
488
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.2 FEBRUARY 2010

PAPER

Partitioning of Behavioral Descriptions with Exploiting
Function-Level Parallelism

Yuko HARA†∗a), Nonmember, Hiroyuki TOMIYAMA†, Member, Shinya HONDA†, Nonmember,
and Hiroaki TAKADA†, Member

SUMMARY A novel method to efficiently synthesize hardware from
a large behavioral description in behavioral synthesis is proposed. For a
program with functions executable in parallel, this proposed method deter-
mines a behavioral partitioning which simultaneously minimizes the over-
all datapath area and the complexity of the controller while maximizing
performance of a synthesized circuit by fully exploiting function-level par-
allelism of a behavioral description. This method is formulated as an in-
teger programming problem. Experimental results demonstrate that this
method leads to a shift of the explorable design space so that superior so-
lutions which could not be explored by earlier work are included, showing
the effectiveness of our proposed method.
key words: behavioral synthesis, function-level partitioning, integer pro-
gramming problem

1. Introduction

Behavioral synthesis is a technology to automatically syn-
thesize an Register-Transfer Level (RTL) circuit from a be-
havioral description written in a high-level programming
language such as C. These years, behavioral synthesis has
been expected as a promising LSI design alternative to the
traditional RTL design with Hardware Design Languages
(HDLs) [1]. So far, a number of behavioral synthesis tools
have been developed in both academia and industry. At
present, nevertheless, many LSI designers hesitate to roll
over to behavioral synthesis and still start the LSI design
with HDLs. This is because the quality of automatically
generated circuits in behavioral synthesis is inferior to that
of human-designed ones, which is especially serious for the
synthesis from large behavioral descriptions.

Behavioral partitioning, which is a prior step to be-
havioral synthesis, is one of solutions for the above prob-
lem. Partitioning an input behavioral description into mul-
tiple smaller segments and running behavioral synthesis
for each segment can yield various advantages such as
area reduction, performance improvement, synthesis run-
time reduction, packaging or I/O constraints satisfaction,
and power/energy consumption reduction [2]. Many stud-
ies on behavioral partitioning have been presented in the last
two decades. Most of earlier studies focused on multi-chip

Manuscript received June 23, 2009.
Manuscript revised September 25, 2009.
†The authors are with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464-8603 Japan.
∗The author is a research fellow of the Japan Society for the

Promotion of Science.
a) E-mail: hara@ertl.jp

DOI: 10.1587/transfun.E93.A.488

partitioning techniques for mapping a single system on mul-
tiple chips [3]–[7]. As the capacity of a chip grows, how-
ever, behavioral partitioning for improving performance,
area, power/energy, and so on has become a main concern of
designers and has been studied in various work these days
[2], [8]–[11].

Large behavioral descriptions written in C∗∗ generally
consist of a number of functions. Thus, if designers need to
partition such behavioral descriptions, it is natural to parti-
tion them at the function level granularity. Actually, many
C-based behavioral synthesis tools such as SPARK [12],
CCAP [13], eXcite [14], and Cyber [15] have a synthesis
option to partition an input program at the function level.
It generates one hardware module from one function. That
is to say, if applied to all the functions, n hardware modules
are produced from a program consisting of n functions. This
technique can reduce the delay and the area of the controller
in individual modules, while the overall datapath area may
become large since hardware resources cannot be shared be-
tween modules. On the other hand, functions to which the
above technique is not applied are inlined into their callers.
Inlining can reduce the datapath area by resource sharing
among functions, while the delay and the area of the con-
troller might be increased due to the complicated controller.
This disadvantage becomes critical especially in case of a
program where large functions are called a number of times
from different points of the program text. Another tech-
nique employed by some behavioral synthesis tools such as
Bach [8] clusters some functions in a same sub module after
partitioning the input programs at the function level. This
technique can reduce the datapath area by resource shar-
ing among functions clustered in the same module, and can
also reduce the delay and the area of the controller in indi-
vidual modules by diminishing the complexity of the con-
troller. If too many functions are clustered in a same sub
module when synthesizing from a program with a number
of functions, however, the controller of the sub module may
become complex, similar to inlining. As explained above,
each of the three techniques has both advantages and disad-
vantages. Therefore, it is crucial to utilize the features of the
three techniques and determine an appropriate technique for
each function.

∗∗This paper assumes the C language as an input language to be-
havioral synthesis because nowadays C-based behavioral synthesis
has become the most popular.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

HARA et al.: PARTITIONING OF BEHAVIORAL DESCRIPTIONS WITH EXPLOITING FUNCTION-LEVEL PARALLELISM
489

In our earlier work [10], we have proposed a function-
level partitioning method based on integer programming.
The method employs the three techniques and determines a
function-level partitioning in such a way that the overall dat-
apath is minimized while diminishing the complexity of the
controller in individual modules. However, function-level
parallelism is not considered in the method. Even when the
method is applied to a program with functions executable
in parallel, these functions are sequentially executed. This
misses chances to improve performance.

This paper proposes an improved method for function-
level partitioning. This work significantly improves our pre-
vious work [10] in explicitly taking function-level paral-
lelism of a program into account. This extension leads to
a shift of the explorable design space so that superior solu-
tions which could not be explored by our previous work [10]
are included.

This method determines a function-level partitioning in
such a way that the overall datapath area and the complexity
of the controller in individual modules are simultaneously
minimized while maximizing performance of a synthesized
circuit by fully exploiting function-level parallelism speci-
fied by designers. Although various work also studied sim-
ilar behavioral partitioning methods such as in [8] and [9],
our proposed method outperforms them in exploring the bet-
ter area-performance trade-off points since our method em-
ploys the three techniques to handle functions, while to the
best of our knowledge no work integrates the three. This is
the first behavioral partitioning work considering function-
level parallelism and intelligently utilizing the three tech-
niques to handle functions.

The rest of this paper is organized as follows. First,
Sect. 2 explains fundamental techniques to handle functions
in behavioral synthesis and discusses related work. Next,
Sect. 3 proposes a function-level partitioning method based
on integer programming. Section 4 shows experimental
results to demonstrate the effectiveness of the proposed
method. Finally, Sect. 5 concludes this paper with a sum-
mary and future work.

2. Existing Techniques

Large C programs, which generally consist of a number
of functions, are naturally partitioned at the function-level
granularity for behavioral partitioning. There are three fun-
damental techniques to handle functions in behavioral syn-
thesis; function inlining, function-based partitioning with-
out clustering, and function-based partitioning with cluster-
ing.

This section, first, explains these three techniques and
shows their advantages and disadvantages. Next, related
work on behavioral partitioning is discussed.

2.1 Function Inlining

Function inlining is a well-known compiler optimization
technique which replaces function calls with the bodies of

Fig. 1 Traditional techniques: (a) An example program, (b) Function
inlining, (c) Function-based partitioning without clustering.

the callee functions. Inlining is also widely adopted for be-
havioral synthesis.

Let us consider an example program shown in Fig. 1(a).
This program consists of a main function and two functions,
f1 and f2, which are called from the main function. Fig-
ure 1(b) shows the FSM of a circuit synthesized from the
program in Fig. 1(a) by inlining f1 and f2. Note that f1 is
inlined twice since it is called from two different points in
the main function on the program text.

Inlining has several advantages. First, inlining enables
resource sharing among multiple functions, resulting in the
small datapath area. Assume that f1 requires two adders and
two multipliers, and f2 requires one adder and one multi-
plier. Since the two functions are implemented in the same
hardware module, they can share the functional units, that
is, two adders and two multipliers are required in total. Sec-
ond, no overhead of inter-module communication is neces-
sary. Furthermore, inlining extends the scope of optimiza-
tions such as common sub-expression elimination, constant
propagation, copy propagation, dead-code elimination and
so on. Finally, inlining also extends operation-level paral-
lelism.

Inlining, however, increases both the delay and the area
of the controller since the number of states in the main mod-
ule becomes large†. Also, inlining may increase the datapath
delay due to multiplexers inserted at the inputs of functional
units and registers for sharing. At worst, if the main func-
tion after inlining the callee functions becomes too large,
behavioral synthesis may not be completed within a practi-
cal time. These disadvantages become critical especially in

†The number of states in a module has a correlation with the
complexity of its controller [16].

490
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.2 FEBRUARY 2010

case of programs where large functions are called a number
of times from different points on the program text.

2.2 Function-Based Partitioning without Clustering

Function-based partitioning without clustering is a tech-
nique to generate one hardware module from one function.
If applied to all the functions, N hardware modules (one
main module and N − 1 sub modules) are produced from
a program consisting of N functions. Let us consider the
same example program in Fig. 1(a). The FSM of a circuit
synthesized with this technique is shown in Fig. 1(c), where
one main module and two sub modules are generated. Note
that only a single module is generated for f1 even though it
is called twice on the program text.

The main advantage of this technique is that it can re-
duce the complexity of the controller in individual modules,
leading to the short delay and the small area of the con-
troller. On the other hand, this technique has a disadvan-
tage of increasing the overall datapath area since resources
are not shared between multiple functions even when the
same types of resources are required by the functions. For
example, in Fig. 1(c), three adders and three multipliers are
used in total even though f1 and f2 are sequentially executed.
Another disadvantage of this technique is that inter-module
communication may degrade performance.

2.3 Function-Based Partitioning with Clustering

Function-based partitioning with clustering is a technique to
cluster some functions in one sub module instead of individ-
ually synthesizing sub modules. Figure 2(a) shows the FSM
of a circuit generated by clustering f1 and f2 of Fig. 1(a) in a
single sub module. It suppresses the number of states in the
main module. Also, the sub module minimizes the datapath
area by resource sharing between the functions. Moreover,
clustered functions are implemented only once in the sub
module, leading to the small control path area in the sub
module. Thus, clustering multiple functions can minimize
the overall circuit area and the complexity of the controller
in individual modules.

Function clustering can be achieved by transforming
the original program shown in Fig. 1(a) into the one in
Fig. 2(b). A function f12 is newly defined, which calls either
f1 or f2 depending on a parameter id. When synthesizing
from f12, f1 and f2 are both inlined into f12, while f12 itself
is not inlined into the main function.

As shown above, with clustering, the total datapath
area can be reduced by resource sharing between multiple
functions, and the control path area can be also reduced by
suppressing the complexity of the controller in individual
modules. If too many functions are clustered in a same sub
module when synthesizing from a program with a number
of functions, however, the controller of the sub module may
become complex, similar to inlining. Thus, it is crucial to
appropriately determine functions to be implemented in the
main module and ones to be in sub modules.

Fig. 2 Clustering: (a) Partitioning with clustering, (b) A refined program
for clustering.

2.4 Related Work on Behavioral Partitioning

This section discusses various work on behavioral partition-
ing methods [2], [8]–[11].

Takahashi et al. studied a function-level partitioning
method which minimizes the overall datapath area while
suppressing the complexity of the controller [8]. Two
function-based partitioning techniques (i.e., function-based
partitioning without clustering and function-based partition-
ing with clustering) are employed. Their work considers an
input program’s function-level parallelism, which is explic-
itly specified on the program text by designers. Jasrotia et
al. proposed a similar method focusing on loop-level parti-
tioning but not function-level partitioning [9]. For sequen-
tial programs, the method employs two techniques to han-
dle loops; inlining and exlining. If a loop is decided to be
inlined, the body of the loop is expanded in a main mod-
ule, while if decided to be exlined, the loop is extracted
as a sub module. The goal of the method is to reduce the
complexity of the controller in individual modules in or-
der to implement a circuit with the low power controller.
Also, we presented a method which minimizes the overall
datapath area while diminishing the complexity of the con-
troller in individual modules [10]. With utilizing the three
aforementioned techniques (i.e., function inlining, function-
based partitioning without clustering, and function-based
partitioning with clustering), the method simultaneously op-
timizes the partitioning and the number of modules†.

†In Sect. 2.5, we will discuss the method in more detail.

HARA et al.: PARTITIONING OF BEHAVIORAL DESCRIPTIONS WITH EXPLOITING FUNCTION-LEVEL PARALLELISM
491

However, these studies might be unable to find a good
partitioning for the following three restrictions. First, [8]
and [9] employ only two techniques to handle functions or
loops out of the three, i.e., inlining and clustering are not
employed in [8] and [9], respectively. They cannot exploit
the advantages of the unemployed technique. This narrows
the design space to be explored. Next, the number of mod-
ules is predetermined in [8] and [9]. The number of modules
and the partitioning should be simultaneously determined.
They also narrows the design space. Finally, [9] and [10] do
not consider the parallelism among loops and functions, re-
spectively. Even when applied to a program with the paral-
lelism among loops or functions, [9] and [10] miss chances
to improve performance. Our proposed method in this paper
can explore the wider design space than these studies be-
cause our method simultaneously optimizes the number of
modules and the partitioning by employing the three tech-
niques and fully exploiting function-level parallelism.

Vahid extensively studied behavioral partitioning for
large sequential programs [2], [17]–[19]. [2], first, decides
the appropriate granularity of procedures (functions) using
various techniques in [17]–[19], and then performs a tradi-
tional N-way partitioning. Uchida et al. developed a par-
titioning method for low power behavioral synthesis [11].
After threads (modules) are generated according with a tra-
ditional N-way partitioning, their proposed two-way parti-
tioning is conducted for those threads. This two-way parti-
tioning divides a thread into two; one has a local register file
(RF), and the other does not have an RF. Then, a gated clock
is applied to each thread for minimizing the total power con-
sumption. These methods are orthogonal to our proposed
method. [2] and [11] can be integrated with our proposed
partitioning method as the preprocessing and postprocess-
ing methods, respectively.

2.5 Our Previous Work

We have presented a function-level partitioning method for
large sequential programs [10]. With employing the three
fundamental techniques explained above, our previous work
optimally determines functions to be inlined into the main
module and ones to be in sub modules in such a way that
the overall datapath is minimized while keeping the com-
plexity of the controller in individual modules lower than a
certain level. This is formulated as an integer programming
problem.

Let us consider an example program depicted in
Fig. 3(a). This program describes function calls from a main
function. Assume that the method [10] obtained a partition-
ing where function f1 is inlined into the main module, func-
tions f2 and f3 are clustered in a sub module, and function f4
is implemented in a different sub module from the one where
f2 and f3 are clustered. Figure 3(b) shows the FSM of a syn-
thesized circuit based on the obtained partitioning. Black
and white arrows in Fig. 3(b) represent state transition and
inter-module communication, respectively. Function clus-
tering can be implemented by transforming the program in

Fig. 3 N-way partitioning for sequential programs: (a) An example pro-
gram, (b) A partitioning example, (c) A refined program for the partitioning
example described in Fig. 3(b).

Fig. 3(a) into the one shown in Fig. 3(c), where a newly de-
fined function f23 calls either f2 or f3 depending on a param-
eter id. f2 and f3 are inlined into f23, while f23 itself is not
inlined into the main function.

With the method [10], designers can explore the
performance-area trade-off points before conducting behav-
ioral synthesis in actual. However, the method does not
consider function-level parallelism of input behavioral de-
scriptions, which misses chances to improve performance.
For example, in Fig. 3(a), functions f2 and f3 have no de-
pendency each other, that is, they are executable in paral-
lel. Since they are implemented in the same sub module in
Fig. 3(b), however, they are sequentially executed. In case
of the program in Fig. 3(a), f2 and f3 should be implemented
in different modules so that they can be executed in parallel
for achieving better performance. Therefore, function-level
parallelism should be explicitly taken into account for max-
imizing performance of the circuit.

3. Partitioning Exploiting Function-Level Parallelism

This section presents a new behavioral partitioning method
exploiting function-level parallelism.

3.1 Problem Description

We propose a function-level partitioning method to deter-
mine functions to be implemented in the main module and
ones to be in sub modules with fully exploiting function-
level parallelism of an input behavioral description. This
method is formulated as an integer programming problem.
Our goal is to minimize the overall datapath area (i.e., the

492
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.2 FEBRUARY 2010

total cost of functional units) while keeping the complex-
ity of the controller (i.e., the number of states) in individual
modules lower than a certain level specified by designers
and minimizing the number of execution cycles.

Our problem definition is based on an observation in
[16] that the number of states often largely affects the over-
all critical path delay (i.e., the clock period). An increase
in the number of states generally leads to the longer delay
of controller, causing to a longer period, that is, the clock
period is positively-correlated with the number of states†.

In addition, we try to minimize the number of execu-
tion cycles for any partitioning solutions by fully exploit-
ing potential parallelism of the input program (i.e., both
function-level parallelism and operation-level parallelism)
as follows; Function-level parallelism is maximized by exe-
cuting in parallel functions which have no dependency with
each other; Operation-level parallelism within a function is
maximized by giving the sufficient numbers of functional
units. Thus, the number of execution cycles does not signif-
icantly differ between the partitioning solutions.

In general, performance of a circuit is determined by
the clock period and the number of execution cycles. In our
approach, depending on the partitioning solutions, the clock
period largely differs, while the number of execution cycles
does not significantly differ. Consequently, in our method,
the number of states is used as a measure of performance
and is given as a constraint by designers.

For simplicity, in this method, we assume that func-
tions executable in parallel have no dependency with each
other. Such functions are specified by designers, as well as
done in [8]. Also, we assume that no function except the
main function calls other function. At present, if a function
f calls another function f ′, either f or f ′ needs to be inlined
into its caller before our proposed partitioning. For this pur-
pose, the granularity selection techniques presented in [2]
can be used. Our future work will relax these assumptions.

Let us consider an example program depicted in
Fig. 4(a). This program describes function calls from a main
function. We assume that a pseudo statement, par, explic-
itly specifies the parallel execution of functions in the same
par statement. In Fig. 4(a), the execution of function f1 is
followed by the parallel execution of functions f2 and f3
with taking the result of f1 (i.e., z1) as input. The results
of f2 and f3 are written to z2 and z3, respectively. Then,
function f4 is executed by taking z2 and z3 as input.

Assume that for the program in Fig. 4(a), our proposed
method obtained a partitioning solution under a certain con-
straint, where f2 and f4 are in the main module, and f1 and
f3 are in a same sub module. Figure 4(b) shows the FSM
of a synthesized circuit based on the obtained partitioning.
In Fig. 4(b), f2 and f4 are inlined into the main module,
while f1 and f3 are clustered in the sub module. Black and
white arrows in Fig. 4(b) represent state transition and inter-
module communication, respectively. State s1 (or r1) repre-
sents a state to send (or receive) data to (or from) f1 imple-
mented in the sub module. State s3 (or r3) is also the same
for f3. Note that f2 and f3 are implemented in different mod-

Fig. 4 An example program with functions which are executable in par-
allel: (a) An example program, (b) A partitioning example, (c) A refined
program for the partitioning example described in Fig 4(b).

ules since the par statement in Fig. 4(a) explicitly specifies
that they are executable in parallel. In Fig. 4(b), first, a and
id=0 (a parameter to select f1) are sent at s1 from the main
module to the sub module. Then, the sub module receives
those data at r, and f1 in the sub module is executed. After
the completion of f1, the main module receives the result
of f1 (i.e., z1) from the sub module. Next, similarly, z1
and id=1 (a parameter to select f3) are sent at s3 from the
main module to the sub module, followed by the parallel ex-
ecution of f2 in the main module and f3 in the sub module.
After the completion of both f2 and f3, at r3, the main mod-
ule receives the result of f3 (i.e., z3) from the sub module.
Finally, f4 is executed in the main module.

The circuit in Fig. 4(b) is synthesized from a program
in Fig. 4(c), which is transformed from the one in Fig. 4(a).
A function f13 is newly defined, which calls either f1 or f3
depending on a parameter id. Note that in Fig. 4(c) f2 and f4
are inlined into the main function, while f1 and f3 are clus-
tered in f13, which itself is not inlined into the main function.

3.2 Problem Formulation

We formulate the proposed partitioning problem as an in-
teger programming problem. Notations are defined in Ta-
ble 1. First, let us explain FCl with the example program in
Fig. 4(a). In case of the program in Fig. 4(a), there are to-
tally three function call points, which are described as gray
boxes in Fig. 4(a). Note that all the functions belonging to

†The number of operations is another key factor to influence
on the complexity of the controller. By a simple extension of our
method proposed in this paper, not only the number of states but
also the number of operations can be given as the constraint, as
well as done in [10].

HARA et al.: PARTITIONING OF BEHAVIORAL DESCRIPTIONS WITH EXPLOITING FUNCTION-LEVEL PARALLELISM
493

Table 1 Definition of notations.

NR The number of hardware resource types
r j Hardware resource (j = 0, 1, . . . ,NR − 1)
a j The area of a resource r j

NF The number of functions in a program
fi Function in a given program

(i = 0, 1, . . . ,NF − 1)
Note that f0 represents a main function.

ci The number of times that function fi is called in
the program text
Note that c0 is 1.

ni, j The number of resource r j required by
function fi

si The number of states in a module synthesized
from function fi
Note that si does not include the number of
states for inter-module communication.

ssnd The number of states for sending data in
inter-module communication

srcv The number of states for receiving data in
inter-module communication

NM The number of hardware modules
mk Hardware module (k = 0, 1, . . . ,NM − 1)

Note that m0 represents a main module
synthesized from the main function.

S k The number of states in module mk

S const The designer-specified constraint on the number
of states in each module

f cl The l-th function call point
FCl A set of functions which are called at f cl

FCtotal The total number of function call points which
require inter-module communication

Ak The datapath area of module mk

Atotal The total datapath area
Ncmp

k The number of comparators required in
module mk

acmp The area of a comparator

a same par statement are called at the same function call
point. In Fig. 4(a), f1 is called at the first function call point,
f c0, so FC0 = { f1}. Next, since f2 and f3 are in a same par
statement, they are both called at the same point f c1, thus
FC1 = { f2, f3}. Finally, f4 is called at f c2, so FC2 = { f4}.

Next, a 0-1 variable xi,k is defined as follows:

xi,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if function fi is implemented

in module mk

0 otherwise

where
∑

k xi,k = 1.
Note that x0,0 is 1 since the main function f0 is implemented
in the main module m0.

Functions which are executable in parallel, i.e., func-
tions which belong to a same FCl, such as f2 and f3
in Fig. 4(a), should be implemented in different modules.
Thus, the next formula should be met.

fi ∈ FCl ∧ fi′ ∈ FCl ∧ i � i′

⇒ xi,k · xi′,k = 0,∀k (1)

Then, the number of states in module mk is estimated
as follows:

S 0 =
∑

i

si · ci · xi,0 + FCtotal · (ssnd + srcv) (2)

S k =
∑

i

si · xi,k + (ssnd + srcv), k � 0 (3)

Formula (2) estimates the number of states in the main
module m0. The first term represents that for an inlined
function fi, its number of states si multiplied by its number
of time being called from the main function ci is added. The
second term, FCtotal · (ssnd + srcv), denotes the total number
of states for inter-module communications with sub mod-
ules. Since one pair of the states for sending and receiving
data (i.e., ssnd+ srcv states) is necessary for one inter-module
communication on the program text, FCtotal pairs of them
(i.e., FCtotal ·(ssnd+srcv) states) are necessary in total. FCtotal

is obtained by the next formula.

FCtotal =
∑

l

yl (4)

where a 0-1 variable yl is defined as follows:

yl =

{
1 if

∏
i| fi∈FCl

xi,0 = 0
0 otherwise

Namely, yl is 1 when the main module has inter-module
communication with at least one sub module at the function
call point FCl, otherwise 0.

Formula (3) estimates the number of states in sub mod-
ule mk. The last term (ssnd + srcv) denotes the number of
states for inter-module communication with the main mod-
ule.

Here, the number of states in each module cannot ex-
ceed the limit specified by designers. Therefore, the formula
below must hold.

S k ≤ S const (5)

Next, the datapath area of the main module and sub
modules can be estimated by formulas (6) and (7), respec-
tively.

A0 =
∑

j

{max
i

(ni, j · xi,0) · aj} (6)

Ak =
∑

j

{max
i

(ni, j · xi,k) · aj} + acmp · Ncmp
k (7)

In module mk, the required number of resource r j is
given by the maximum number among ni, js for functions
clustered in module mk. A sub module which implements
more than one function requires comparators to determine
the function to be executed depending on a parameter id.
In module mk, the required number of comparators Ncmp

k is∑
i xi,k when

∑
i xi,k is greater than one, otherwise 0.

Then, the total datapath area Atotal can be estimated by
the formula below:

Atotal =
∑

k

Ak (8)

As shown above, the optimization problem on behav-
ioral partitioning can be defined as an integer programming,
which finds xi,k minimizing formula (8) with meeting the

494
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.2 FEBRUARY 2010

Fig. 5 Overall synthesis flow.

constraints in formulas (1) and (5). By finding such xi,ks,
designers can obtain a partitioning solution. For solving this
problem, some commercial ILP solvers can be used, or some
general algorithms such as the branch and bound method,
simulated annealing, and the genetic algorithm, can be ap-
plied.

Here, it should be noted that our method simultane-
ously optimizes the number of modules and the N-way par-
titioning by simply adding the following equation to the
above integer programming formulation.

NM = NF (9)

This equation does not mean that the number of mod-
ules must be exactly NF , but means that it must be equal to
or less than NF . If the optimal number of modules is less
than NF , a solver will yield xi,k = 0,∀i, for some module
mks.

3.3 Overall Synthesis Flow

Figure 5 displays the steps for obtaining a partitioning solu-
tion with using our proposed method. Our proposed method
consists of four steps; function-call flattening, preliminary
behavioral synthesis, behavioral partitioning, and behavioral
synthesis of the entire design.

Step (i): As mentioned in Sect. 3.1, the multiple-level
hierarchy of function calls is flattened into a single level by
function inlining. Thus, if a function f calls another func-
tion f ′, either f or f ′ needs to be inlined into its caller. For
this purpose, the granularity selection techniques presented
in [2] can be used.

Step (ii): For each function fi in a transformed pro-
gram at Step (i), behavioral synthesis is executed in order
to obtain the numbers and types of hardware resources (i.e.,
ni, j) and the number of states (i.e., si). Also, function-level
parallelism is examined.

Step (iii): Designers give the constraints on function-
level parallelism and the number of states (i.e., S const) to the

integer programming problem presented in Sect. 3.2. Then,
it obtains a partitioning solution, based on which the pro-
gram is partitioned.

Step (iv): Behavioral synthesis is conducted for each
cluster obtained at Step (iii), and an RTL circuit of the entire
design is realized. This RTL circuit is input to the RTL sim-
ulation and lower-level synthesis (i.e., logic synthesis and
place-and-route) in order to measure the execution cycles
and the circuit performance (the area and clock period), re-
spectively.

One problem at Step (iii) is how the designers should
decide the constraint on the number of states. The num-
ber of states is affected by several factors such as the ability
of the behavioral and logic synthesis tools, and the clock
frequency constraint, so finding the solution at once is not
an easy problem. Therefore, the synthesis Steps (iii) and
(iv) need to be repeated with varying the constraints on the
number of states. The key point is that our proposed method
in this paper can be used as a tool which significantly effi-
ciently explores the design space. For each constraint, our
method finds a partitioning solution without actually syn-
thesizing the circuits, so the designers do not have to run
behavioral/logic synthesis for all the possible partitionings.

3.4 Limitations

It should be noted that our proposed method does not ob-
tain an optimal solution in an exactly mathematical sense.
The integer programming formulation in Sect. 3.2 does not
take into account the influences of optimizations in behav-
ioral and logic synthesis, which may cause the difference
between the estimations of the number of states and area
and the actual results. Some examples of such possible in-
fluences are shown as follows. With function inlining, the
actual number of states may differ from the estimation by
formula (2) because of various optimizations in behavioral
synthesis beyond the boundary of functions. Similarly, with
function clustering, the estimation by formula (3) may be
inaccurate since some states can be shared between multi-
ple functions clustered in the same sub module. Also, such
optimizations can increase or decrease functional unit re-
quirements, which causes the inaccurate estimation of the
total area of functional units by formulas (6) and (7). Al-
though the number of execution cycles is not assumed to
differ between the partitioning solutions, it may slightly dif-
fer, e.g., because of the above-mentioned influences of opti-
mizations on the formulas (2) and (3). Moreover, even if the
estimation were accurate, the area and clock period might
vary due to optimizations in logic synthesis and place-and-
route. These influences should be carefully considered in
our future work.

Even though our integer programming formulation
does not necessarily obtain an optimal solution, our pro-
posed method is useful because, to the best of our knowl-
edge, this is the first work which intelligently applies the
three techniques (i.e., function inlining, function based-
partitioning without clustering, and function-based parti-

HARA et al.: PARTITIONING OF BEHAVIORAL DESCRIPTIONS WITH EXPLOITING FUNCTION-LEVEL PARALLELISM
495

tioning with clustering) to functions. Thus, our proposed
method presents a significant contribution by exploring su-
perior solutions which could not be obtained by earlier
work, which is demonstrated through experiments in Sect. 4.

4. Experiments

In this section, we show the effectiveness of our proposed
method through experiments.

4.1 Experimental Setup

We conducted three sets of experiments to demonstrate the
effectiveness of our partitioning method. We used three
benchmark programs [20], fft, which performs a Fast
Fourier Transform for a matrix of double-precision floating-
point numbers, lms, which performs a Least Mean Squares
adaptive signal enhancement for a given matrix of double-
precision floating-point numbers, and gaussian, which
performs a Gaussian filter for a set of given double-precision
floating-point numbers. These programs are composed of
a main function and several double-precision floating-point
arithmetic functions [21], [22]. Note that fft, lms, and
gaussian are rather large, which consist of more than 800,
700, and 600 lines of C code, respectively, without including
comment or empty lines.

We followed the synthesis flow described in Sect. 3.3.
The numbers of functions in fft, lms, and gaussian after

Table 2 Traditional synthesis methods for fft.

Synthesis No. of No. of Exec. Clock Exec. Area
method modules states cycles period (ns) time (µs) (LUTs)

INLINE 1 — — — — —
FBPAR 8 59 / 32 / 32 / 25 / 55 / 10 / 130 / 159 10,930 33.42 365.28 150,186
FBPAR-PE 8 49 / 32 / 32 / 25 / 55 / 10 / 130 / 159 7,441 31.84 236.88 151,417

Table 3 Earlier partitioning method (FBPAR-CLUS) for fft.

Constraint No. of No. of Exec. Clock Exec. Area CPU time
on states modules states cycles period (ns) time (µs) (LUTs) (s)

700- 1 Est. 676 — — — — 8.89
Act. —

450-675 2 Est. 59 / 431 — — — — 9.33
Act. —

375-425 2 Est. 239 / 363 — — — — 9.97
Act. —

350 2 Est. 227 / 347 10,754 39.65 426.44 111,790 10.92
Act. 199 / 347

325 2 Est. 290 / 310 10,832 40.77 441.60 120,953 11.17
Act. 291 / 310

300 3 Est. 59 / 146 / 287 10,930 39.98 436.98 104,802 11.00
Act. 59 / 146 / 287

250-275 2 Est. 248 / 242 10,880 32.39 352.40 111,386 10.10
Act. 241 / 242

225 3 Est. 59 / 219 / 214 10,930 33.80 369.40 116,199 9.66
Act. 59 / 219 / 214

200 4 Est. 59 / 70 / 182 / 183 10,930 27.80 303.89 126,231 8.89
Act. 59 / 70 / 182 / 183

175 4 Est. 59 / 146 / 130 / 159 10,930 31.27 341.80 133,306 6.92
Act. 59 / 146 / 130 / 159

function-call flattening at Step (i) in Fig. 5 are eight, six, and
six, respectively. Also, fft, lms, and gaussian have three,
four, and four function-call points where multiple functions
are executable in parallel out of six, 11, and seven, respec-
tively. We implemented a C program to solve the algorithm
described in Sect. 3.3 based on the exhaustive search. The
constraint on the number of states was given every 25. Al-
though the solution space exponentially increases with in-
creasing the number of functions, a partitioning solution was
obtained for each constraint within several seconds for fft
and within 1 second for lms and gaussian in CPU time.
Xilinx Virtex-4 XC4VLX200 [23] was specified as a tar-
get device. Its package and speed grade were set FF1513
and −11, respectively. eXCite [14] was used for behavioral
synthesis. The following synthesis options were given to
eXCite; No resource constraint was specified to minimize
the number of execution cycles; Each functional unit com-
pletes in a single clock cycle. Synplify-Pro [24] and XST
[23] were used for logic synthesis and place-and-route, re-
spectively. All the synthesis processes were optimized for
performance maximization. RTL simulation was also per-
formed to measure the execution cycles.

For the comparison, we conducted experiments under
the following five synthesis methods including our proposed
method;

INLINE: Function inlining
FBPAR: Function-based partitioning without clustering

496
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.2 FEBRUARY 2010

Table 4 Our proposed method (FBPAR-CLUS-PE) for fft.

Constraint No. of No. of Exec. Clock Exec. Area CPU time
on states modules states cycles period (ns) time (µs) (LUTs) (s)

350- 3 Est. 328 / 32 / 182 7,385 36.72 271.14 128,099 8.23
Act. 321 / 32 / 182

300-325 3 Est. 277 / 32 / 235 7,392 35.95 265.74 129,175 8.11
Act. 273 / 32 / 235

225-275 3 Est. 149 / 189 / 206 7,398 35.85 265.21 137,936 7.48
Act. 145 / 189 / 206

200 4 Est. 149 / 32 / 182 / 183 7,398 35.60 263.37 140,790 6.92
Act. 145 / 32 / 182 / 183

175 4 Est. 149 / 160 / 78 / 159 7,398 34.44 254.81 147,678 5.22
Act. 145 / 160 / 78 / 159

Table 5 Traditional synthesis methods for lms.

Synthesis No. of No. of Exec. Clock Exec. Area
method modules states cycles period (ns) time (µs) (LUTs)

INLINE 1 — — — — —
FBPAR 6 37 / 32 / 32 / 25 / 55 / 55 2,539 19.31 49.02 79,125
FBPAR-PE 6 29 / 32 / 32 / 25 / 35 / 55 2,092 19.91 41.66 78,590

FBPAR-PE: Function-based partitioning without cluster-
ing which is integrated with the parallel execution of
functions

FBPAR-CLUS: A partitioning method employing func-
tion-based partitioning with clustering [10] (also
shown in Sect. 2.5)

FBPAR-CLUS-PE: Our proposed partitioning meth-od
fully exploiting function-level parallelism

4.2 Experimental Results

For fft, Tables 2, 3, and 4 summarize experimental re-
sults of traditional synthesis methods (INLINE, FBPAR, and
FBPAR-PE), FBPAR-CLUS [10], and FBPAR-CLUS-PE
(i.e., our proposed method), respectively. In Table 2, applied
traditional synthesis methods are shown in the first columns.
In Tables 3 and 4, given constraints on the number of states
are specified in the first columns. For each method/solution,
the number of modules, the numbers of states in modules,
the number of execution cycles, the clock period (ns), the
execution time (µs), and area (LUTs) are described in from
the second to seventh columns of Tables 2, 3, and 4. In the
third columns, the numbers of states in the main modules are
shown in the leftmost. Also, the third columns in Tables 3
and 4 describe the estimated and actual numbers of states in
modules in the upper (Est.) and lower (Act.) rows, respec-
tively. CPU time to solve the integer programming prob-
lem is shown in the last columns of Tables 3 and 4. Sim-
ilarly, Tables 5–9, and 10 summarize experimental results
of the three traditional synthesis methods for lms, FBPAR-
CLUS for lms, FBPAR-CLUS-PE for lms, the three tradi-
tional synthesis methods for gaussian, FBPAR-CLUS for
gaussian, and FBPAR-CLUS-PE for gaussian, respec-
tively.

With INLINE, behavioral synthesis could not be com-
pleted within 24 hours for fft and lms. For gaussian,

although INLINE completed behavioral synthesis, perfor-
mance is not good despite the smallest number of execution
cycles among all the results of gaussian. This is because
inlining all the functions generated a large circuit with the
complicated controller, which caused the very long clock
period. These results mean that INLINE is not practical for
large designs. FBPAR-CLUS with the constraint equal to or
larger than 375 also could not complete behavioral synthesis
within 24 hours for fft and lms.

As mentioned in Sect. 3.4, some results in Tables 4,
7, and 10 are slightly different from the estimations in
Sect. 3.2. For some partitioning solutions, the actual num-
bers of states in the main modules are smaller than the es-
timated ones since inlining functions allows various opti-
mizations in behavioral synthesis beyond the boundary of
functions as well as expands the operation-level parallelism,
which results in the smaller numbers of states than the esti-
mations. This also causes the variance of execution cycles
among the partitioning solutions contrary to our assumption
that the number of execution cycles does not differ. How-
ever, this variance has the negligibly small influence on per-
formance compared with that of the clock period. Thus, our
approach to manage performance by the number of states
is still useful. Similary, influences of various optimizations
in behavioral synthesis slightly vary the functional unit re-
quirements from the estimation. Among the three sets of
experiments, the estimation error of the total area of the re-
quired functional units was at worst 1.9%. Such underesti-
mation and overestimation should be improved in our future
work.

Next, let us look at Figs. 6, 7, and 8, which depict
the performance-area trade-off points for fft, lms, and
gaussian, respectively. For FBPAR-CLUS and FBPAR-
CLUS-PE, as the constraint becomes loose, the area de-
creases due to the increased resource sharing, while the ex-
ecution time increases due to the long delay resulted from
the complicated controller. Each of these methods well de-

HARA et al.: PARTITIONING OF BEHAVIORAL DESCRIPTIONS WITH EXPLOITING FUNCTION-LEVEL PARALLELISM
497

Table 6 Earlier partitioning method (FBPAR-CLUS) for lms.

Constraint No. of No. of Exec. Clock Exec. Area CPU time
on states modules states cycles period (ns) time (µs) (LUTs) (s)

375- — Est. 358 — — — — 0.09
Act. —

200-350 2 Est. 37 / 191 2,544 24.14 61.40 45,456 0.08
Act. 38 / 191

150-175 2 Est. 121 / 131 2,459 24.31 59.78 55,925 0.08
Act. 107 / 131

125 3 Est. 37 / 115 / 78 2,455 23.58 57.89 56,005 0.08
Act. 38 / 115 / 78

100 3 Est. 65 / 85 / 78 2,524 22.03 55.61 63,742 0.08
Act. 66 / 85 / 78

75 5 Est. 37 / 62 / 25 / 55 / 55 2,544 20.27 51.56 72,971 0.08
Act. 38 / 62 / 25 / 55 / 55

Table 7 Our proposed method (FBPAR-CLUS-PE) for lms.

Constraint No. of No. of Exec. Clock Exec. Area CPU time
on states modules states cycles period (ns) time (µs) (LUTs) (s)

275- 2 Est. 274 / 25 2,012 34.07 68.55 69,174 0.06
Act. 259 / 25

175-250 2 Est. 121 / 168 2,052 24.48 50.24 65,353 0.06
Act. 121 / 168

125-150 3 Est. 31 / 115 / 78 2,092 23.11 48.35 57,706 0.06
Act. 29 / 115 / 78

100 3 Est. 59 / 85 / 78 2,092 20.86 43.63 63,792 0.06
Act. 59 / 85 / 78

75 5 Est. 31 / 62 / 25 / 55 / 55 2,092 20.37 42.62 73,742 0.05
Act. 29 / 62 / 25 / 55 / 55

Table 8 Traditional synthesis methods for gaussian.

Synthesis No. of No. of Exec. Clock Exec. Area
method modules states cycles period (ns) time (µs) (LUTs)

INLINE 1 176 208 27.41 5.70 51,783
FBPAR 6 37 / 32 / 32 / 25 / 55 / 55 331 17.37 5.75 53,091
FBPAR-PE 6 29 / 32 / 32 / 25 / 35 / 55 229 17.26 3.95 53,197

Table 9 Earlier partitioning method (FBPAR-CLUS) for gaussian.

Constraint No. of No. of Exec. Clock Exec. Area CPU time
on states modules states cycles period (ns) time (µs) (LUTs) (s)

275- 1 Est. 275 208 27.41 5.70 51,783 0.08
(INLINE) Act. 176
125-250 2 Est. 27 / 119 331 19.82 6.56 32,480 0.06

Act. 27 / 119
75-105 3 Est. 27 / 62 / 69 331 19.96 6.61 35,590 0.06

Act. 27 / 62 / 69
50 4 Est. 27 / 43 / 32 / 48 331 17.01 5.63 40,897 0.05

Act. 27 / 43 / 32 / 48

Table 10 Our proposed method (FBPAR-CLUS-PE) for gaussian.

Constraint No. of No. of Exec. Clock Exec. Area CPU time
on states modules states cycles period (ns) time (µs) (LUTs) (s)

175- 2 Est. 174 / 36 220 23.65 5.20 50,193 0.08
Act. 171 / 36

125-150 2 Est. 108 / 85 220 20.21 4.45 46,373 0.08
Act. 106 / 85

100 3 Est. 19 / 85 / 36 229 21.16 4.85 45,423 0.06
Act. 19 / 85 / 36

75 3 Est. 19 / 66 / 55 229 18.94 4.34 50,219 0.05
Act. 19 / 66 / 55

50 4 Est. 47 / 32 / 36 / 25 224 17.20 3.85 52,168 0.05
Act. 46 / 32 / 36 / 25

498
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.2 FEBRUARY 2010

Fig. 6 Performance-area trade-off for fft.

Fig. 7 Performance-area trade-off for lms.

scribes the area-performance trade-off points. Furthermore,
FBPAR-CLUS-PE leads to a shift of the explorable design
space so that superior solutions which could not be explored
by FBPAR-CLUS are included. Compared with FBPAR-
CLUS, FBPAR-CLUS-PE can find high performance solu-
tions with still almost the same area. In Fig. 6, “300-325”
and “350-” by FBPAR-CLUS-PE achieve more than 10%
higher performance than “200” by FBPAR-CLUS. Simi-
larly, in Fig. 7 “75” by FBPAR-CLUS-PE achieves 17%
higher performance than “75” by FBPAR-CLUS, and in
Fig. 8 “50” by FBPAR-CLUS-PE achieves 48% higher per-
formance than “275-” by FBPAR-CLUS. Also, in Fig. 7,
“100,” “125-150,” and “175-250” by FBPAR-CLUS-PE
are better in both performance and the area than “75” by
FBPAR-CLUS, which has the highest performance of solu-
tions by FBPAR-CLUS. These facts indicate that FBPAR-
CLUS-PE can efficiently explore the better performance-
area trade-off points and is more effective than FBPAR-
CLUS†.

Note that FBPAR-CLUS-PE and FBPAR-CLUS com-
plement each other. By utilizing FBPAR-CLUS-PE together
with FBPAR-CLUS, designers can explore the wider design

†The performance of “275-” by FBPAR-CLUS-PE is degraded
from that of solutions by FBPAR-CLUS. This is because the clock
period in “275-” became long due to the large number of states in
a module compared with that in solutions by FBPAR-CLUS.

Fig. 8 Performance-area trade-off for gaussian.

space. Similarly, FBPAR-CLUS-PE can be utilized with
FBPAR-PE for the same purpose. Therefore, it is useful
to utilize either of these three methods depending on the de-
signers’ need on the quality of circuits. It would be bet-
ter to use FBPAR-CLUS if designers emphasize area more
than performance, while FBPAR-PE if designers emphasize
performance more than area. And, FBPAR-CLUS-PE is ef-
ficient if designers would like to explore the performance-
area trade-off points between them.

5. Conclusions

In this paper, we have proposed a behavioral partitioning
method based on integer programming. Our method deter-
mines functions to be inlined into the main module and ones
to be implemented in sub modules in such a way that simul-
taneously the overall datapath area and the complexity of
the controller is minimized while maximizing performance
of a synthesized circuit by fully exploiting function-level
parallelism of a behavioral description. Experimental re-
sults demonstrated that our proposed method led to a shift of
the explorable design space so that superior solutions which
could not be explored by earlier work are included, showing
the effectiveness of our proposed method.

The current partitioning method assumes a single-level
hierarchy of function calls. Also, it is assumed that func-
tions executable in parallel have no communication with
each other. These assumptions should be relaxed in future.

Acknowledgments

This work is in part supported by KAKENHI 19700040.

References

[1] D.D. Gajski, N.D. Dutt, A.C.-H. Wu, and S.Y.-L. Lin, High-Level
Synthesis: Introduction to Chip and System Design, Kluwer Aca-
demic Publishers, 1992.

[2] F. Vahid, “Partitioning sequential programs for CAD using a three-
step approach,” ACM Trans. Des. Autom. Electron. Syst., vol.7,
no.3, pp.413–429, 2002.

[3] R. Gupta and G. De Micheli, “Partitioning of functional mod-
els of synchronous digital systems,” International Conference on
Computer-Aided Design, pp.216–219, 1990.

HARA et al.: PARTITIONING OF BEHAVIORAL DESCRIPTIONS WITH EXPLOITING FUNCTION-LEVEL PARALLELISM
499

[4] P. Lakshmikanthan, S. Govindarajan, V. Srinivasan, and R. Vemuri,
“Behavioral partitioning with synthesis for Multi-FPGA architec-
tures under interconnect, area, and latency constraints,” International
Parallel & Distributed Processing Symposium, pp.924–931, 2000.

[5] V. Srinivasa, S. Govindarajan, and R. Vemuri, “Fine-grained and
coarse-grained behavioral partitioning with effective utilization of
memory and design space exploration for multi-FPGA architec-
tures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.9,
no.1, pp.140–158, 2001.

[6] W.-J. Fang and A.C.-H. Wu, “Integrating HDL synthesis and parti-
tioning for multi-FPGA designs,” IEEE Trans. Design Test, vol.15,
no.2, pp.65–72, 1998.

[7] Y. Fei and N.K. Jha, “Functional partitioning for low power dis-
tributed systems of systems-on-a-chip,” International Conference on
VLSI Design, pp.274–281, 2002.

[8] M. Takahashi, N. Ishiura, A. Yamada, and T. Kambe, “Thread com-
position method for hardware compiler bach maximizing resource
sharing among processes,” IEICE Trans. Fundamentals, vol.E83-A,
no.12, pp.2456–2463, Dec. 2000.

[9] K. Jasrotia and J. Zhu, “Stacked FSMD: A power efficient micro-
architecture for high level synthesis,” International Symposium on
Quality Electronic Design, pp.425–430, 2004.

[10] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii,
“Function-level partitioning of sequential programs for efficient be-
havioral synthesis,” IEICE Trans. Fundamentals, vol.E90-A, no.12,
pp.2853–2862, Dec. 2007.

[11] J. Uchida, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A thread
partitioning algorithm in low power high-level synthesis,” Asia and
South Pacific Design Automation Conference, pp.74–79, 2004.

[12] S. Gupta, R.K. Gupta, N.D. Dutt, and A. Nicolau, “Coordinated par-
allelizing compiler optimizations and high-level synthesis,” ACM
Trans. Des. Autom. Electron. Syst., vol.9, no.4, pp.441–470, 2004.

[13] M. Nishimura, N. Ishiura, Y. Ishimori, H. Kanbara, and H.
Tomiyama, “High-level synthesis of software function calls,” IEICE
Trans. Fundamentals, vol.E91-A, no.12, pp.3556–3558, Dec. 2008.

[14] Y Explorations, Inc., http://www.yxi.com/
[15] NEC System Technologies, Ltd., http://www.necst.co.jp/english/

index.htm
[16] G.R. Gupta, M. Gupta, and P.R. Panda, “Rapid estimation of control

delay from high-level specifications,” Design Automation Confer-
ence, pp.455–458, 2006.

[17] F. Vahid, “Procedure exlining: A transformation for improved sys-
tem and behavioral synthesis,” International Symposium on System
Synthesis, pp.84–89, 1995.

[18] F. Vahid, “Procedure cloning: A transformation for improved
system-level functional partitioning,” ACM Trans. Des. Autom.
Eletron. Syst., vol.4, no.1, pp.70–96, 1999.

[19] F. Vahid, “Techniques for minimizing and balancing I/O during
functional partitioning,” IEEE Trans. Comput.-Aided Des. Inte-
grated Circuits Syst., vol.18, no.1, pp.69–75, 1999.

[20] SNU Real-time Benchmarks, http://archi.snu.ac.kr/realtime/bench
mark/

[21] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis,” IPSJ Journal of Information
Processing, vol.17, pp.242–254, Oct. 2009.

[22] SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html
[23] Xilinx Inc., http://www.xilinx.com/
[24] Synplicity, http://www.synplicity.com/

Yuko Hara received her B.E. in Information
Engineering and her M.E. in Graduate School of
Information Science from Nagoya University in
2006 and 2008, respectively. Currently she is a
Ph.D. candidate at Graduate School of Informa-
tion Science, Nagoya University. Her research
interests include behavioral synthesis and em-
bedded systems. She is a member of ACM and
IPSJ.

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu Uni-
versity in 1999. From 1999 to 2001, he was a
visiting postdoctoral researcher with the Center
of Embedded Computer Systems, University of
California, Irvine. From 2001 to 2003, he was
a researcher at the Institute of Systems & In-
formation Technologies/KYUSHU. In 2003, he
joined the Graduate School of Information Sci-
ence, Nagoya University, as an assistant profes-
sor, where he is now an associate professor. His

research interests include design automation, architectures and compilers
for embedded systems and systems-on-chip. He currently serves as an edi-
torial board member of IPSJ Transactions on SLDM, IEEE Embedded Sys-
tems Letters, and International Journal on Embedded Systems. He has also
served on the organizing and program committees of several premier con-
ferences including ICCAD, ASP-DAC, DATE, CODES+ISSS, and so on.
He is a member of ACM, IEEE, and IPSJ.

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Informa-
tion Engineering, Toyohashi University of Tech-
nology in 2005. From 2004 to 2006, he was
a researcher at the Nagoya University Exten-
sion Course for Embedded Software Special-
ists. In 2006, he joined the Center for Embed-
ded Computing Systems, Nagoya University, as
an assistant professor. His research interests in-
clude system-level design automation and real-
time operating systems. He received the best pa-

per award from IPSJ in 2003. He is a member of IPSJ.

Hiroaki Takada is a professor at the Depart-
ment of Information Engineering, the Graduate
School of Information Science, Nagoya Univer-
sity. He is also the executive director of the Cen-
ter for Embedded Computing Systems (NCES).
He received his Ph.D. degree in Information Sci-
ence from the University of Tokyo in 1996. He
was a research associate at the University of To-
kyo from 1989 to 1997, and was a lecturer and
then an associate professor at Toyohashi Univer-
sity of Technology from 1997 to 2003. His re-

search interests include real-time operating systems, real-time scheduling
theory, and embedded system design. He is a member of ACM, IEEE, IPSJ,
and JSSST.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

