resource (j = 0, 1, . . . ,NR − 1)
aj: the area of resource r j

NF: the number of functions in a program
fi: function in a given program (i = 0, 1, . . . ,NF − 1)

f0 represents a main function.
ci: the number of times function fi is called in the program

text
ni, j: the number of resource r j required by function fi
si: the number of states in a module synthesized from func-

tion fi individually
NM: the number of hardware modules
mk: hardware module (k = 1, . . . ,NM − 1)

m0 represents a main module synthesized from the
main function.

S k: the number of states in module mk
di: the number of states for inter-module communication

for function fi
S const: the designer-specified constraint on the number of

states for each module
Ak: the datapath area of module mk
Atotal: the total datapath area
Ncmp

k : the number of comparator required in module mk

acmp: the area of a comparator

It should be noted that di is one in most cases, but may
be more than one depending on the numbers and sizes of
data to be transferred. Therefore, for generality, we leave di

as a parameter rather than one.
Next, we define a 0-1 variable xi,k as follows:

xi,k =

{
1 if fi is implemented in module mk

0 otherwise

where
∑

k xi,k = 1.
With the notations defined above, the number of states

in module mk is estimated as follows:

S 0 = s0 +
∑

i

xi,0 · (si − di) · ci (1)

S k =
∑

i

xi,k · si +min(1,
∑

i

xi,k),

(k = 1, . . . ,NM − 1) (2)

Formula (1) represents the estimated number of states
in the main module. The number of states for inlined func-
tions is added to that for the main module. Since no com-
munication overhead is necessary, di is subtracted from si.
With function inlining, the actual number of states can be
less than the one obtained by formula (1) because of global
optimization beyond function boundaries. This effect is not
considered in our current formulation and should be incor-
porated in the future.

Formula (2) represents the estimated number of states
in sub module mk. The last term min(1,

∑
i xi,k) denotes an

additional state for selecting the function to be executed
when multiple functions are clustered into mk.

The number of states in each module cannot exceed the
limit specified by a designer. Therefore, the formula below
must hold.

S k ≤ S const, (k = 0, 1, . . . ,NM − 1) (3)

Next, the datapath area of the main module and sub
modules can be estimated by formulas (4) and (5), respec-
tively.

A0 =
∑

j

{max
i

(xi,0 · ni, j) · aj} (4)

Ak =
∑

j

{max
i

(xi,k · ni, j) · aj}

+Ncmp
k · acmp, (k = 1, . . . ,NM − 1) (5)

In module mk, the required number of resource r j is
given by the maximum number among ni, j’s for functions
which are clustered into module mk. A sub module which
implements more than one function requires comparators to
determine the function to be executed. The required number
of comparators, Ncmp

k , is given by
∑

i xi,k when it is greater
than one, otherwise 0.

Then, the total datapath area Atotal can be estimated by
the formula below:

Atotal =
∑

k

Ak (6)

As shown above, the optimization problem on behav-
ioral level partitioning can be defined as an integer program-
ming problem, which finds xi,k minimizing formula (6) with

†Note that the number does not mean the dynamic number of
function calls.

2858
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

satisfying the constraints in formula (3). By finding the op-
timal solution of the integer programming problem, a de-
signer can obtain the optimal partitioning. To find the opti-
mal solution, some commercial solvers for ILP can be used,
or some general algorithms such as the branch and bound
method, simulated annealing, the genetic algorithm, and so
on, can be applied. As we will see later, a simple exhaus-
tive search algorithm was used in our experiments. Still,
it yields an optimal solution within one second for realistic
benchmark programs. For larger programs, however, it may
be necessary to develop more efficient algorithms, which re-
mains as one of our future works.

It should be noted that our method finds the optimal
number of hardware modules as well as the optimal N-way
partitioning simultaneously, by simply adding the following
equation into the integer programming formulation.

NM = NF (7)

This equation does not mean that the number of mod-
ules must be exactly NF , but means that it must be equal to
or less than NF . If the optimal number of modules is less
than NF , a solver will yield xi,k = 0,∀i, for some module
mk.

4.3 Overall Synthesis Flow

As defined above, our partitioning method requires that, for
each function, the numbers and types of hardware resources
(i.e., ni, j) and the number of states (i.e., si) be known. There-
fore, we need to run behavioral synthesis for each function
in order to obtain these pieces of information. Thus, the
overall flow of behavioral synthesis is as follows.

1. Flatten the hierarchy of function calls into a single level
by inlining.

2. Execute behavioral synthesis for each function to ob-
tain ni, j and si.

3. Execute behavioral level partitioning by the proposed
method.

4. Execute behavioral synthesis for each cluster.

One problem in Step 3 is how a designer should de-
cide the constraint on the number of states. The optimal
number of states is affected by several factors such as the
ability of the behavioral and logic synthesis tools, the clock
frequency constraint, and so on, so finding the optimal one
is not an easy problem. Therefore, the synthesis steps de-
scribed above need to be repeated with varying the con-
straint on the number of states. The key point is that the
method proposed in this paper can be used as a tool which
significantly reduces the design space to be explored. For
each constraint, our method finds an optimal partitioning
without actually synthesizing the circuits, so the designer
does not have to run behavioral/logic synthesis for all the
possible partitionings.

4.4 Discussion on the Constraint

In our function-level partitioning approach, we try to keep
the control path complexity below a certain level. In gen-
eral, however, it is a very difficult problem to estimate the

complexity of the control path before behavioral and logic
synthesis. In our formulation, therefore, we use the number
of states as an approximate metric for control path complex-
ity as defined in formulas (1)–(3). The reason is as follows.
A control path can be divided into two parts. One is a cir-
cuit to generate control signals to the datapath (e.g., control
signals of multiplexers, read/write signals of registers, and
so on), and the other is one to compute the next state. Out
of the two, the circuit to generate control signals often exists
on the critical path of the overall circuit because computa-
tion in the datapath starts upon the arrival of the control sig-
nals. During behavioral synthesis, therefore, it is important
not to increase the delay of the path for control signal gener-
ation. Note that the path delay for control signal generation
is heavily dependent on the number of state bits, especially,
in case of Moore’s FSM-based control paths. In our ILP for-
mulation, therefore, we constrain the maximum number of
states for each module in order not to increase the critical
path delay.

Although the number of states is not an accurate ap-
proximation for control path delay, our experimental results
show the effectiveness of our ILP formulation as we will see
in the next section. However, one may want to model the
control path delay more accurately. Recent work by Gupta
reveals in [12] that the number of operations in the behav-
ioral description is another important factor for deciding the
control path complexity. Our ILP formulation can be easily
extended so that the number of operations should not exceed
a certain level for each module. Such extention is realized
by using the following constraint formulas (8)–(10) in addi-
tion to the original formulas (1)–(3)†.
oi: the number of operations in a module synthesized from

function fi individually
Ok: the number of operations in module mk
Oconst: the designer-specified constraint on the number of

operations for each module

O0 = o0 +
∑

i

xi,0 · oi · ci (8)

Ok =
∑

i

xi,k · oi, (k = 1, . . . ,NM − 1) (9)

Ok ≤ Oconst, (k = 0, 1, . . . ,NM − 1) (10)

It should also be noted that, since the behavioral syn-
thesis runtime significantly depends on the number of op-
erations in the behavioral description, the use of our new
formulas (8)–(10) is also effective in order to complete be-
havioral synthesis in a practical time. In fact, the number of
operations and that of states are not independent, i.e., more
operations tend to result in more states. In other words, us-
ing the number of states as a constraint implicitly constrains
that of operations. Actually, our experimental results pre-
sented in the next section show that the tighter constraint on
the number of states leads to shorter runtime of behavioral
synthesis.

In our ILP formulation, the performance (i.e., the num-
ber of execution cycles) is also taken into account not ex-
plicitly but implicitly. As shown in experiments in the next

†In [12], the authors have developed a more complex formula
for estimation of the control delay.

HARA et al.: FUNCTION-LEVEL PARTITIONING OF SEQUENTIAL PROGRAMS FOR EFFICIENT BEHAVIORAL SYNTHESIS
2859

section, looser constraints on the number of states tend to
result in an increase in execution cycles with the area re-
duced. This indicates that designers can efficiently explore
performance-area trade-off points by varying the constraint
on the number of states.

5. Experiments

We conducted two sets of experiments to demonstrate the
effectiveness of our partitioning approach. We used two
benchmark programs: sqrt, which computes the square-
root of a given double-precision floating-point number, and
ludcmp, which performs LU decomposition for a given ma-
trix of double-precision floating-point numbers. Note that
the two benchmark programs are rather large, each of which
consists of more than 1,000 lines of C code. Each program
is composed of a main function and several double-precision

Table 3 Characteristics of functions in benchmark programs.

main add sub mul div lt le eq int to double

No. of sqrt — 1 3 3 2 1 1 1 0
function calls ludcmp — 1 6 5 3 0 3 0 2

No. of sqrt 61 61 61 33 55 9 9 7 7
states ludcmp 153

Table 4 Experimental results for sqrt.

constraint partitioning No. of gate clock exec. exec. area-delay beh. syn.
on states states count period (ns) cycles time (µs) (×107) time (s)

main 61
add 61
sub 61

61 mul 33 601,256 46.6 1,915 89.3 5.37 834
(w/o clustering) div 55

lt 9
le 7
eq 7

main 67
add 61

70 - 80 sub 61 595,928 46.2 1,977 91.4 5.45 872
mul, lt, le, eq 54

div 55

main 70
add, lt, le, eq 82

90 sub 61 403,171 51.5 1,996 102.8 4.14 1,091
mul, div 86

main 70
add, lt, eq 75

100 - 120 sub 61 405,272 50.9 1,996 101.7 4.12 990
mul, div, le 93

main 73
130 - 160 add, sub 122 351,582 51.5 2,032 104.5 3.67 1,397

mul, div, lt, le, eq 105

main 73
170 - 210 add, mul, div, le 152 383,638 50.3 2,032 102.1 3.92 1,459

sub, lt, eq 75

main, lt, le, eq 73
220 add, sub, mul, div 204 331,066 52.0 1,953 101.6 3.36 2,339

main, le 68
230 add, sub, mul, div, lt, eq 216 330,210 50.3 1,972 99.1 3.27 2,330

main 73
240 - 510 add, sub, mul, div, lt, le, eq 223 329,466 51.4 2,032 104.4 3.44 2,683

520 - main, add, sub, mul
(inlining) div, lt, le, eq — — — — — — —

floating-point arithmetic functions such as double add,
double sub, double mul, int to double and so on [9].
Each function contains a number of integer and logic oper-
ations as well as complex control structures. For example,
double add includes 337 operations, 87 if statements, 26
goto statements and so on. Table 3 shows the number of
function calls in each benchmark program, where double
is omitted from some function names due to the limited
space. For exmaple, double add is called once in the both
programs, while double mul is called three times and five
times in sqrt and ludcmp, respectively.

First, we ran behavioral synthesis for each function in
order to obtain the types and numbers of required hardware
resources and the number of states. We used a commer-
cial behavioral synthesis tool eXCite 3.0 from YXI [10].
Scheduling was performed without resource constraint. The
number of states for each function is shown in Table 3.

2860
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Table 5 Experimental results for ludcmp.

constraint partitioning No. of gate clock exec. exec. area-delay beh. syn.
on states states count period (ns) cycles time (µs) (×108) time (s)

main 153
add 61

61 sub 61
(w/o clustering) mul 33 1,142,470 46.6 5,080 236.8 2.71 916

div 55
le 7

int to double 7

main 168
160 add, sub 122 898,931 56.0 5,638 315.6 2.84 1,436

mul, div, le, int to double 104

main 163
170 - 210 add, mul, div, le 165 919,131 55.2 5,414 298.7 2.75 1,697

int to double
sub 61

main, le 169
220 add, sub, mul, div 217 874,399 58.6 5,566 326.0 2.85 2,594

int to double

main 168
230 - 900 add, sub,mul, div, le 226 873,584 60.2 5,638 339.2 2.96 2,599

int to double

910 - main, add, sub, mul
(inlining) div, le, int to double — — — — — — —

Due to the limited space, the types and numbers of hard-
ware resources required for each function were omitted in
this paper. It should be mentioned that some functions are
very resource-hungry. For example, double mul requires
four 64-bit adders, one 64-bit subtractor, one 32-bit subtrac-
tor, four 64-bit multipliers, one 64-bit divider, two 64-bit
shifters, seven 64-bit comparators, and three 32-bit com-
parators.

Next, we performed behavioral level partitioning pro-
posed in this paper. At that time, we varied the constraint
on the number of states. We developed a C program to find
the optimal solution for the integer programming problem
defined in the previous section. Our solver is based on ex-
haustive search, but it took less than one second to find the
optimal partitioning.

Then, for each partitioning result, we performed be-
havioral synthesis, logic synthesis, and place-and-route to
evaluate the area and clock period of the design. Xilinx Vir-
tex 2 was used as a target device, and Xilinx ISE [11] was
used for logic synthesis and place-and-route. All of these
synthesis processes were optimized for performance max-
imization. Register-transfer level simulation was also per-
formed to measure the execution cycles.

Tables 4 and 5 summarize the synthesis and simulation
results for sqrt and ludcmp, respectively. Behavioral syn-
thesis runtime is also shown in the tables. The first column
denotes the constraint on the number of states in individual
modules. The fourth column “gate count” means the equiv-
alent gate count including not only LUTs but also built-in
multipliers and block RAMs occupied by the design. The
eighth column represents area-delay product, which is de-
fined as the product of area (gate count) and execution time.
Since in general area and execution time are in a trade-off re-
lation, area-delay product is used to comprehensively eval-
uate the designs. In the first column, “w/o clustering” de-
notes the function-based partitioning without clustering de-

scribed in Sect. 2.2. In both of the benchmark programs, this
function-based approach gives the highest performance but
also the largest area.

In Table 4, when the state constraint is 70 to 80, five
modules were generated. In the fourth module, four func-
tions are clustered. The performance is slightly worse than
“w/o clustering” due to the communication overhead re-
quired to specify the function ID for the clustered module.
When the constraint is 220, the number of execution cycles
is relatively small. This is because several functions are in-
lined into the main function (see Sect. 2.1 for the advantages
of function inlining). As the constraint becomes loose, the
area tends to decrease due to the increased resource shar-
ing. When the constraint is 170 to 210, the actual num-
ber of states in the largest module is 152. This satisfies the
more severe constraint (i.e., 160 states). If multiple func-
tions are clustered, the functions can share not only hard-
ware resources but also states. However, this possibility is
not captured at present (it should be captured in the future)
in our formulation in Sect. 4.2. When the constraint is 520
or larger, all the functions are inlined into the main mod-
ule. In this case, however, behavioral synthesis could not be
completed within 24 hours.

The results for ludcmp are shown in Table 5. Similar
to the results for Table 4, “w/o clustering” yields the high-
est performance and the largest area. Also, behavioral syn-
thesis could not be completed when the constraint was the
least severe. The area of ludcmp is much larger than that
of sqrt because of the memory for the matrix to be LU-
decomposed. When the constraint is 160, the actual number
of states in the main module exceeds the constraint. This is
due to the underestimation of the communication overhead
in the main module, which should be improved in the future.

When the constraint is 100 to 120 in Table 4, in spite of
sharing more resources, the area is slightly larger than that
when the constraint is 90. Other partitionings with a similar

HARA et al.: FUNCTION-LEVEL PARTITIONING OF SEQUENTIAL PROGRAMS FOR EFFICIENT BEHAVIORAL SYNTHESIS
2861

discrepancy are also found in Tables 4 and 5. This is mainly
due to the following reason. As described in Sect. 4.2, the
proposed method determines the functions to be inlined into
the main module and partitioned into sub modules based on
estimated datapath area in formulas (4) and (5). Indeed, the
estimated area when the constraint is 100 to 120 is smaller
than that when the constraint is 90. On the other hand, the
area in Table 4 is the actual one after logic synthesis and
place-and-route. Logic-level optimization often affects the
area significantly, but that is not taken into account in our
formulas (4) and (5). This problem needs to be handled
more carefully in future.

The experimental results in Tables 4 and 5 demonstrate
the effectiveness of the partitioning method proposed in this
paper. In the behavioral synthesis from a large program, in-
lining of all the functions is impractical because the main
module becomes too complex to be synthesized. There-
fore, the complexity of individual modules should be con-
strained within a manageable level. Function-based parti-
tioning without clustering leads to a high-performance de-
sign, but the area becomes large. The function-level par-
titioning approach presented in this paper enables efficient
exploration of area-performance trade-off points as shown
in Tables 4 and 5.

6. Conclusions

In this paper, we have proposed a behavioral level partition-
ing method based on integer programming. Our method
optimally determines functions to be inlined into the main
module and ones to be synthesized into sub modules in such
a way that the overall datapath is minimized while keeping
the complexity of individual modules within a manageable
level. Experimental results demonstrate that the proposed
partitioning method enables efficient behavioral synthesis
from a large sequential program.

The current partitioning method assumes a single-level
hierarchy of function calls, and does not consider the po-
tential parallelism between modules. These assumptions
should be relaxed in future. Also, overestimation and under-
estimation of the number of states in our formulation need
to be improved.

Acknowledgments

This work is in part supported by KAKENHI 19700040.

References

[1] D.D. Gajski, N.D. Dutt, A.C.-H. Wu, and S.Y.-L. Lin, High-Level
Synthesis: Introduction to Chip and System Design, Kluwer Aca-
demic Publishers, 1992.

[2] F. Vahid, “Partitioning sequential programs for CAD using a three-
step approach,” ACM TODAES, vol.7, no.3, pp.413–429, July 2002.

[3] S. Gupta, R.K. Gupta, N.D. Dutt, and A. Nicolau, “Coordinated par-
allelizing compiler optimizations and high-level synthesis,” ACM
TODAES, vol.9, no.4, pp.441–470, Oct. 2004.

[4] M. Nishimura, K. Nishiguchi, N. Ishiura, H. Kanbara, H. Tomiyama,
Y. Takatsukasa, and M. Kotani, “High-level synthesis of variable
accesses and function calls in software compatible hardware syn-
thesizer CCAP,” Proc. Synthesis And System Integration of Mixed
Information technologies (SASIMI), pp.29–34, 2006.

[5] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Function call
optimization for efficient behavioral synthesis,” IEICE Trans. Fun-
damentals, vol.E90-A, no.9, pp.2032–2036, Sept. 2007.

[6] F. Vahid, “Procedure exlining: A transformation for improved sys-
tem and behavioral synthesis,” Proc. International Symposium on
System Synthesis (ISSS), pp.84–89, 1995.

[7] F. Vahid, “Procedure cloning: A transformation for improved
system-level functional partitioning,” ACM TODAES, vol.4, no.1,
pp.70–96, Jan. 1999.

[8] F. Vahid, “Techniques for minimizing and balancing I/O during
functional partitioning,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol.18, no.1, pp.69–75, Jan. 1999.

[9] SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html
[10] Y Explorations, Inc., http://www.yxi.com/
[11] Xilinx, http://www.xilinx.com/
[12] G.R. Gupta, M. Gupta, and P.R. Panda, “Rapid estimation of con-

trol delay from high-level specifications,” Proc. Design Automation
Conference (DAC), pp.455–458, 2006.

Yuko Hara received her B.E. in Information
Engineering from Nagoya University in 2006.
Currently she is an M.S. student at the Graduate
School of Information Science, Nagoya Univer-
sity. Her research interests include behavioral
synthesis and embedded systems. She is a mem-
ber of ACM.

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu Uni-
versity in 1999. From 1999 to 2001, he was a
visiting postdoctoral researcher with the Center
of Embedded Computer Systems, University of
California, Irvine. From 2001 to 2003, he was
a researcher at the Institute of Systems & In-
formation Technologies/KYUSHU. In 2003, he
joined the Graduate School of Information Sci-
ence, Nagoya University, as an assistant profes-
sor, where he is now an associate professor. His

research interests include system-level design automation, architectures
and compilers for embedded systems and systems-on-chip. He is currently
serves as an associate editor of ACM TODAES and an editorial board mem-
ber of International Journal on Embedded Systems. He has also served on
the organizing and program committees of several premier conferences in-
cluding ICCAD, ASP-DAC, CODES+ISSS, and so on. He is a member of
ACM, IEEE, and IPSJ.

2862
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.12 DECEMBER 2007

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Informa-
tion Engineering, Toyohashi University of Tech-
nology in 2005. From 2004 to 2006, he was
a researcher at the Nagoya University Exten-
sion Course for Embedded Software Special-
ists. In 2006, he joined the Center for Embed-
ded Computing Systems, Nagoya University, as
an assistant professor. His research interests in-
clude system-level design automation and real-
time operating systems. He received the best pa-

per award from IPSJ in 2003. He is a member of IPSJ.

Hiroaki Takada is a Professor at the Depart-
ment of Information Engineering, the Graduate
School of Information Science, Nagoya Univer-
sity. He received his Ph.D. degree in Informa-
tion Science from University of Tokyo in 1996.
He was a Research Associate at University of
Tokyo from 1989 to 1997, and was an Assis-
tant Professor and then an Associate Professor at
Toyohashi University of Technology from 1997
to 2003. His research interests include real-time
operating systems, real-time scheduling theory,

and embedded system design. He is a member of ACM, IEEE, IPSJ, and
JSSST.

Katsuya Ishii received his BSc. and DSc.
in Science, University of Tokyo in 1975 and
1980, respectively. He was an Assistant Profes-
sor in Faculty of Science, University of Tokyo
from 1980 to 1986, and in Faculty of Engineer-
ing, University of Tokyo in 1987. From 1988
to 1994, he was a Head of Research Division,
ICFD, Co. In 1995, he joined Faculty of Engi-
neering, Nagoya University as an Associate Pro-
fessor, where he is now a Professor in Informa-
tion Technology Center, Nagoya University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

