
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.12 DECEMBER 2010
2509

PAPER Special Section on VLSI Design and CAD Algorithms

Automatic Communication Synthesis with Hardware Sharing for
Multi-Processor SoC Design∗∗

Yuki ANDO†a), Seiya SHIBATA†∗, Nonmembers, Shinya HONDA†, Hiroyuki TOMIYAMA††,
and Hiroaki TAKADA†, Members

SUMMARY We present a hardware sharing method for design space
exploration of multi-processor embedded systems. In our prior work, we
had developed a system-level design tool named SystemBuilder which au-
tomatically synthesizes target implementation of a system from a functional
description. In this work, we have extended SystemBuilder so that it can
automatically synthesize an area-efficient implementation which shares a
hardware module among different applications. With SystemBuilder, de-
signers only need to enable an option in order to share a hardware module.
The designers, therefore, can easily explore a design space including hard-
ware sharing in short time. A case study shows the effectiveness of the
hardware sharing on design space exploration.
key words: system-level design, hardware sharing, design space explo-
ration, MPSoC

1. Introduction

Embedded systems have been increasing their complexity,
consisting of more applications. In many cases, some of the
applications include common functions. In order to opti-
mize the system performance and their hardware size, the
common functions are often implemented in a dedicated
hardware module which is shared by the applications.

In order to design complex embedded systems, system-
level design has been proposed. In the system-level design,
designers design a system at a high level of abstraction.
They start the design from describing system functionalities
as a set of applications, and an application in turn consists
of processes and channels. Processes and channels indicate
computations and communications, respectively. Then, the
processes are mapped to Processing Elements (PEs) such as
CPUs and dedicated hardware modules, and the channels
are mapped to buses and memories.

A number of system-level design tools which support
process and channel mapping were proposed in the past [1].
However, process-level hardware sharing, i.e., mapping of
processes which exist in different applications onto a single

Manuscript received March 17, 2010.
Manuscript revised June 21, 2010.
†The authors are with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464-8601 Japan.
††The author is with College of Science and Engineering,

Ritsumeikan University, Kusatsu-shi, 525-8577 Japan.
∗The author is a research fellow of the Japan Society for the

Promotion of Science.
∗∗A preliminary version of this paper has been accepted for reg-

ular presentation at The IEEE International Symposium on Circuits
and Systems (ISCAS), May 2010.

a) E-mail: y ando@ertl.jp
DOI: 10.1587/transfun.E93.A.2509

hardware module, is not supported by most of the existing
system-level design tools. Most of the tools assume single-
application systems. Although some tools assume multiple
applications, they do not allow process-level hardware shar-
ing. Even if it is allowed, the tools do not automatically syn-
thesize interface circuitry which realizes mutually exclusive
accesses to the shared hardware module. Therefore, the de-
signers need to implement the interface circuitry manually.

This paper presents automatic synthesis of communi-
cations for hardware modules which are shared by multiple
applications. Our system-level design tool named System-
Builder has been extended so that it supports process-level
hardware sharing. SystemBuilder automatically generates
interface circuitry for the shared hardware module. Since
the applications may run concurrently, the interface circuitry
generated by SystemBuilder realizes mutually exclusive ac-
cesses to the shared hardware module.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the related works. Section 3 explains a
brief overview of SystemBuilder. Section 4 presents the de-
tail of communication synthesis for hardware sharing. Sec-
tion 5 shows the effectiveness of hardware sharing through
a case study on Advanced Encryption Standard (AES) sys-
tem, and Sect. 6 concludes this paper.

2. Related Works

Various researches have been conducted on system-level de-
sign tools. The tools mainly assume heterogeneous Multi-
Processor System-on-a-Chip (MPSoC) as target architec-
ture.

SCE (System-On-Chip Environment) [2] is a system-
level design framework based on the SpecC language [3].
It realizes an interactive and automated design flow with a
consistent and seamless tool chain, and supports all the way
from specification of the system down to hardware/software
implementation.

Artemis [4] provides modeling and simulation meth-
ods and tools for efficient performance evaluation and ex-
ploration of heterogeneous embedded multimedia systems.
Artemis’s design flow start at a sequential application spec-
ification, and it is transformed to a concurrent application
specification. Then, Artemis allows designers to estimate
performance through co-simulation of a concurrent applica-
tion specification.

PeaCE (Ptolemy extension as a Codesign Environ-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

2510
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.12 DECEMBER 2010

ment) [5] is a hardware-software codesign environment that
provides seamless codesign flow from functional simula-
tion to system prototyping. Its target application is multi-
media applications with real-time constraints. Unlike other
system-level design tools, PeaCE is a reconfigurable envi-
ronment into which other design tools can be easily inte-
grated.

Metropolis [6] is a modeling and simulation environ-
ment based on the platform-based design paradigm. It pro-
vides a general, proprietary metamodel language that is used
to capture separate models for behavioral model, platform
model, and their binding and scheduling. Metropolis itself
does not define any specific design tools but rather a gen-
eral framework and language for modeling with support for
simulation, validation and analysis of models.

ARTS [7] provides a simulation platform for modeled
in SystemC. It supports multiple PE models and network
model among PEs. ARTS assumes that the application
model simulated on it is already developed and separated
properly in order to explore allocation to PEs.

These five tools do not support hardware sharing. Our
system-level design tool, SystemBuilder, is the first system-
level design tool which automatically synthesizes commu-
nication for hardware sharing.

3. SystemBuilder

In this section, we show a brief overview of SystemBuilder
to make this paper self-contained. Like other system-level
design tools, SystemBuilder assumes MPSoC as target ar-
chitecture. Please refer [8] for the detail of SystemBuilder.

Figure 1 shows the mapping and synthesis overview of
SystemBuilder. SystemBuilder takes a functional descrip-
tion, an architecture template and mapping information as
input, and generates target implementation of the system.
The functional description, the architecture template and the
mapping information represent the system functionalities, a
target platform and an allocation of processes to PEs, re-

Fig. 1 Overview of SystemBuilder.

spectively. The functional description consists of a set of
applications, each of which in turn consists of a set of pro-
cesses and channels. The applications are written in the C
language with communication APIs which are interfaces to
channels. Depending on the mapping information, a pro-
cess is implemented as either a software task running on a
real-time OS or a hardware module.

Channels represent communications among processes.
Channels are generally classified into two types: one is
asynchronous and the other is synchronous. Asynchronous
channels are used to transfer data among processes. On the
other hand, synchronous channels are mainly used to trans-
fer events for activation of processes as well as synchroniza-
tion between processes. In order to store multiple events, the
synchronous channels have buffers. Depending on the map-
ping information, communication APIs are translated into
either interface programs or hardware logics so that the pro-
cesses can communicate with each other through the chan-
nels.

4. Automatic Communication Synthesis with Hard-
ware Sharing

4.1 The Design Flow with Hardware Sharing

Figure 2 shows the design flow of SystemBuilder. Design-
ers first design applications independently as shown in (a).
Without hardware sharing, SystemBuilder generates the sys-
tem implementation as shown in (b).

We assume that a system consists of more than one ap-
plication, and some processes in the different applications
have same functionality. In the description (a), there are
two applications, Application1 and Application2, and pro-
cesses P B and P Y have same functionality. With hardware
sharing, SystemBuilder automatically converts the descrip-
tion (a) into an internal description (c). During the conver-
sion, processes P B and P Y are merged into a new pro-
cess P S with the same functionality, where process P S is

Fig. 2 Design flow with/without hardware sharing.

ANDO et al.: AUTOMATIC COMMUNICATION SYNTHESIS WITH HARDWARE SHARING FOR MULTI-PROCESSOR SOC DESIGN
2511

Fig. 3 Detail of the wrapper generated by SystemBuilder.

shared by the two applications. In our hardware sharing
method, the number of channels in Application1 and Ap-
plication2 does not change. In other words, the channels are
not shared by Application1 and Application2. Thus, no data
conflict occurs within the communication channels. Then,
SystemBuilder automatically synthesizes the implementa-
tion as shown in (d) from the internal description (c).

SystemBuilder automatically completes the design
flow from (a) to (d) in Fig. 2 if a sharing option is enabled
in the mapping information. Designers only need to turn
on the option so that the two applications share a hardware
module. The designers, therefore, will be able to explore a
wider design space in short time. Note that more than two
applications can share a hardware module although Fig. 2
only shows two applications.

4.2 Implementation of Communication for Hardware
Sharing

Process P S in Fig. 2(c) is shared by Application1 and Ap-
plicaiton2, and thus process P S requires two sets of chan-
nels, one for Application1 and one for Application2. How-
ever, note that the process originally has only a single set
of the channels. Also note that the functionality inside the
process should not be modified for reusability and easiness
of debugging.

SystemBuilder automatically inserts a wrapper to the
shared process as shown in Fig. 3. The wrapper has two sets
of external channels, i.e., one for each application. In addi-
tion, the wrapper provides an interface to the shared process.
The wrapper realizes mutual exclusion and selects a channel
to which the shared process should access. Also, System-
Builder inserts a signal to channels which are connected to
the shared process. The signal indicates whether a buffer in
the channel is empty or not.

The wrapper works as follows. First, the wrapper polls
the signals whether the channels have valid data or not. If

Fig. 4 Mapping of processes with hardware sharing supported by
SystemBuilder.

more than one channel have valid data, the wrapper selects
an application to be served. SystemBuilder supports two
types of polling, priority-based polling and round-robin one.
Designers select the polling policy and decide priorities of
the applications in the mapping information. With priority-
based polling, every time the shared process starts polling,
the channel of the highest priority application is checked
first. If its signal indicates empty, the next highest priority
application will be checked. With round-robin polling, the
channels are checked in a round-robin manner. The polling
continues until non-empty signal is found.

Next, data are read from the channel of the selected
application, and the wrapper sends a start event and the data
to the shared process. Then, the shared process starts its
execution.

The shared process may communicate with other pro-
cesses not only at entry and exit points of the process but
also during its execution. Every time the shared process
communicates with another process, the wrapper passes the
data between the shared process and the channel of the se-
lected application.

4.3 Mapping of Processes with Hardware Sharing

Figure 4 shows four patterns of processes’ mapping with
hardware sharing supported by SystemBuilder. Our hard-
ware sharing method does not restrict hardware/software
mapping possibilities. This means that shared processes are
able to communicate with processes to be implemented in
software as well as ones to be implemented in hardware as
shown in Fig. 4(a), Fig. 4(b), and Fig. 4(c). Furthermore,
shared processes can communicate with other shared pro-
cesses as shown in Fig. 4(d). Also, our hardware sharing
method does not restrict the number of shared processes.
For example, there can be two shared processes among four
processes as shown in Fig. 4(e).

5. A Case Study

In this section, we present a case study to show the effective-
ness of our hardware sharing method. Section 5.1 explains
the target systems. Section 5.2 shows the evaluation of de-

2512
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.12 DECEMBER 2010

sign space exploration with hardware sharing. Section 5.3
indicates the reduction of hardware size and Sect. 5.4 makes
clear the relation between polling policy and the execution
time of each application.

5.1 Target Systems

We present a case study with three systems, Dual-AES,
Triple-AES, and Quad-AES. Dual-AES, Triple-AES, and
Quad-AES consist of two, three, and four AES applications
[9], respectively. Each application in the systems is num-
bered from 1 through 4. In other words, there are four ap-
plications named AES1, AES2, AES3, and AES4 as shown
in Fig. 5. The four AES applications are identical, and
each application encrypts and decrypts data which consist
of 16 integers for 1000 times. The AES applications con-
sist of four processes, aes mainX, encryptX, decryptX and
check resultX (X differs from 1 to 4 depending on the AES
application). We assume that each AES application runs on
a dedicated processor, and that, in case of Quad-AES, it con-
sists of four processors and the four AES applications run on
their own processors.

In this case study, we have explored different map-
ping solutions on Dual-AES, Triple-AES, and Quad-AES as

Fig. 5 Construction of Quad-AES.

Table 1 Mapping information and the polling policy of Dual-AES.

Mapping encrypt1 encrypt2 decrypt1 decrypt2

1 SW SW SW SW

2 HW HW SW SW

3 Shared HW(Priority) SW SW

4 Shared HW(Round) SW SW

5 SW SW HW HW

6 SW SW Shared HW(Priority)

7 SW SW Shared HW(Round)

8 HW HW HW HW

9 Shared HW(Priority) HW HW

10 Shared HW(Round) HW HW

11 HW HW Shared HW(Priority)

12 HW HW Shared HW(Round)

13 Shared HW(Priority) Shared HW(Priority)

14 Shared HW(Round) Shared HW(Round)

15 Shared HW(Round) Shared HW(Priority)

16 Shared HW(Priority) Shared HW(Round)

summarized in Table 1, Table 2, and Table 3, respectively.
We have varied mapping of the encryptX and decryptX pro-
cesses on either a software (SW), a hardware (HW), or a
shared hardware (Shared HW). In case of hardware sharing,
we have also changed the polling policy. Note that, through
the design space exploration, we rewrote the mapping infor-
mation file only. According to the mapping information,
SystemBuilder automatically synthesizes the implementa-
tion which is executable on an FPGA. On an average, Sys-
temBuilder took about an hour to synthesize an implementa-
tion. To complete the exploration of an AES system, it took
less than 24 hours by a single designer. In this work, we
used Altera StratixII FPGA board with four Nios II soft-core
processors [10] as target architecture. Software processes
were cross-compiled and linked with the TOPPERS/FDMP
kernel [11], which is a real-time OS for multi-processors, to
be executed on the Nios II soft-core processors. Hardware
processes were synthesized with a commercial behavioral
synthesis tool eXCite [12]. These compilation and synthe-
sis tasks were automatically done by SystemBuilder.

5.2 Design Space of Hardward Sharing

In terms of hardware size and execution time on the FPGA,
we evaluated the 16 mapping solutions on Dual-AES, and 20
mapping solutions on Triple-AES and Quad-AES as shown
in Table 1, Table 2, and Table 3, respectively. Figure 6 shows
the hardware size (in #ALUTs) and the execution time (in
milli-seconds) of each mapping solution on the three sys-
tems. #ALUTs shows the hardware size of processors, pe-
ripherals, and processes mapped to hardware and shared
hardware. In the figures, the solid lines and the broken lines
represent the trade-offs of all mapping solutions and those
without hardware sharing, respectively. It is easily observed
that the solid lines (with hardware sharing) represent better
trade-offs than the broken lines (without hardware sharing)
on the three AES systems. In Fig. 6(b), the mapping solu-
tion #7 with hardware sharing which is on the solid line, has
less hardware size and better performance than the mapping
solution #2 without hardware sharing. Hardware sharing,
therefore, can bring better area-performance trade-offs.

As mentioned in Sect. 4.3, the designers can explore
the number of processes to be shared. In Fig. 6(c), map-
ping solution #20 has two shared hardware each of which
are shared by two processes. Since the mapping solution
#20 is on the solid line, it is a candidate of an optimized so-
lution. This result indicates that it is important to explore
the number of processes to be shared, which is supported by
our hardware sharing method.

5.3 The Reduction of Hardware Size

In Fig. 6(a), if we look at mapping solutions #2, #3, and
#4 whose difference of mapping is shared or not shared, the
hardware size was reduced by 28% thanks to hardware shar-
ing. The same can be said for mapping solutions #5, #6,
and #7. Also, if we look at mapping solutions #2, #3, and

ANDO et al.: AUTOMATIC COMMUNICATION SYNTHESIS WITH HARDWARE SHARING FOR MULTI-PROCESSOR SOC DESIGN
2513

Table 2 Mapping information and the polling policy of Triple-AES.

Mapping encrypt1 encrypt2 encrypt3 decrypt1 decrypt2 decrypt3

1 SW SW SW SW SW SW

2 HW HW HW SW SW SW

3 Shared HW(Priority) SW SW SW

4 Shared HW(Round) SW SW SW

5 SW SW SW HW HW HW

6 SW SW SW Shared HW(Priority)

7 SW SW SW Shared HW(Round)

8 HW HW HW HW HW HW

9 Shared HW(Priority) HW HW HW

10 Shared HW(Round) HW HW HW

11 HW HW HW Shared HW(Priority)

12 HW HW HW Shared HW(Round)

13 Shared HW(Priority) Shared HW(Priority)

14 Shared HW(Round) Shared HW(Round)

15 Shared HW(Round) Shared HW(Priority)

16 Shared HW(Priority) Shared HW(Round)

17 Shared HW(Round) HW Shared HW(Round) HW

18 Shared HW(Round) HW HW Shared HW(Round)

19 Shared HW(Round) HW Shared HW(Round)

20 Shared HW(Round) Shared HW(Round) HW

Table 3 Mapping information and the polling policy of Quad-AES.

Mapping encrypt1 encrypt2 encrypt3 encrypt4 decrypt1 decrypt2 decrytp3 decrypt4

1 SW SW SW SW SW SW SW SW

2 HW HW HW HW SW SW SW SW

3 Shared HW(Priority) SW SW SW SW

4 Shared HW(Round) SW SW SW SW

5 SW SW SW SW HW HW HW HW

6 SW SW SW SW Shared HW(Priority)

7 SW SW SW SW Shared HW(Round)

8 HW HW HW HW HW HW HW HW

9 Shared HW(Priority) HW HW HW HW

10 Shared HW(Round) HW HW HW HW

11 HW HW HW HW Shared HW(Priority)

12 HW HW HW HW Shared HW(Round)

13 Shared HW(Priority) Shared HW(Priority)

14 Shared HW(Round) Shared HW(Round)

15 Shared HW(Round) Shared HW(Priority)

16 Shared HW(Priority) Shared HW(Round)

17 Shared HW(Round) Shared HW(Round) Shared HW(Round) Shared HW(Round)

18 Shared HW(Round) Shared HW(Round) Shared HW(1&4)(Round) Shared HW(Round) Shared HW(1&4)(Round)

19 Shared HW(Round) Shared HW(Round) Shared HW(Round)

20 Shared HW(Round) Shared HW(Round) Shared HW(Round)

2514
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.12 DECEMBER 2010

Fig. 6 Trade-offs between performance and hardware size.

#4 in Fig. 6(b) and Fig. 6(c), the hardware size was reduced
by 37% and 42%, respectively. In the figures, the solutions
marked with a circle which has shared hardware have the
least hardware size among the mapping solutions except the
solution #1 marked with black triangle which has no hard-
ware. Thus, our hardware sharing method is effective to re-
duce the hardware size.

In the three systems, the ratio of hardware size on
mapping solutions #3 and #4 is almost the same, and the
only difference between mapping solutions #3 and #4 is the
polling policy. The same can be said for mapping solutions

#6 and #7 in the three systems. In other word, the polling
policy did not influence reduction of hardware size if the
processes have the same mapping information. Our hard-
ware sharing method, therefore, can reduce the hardware
size with both priority-based polling and round-robin one.

5.4 The Execution Time with Polling Policy

In order to make clear the relation between the polling pol-
icy and the execution time of each application, we measured
the execution time of each application in the solutions as
shown in Table 1, Table 2, and Table 3. Figure 7 shows
the execution time of each AES application on the three
systems. The polling policy of mapping solutions #4, #7,
#10, #12, and #14 on the three systems is only round-robin
polling. Also, mapping solutions #18, #19, and #20 on
Triple-AES and Quad-AES use only round-robin polling.
In these mapping solutions, the execution time of each ap-
plication was averaged. This result indicates that the wrap-
per with round-robin polling equally selected the applica-
tion running on the shared process. Mapping solutions #9,
#11, and #13 on the three systems shows typical results of
priority-based polling. In these mapping solutions, AES1
which has the highest priority is completed at first. Then
AES2, AES3, and AES4 which have the second, the third,
and the lowest priority, respectively, were completed in the
order of the priorities. In mapping solution #6 with priority-
based polling, however, AES1 and AES2 on the three sys-
tems were completed at almost the same time. Since en-
cryptX processes in mapping solution #6 were mapped to
software, the execution of encryptX processes was not faster
than that of the shared process. In particular, when the wrap-
per started the polling, encrypt1 process was running while
encrypt2 process had written the data to the channel. Thus,
the wrapper selected AES2 instead of AES1 which the pre-
vious process of the shared process was running. As a re-
sult, AES1 and AES2 were selected by round-robin manner,
and they were completed at the same time. Then, AES3
and AES4 in mapping solution #6 were completed after the
completion of AES1 and AES2 in the systems.

Comparing mapping solution #9 with #10 in the three
systems, mapping solution #9 with priority-based polling
took longer than mapping solution #10 with round-robin one
in the total execution time. In the case of that the dead-
line of a particular application is very strict, priority-based
polling is more suitable than round-robin one. On the other
hand, in the case of that the execution times of all applica-
tion should be averaged, round-robin polling is more suit-
able.

6. Conclusion

In this paper, we have proposed an automatic communi-
cation synthesis method for hardware sharing and imple-
mented it in our system-level design tool named System-
Builder. With SystemBuilder, the designers can explore
wider design space including hardware sharing in short time

ANDO et al.: AUTOMATIC COMMUNICATION SYNTHESIS WITH HARDWARE SHARING FOR MULTI-PROCESSOR SOC DESIGN
2515

Fig. 7 Execution time of AES applications.

since SystemBuilder automatically synthesizes communi-
cation for hardware sharing with only rewriting the map-

ping information. We have conducted a case study on
hardware sharing with AES applications. The case study

2516
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.12 DECEMBER 2010

demonstrated that hardware sharing brought better area-
performance trade-offs and a wider design space. The case
study also demonstrated reducing hardware size while keep-
ing the performance. In future, we plan to conduct addi-
tional case studies with more complicated applications.

Acknowledgments

This work was in part supported by STARC (Semiconductor
Technology Academic Research Center).

References

[1] A. Gerstlauer, C. Haubelt, A.D. Pimentel, T.P. Stefanov, D.D.
Gajski, and J. Teich, “Electronic system-level synthesis method-
ologies,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol.28, no.10, pp.1517–1530, Oct. 2009.

[2] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi,
and D.D. Gajski, “System-on-chip environment: A SpecC-based
framework for heterogeneous MPSoC design,” EURASIP Journal
on Embedded Systems, vol.2008, pp.1–13, Jan. 2008.

[3] D.D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC:
Specification language and design methodology, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000.

[4] A.D. Pimentel, “The Artemis workbench for system-level perfor-
mance evaluation of embedded systems,” International Journal of
Embedded Systems, vol.3, no.3, pp.181–196, Sept. 2008.

[5] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.P. Joo, “PeaCE: A
hardware-software codesign environment for multimedia embedded
systems,” ACM Trans. Des. Autom. Electron. Syst., vol.12, no.3,
pp.1–25, Aug. 2007.

[6] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metoropolis: An integrated electronic
system design environment,” Computer, vol.36, no.4, pp.45–52,
April 2003.

[7] S. Mahadevan, K. Virk, and J. Madsen, “ARTS: A SystemC-based
framework for multiprocessor systems-on-chip modelling,” Design
Automation for Embedded Systems, vol.11, no.4, pp.285–311, Dec.
2007.

[8] S. Honda, H. Tomiyama, and H. Takada, “RTOS and codesign
toolkit for multiprocessor systems-on-chip,” Proc. 12th ASP-DAC,
pp.336–341, Jan. 2007.

[9] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” J. Information Processing,
vol.17, pp.242–254, Oct. 2009.

[10] Altera Corporation, http://www.altera.com/
[11] TOPPERS Project, http://www.toppers.jp/en/index.html
[12] Y Explorations Inc., http://www.yxi.com/

Yuki Ando received the B.E. degree in in-
formation engineering from Nagoya University
in 2009. Currently he is a M.S. candidate at
the Information Science from Nagoya Univer-
sity. His research interests include system-level
design automation and embedded systems.

Seiya Shibata received his B.E. degree in
information engineering and M.S. degree in In-
formation Science from Nagoya University in
2007, and 2009, respectively. Currently he is
a Ph.D. candidate at the Graduate School of In-
formation Science, Nagoya University. His re-
search interests include system-level design and
embedded systems.

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Informa-
tion Engineering, Toyohashi University of Tech-
nology in 2005. From 2004 to 2006, he was a
researcher at the Nagoya University Extension
Course for Embedded Software Specialists. In
2006, he joined the Center for Embedded Com-
puting Systems, Nagoya University, as an as-
sistant professor, where he is now an associate
professor. His research interests include system-
level design automation and real-time operating

systems. He received the best paper award from IPSJ in 2003. He is a
member of IPSJ and JSSST.

Hiroyuki Tomiyama received his B.E.,
M.E. and D.E. degrees in computer science from
Kyushu University in 1994, 1996 and 1999, re-
spectively. From 1999 to 2001, he was a visiting
postdoctoral researcher with the Center of Em-
bedded Computer Systems, University of Cal-
ifornia, Irvine. From 2001 to 2003, he was a
researcher at Institute of Systems & Information
Technologies/KYUSHU. In 2003, he joined the
Graduate School of Information Science, Na-
goya University as an assistant professor, and

became an associate professor in 2004. In 2010, he joined the College
of Science and Engineering, Ritsumeikan University as a full professor.
His research interests include system-level design automation, architec-
tures and compilers for embedded systems and systems-onchip. He cur-
rently serves as an associate editor-in-chief of IPSJ Transactions on System
LSI Design Methodology, an associate editor of IEEE Embedded Systems
Letters, and an editorial board member of International Journal on Embed-
ded Systems. He has also served on the organizing and program commit-
tees of several premier conferences including ICCAD, ASP-DAC, DATE,
CODES+ISSS, and so on. He is a member of ACM, IEEE and IPSJ.

Hiroaki Takada is a Professor at the Depart-
ment of Information Engineering, the Gradu-
ate School of Information Science, Nagoya Uni-
versity. He is also the Executive Director of
the Center for Embedded Computing Systems
(NCES). He received his Ph.D. degree in In-
formation Science from University of Tokyo in
1996. He was a Research Associate at Univer-
sity of Tokyo from 1989 to 1997, and was a Lec-
turer and then an Associate Professor at Toyo-
hashi University of Technology from 1997 to

2003. His research interests include real-time operating systems, real-time
scheduling theory, and embedded system design. He is a member of ACM,
IEEE, IPSJ, and JSSST.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

