
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.8 AUGUST 2008
2115

PAPER

An Effective GA-Based Scheduling Algorithm for FlexRay
Systems∗

Shan DING†a), Nonmember, Hiroyuki TOMIYAMA††, and Hiroaki TAKADA††, Members

SUMMARY An advanced communication system, the FlexRay system,
has been developed for future automotive applications. It consists of time-
triggered clusters, such as drive-by-wire in cars, in order to meet different
requirements and constraints between various sensors, processors, and ac-
tuators. In this paper, an approach to static scheduling for FlexRay systems
is proposed. Our experimental results show that the proposed scheduling
method significantly reduces up to 36.3% of the network traffic compared
with a past approach.
key words: real-time systems, distributed embedded systems, FlexRay, ge-
netic algorithm

1. Introduction

Microprocessor-controlled electro-mechanical systems have
been used to replace mechanically linked hydraulic steer-
ing and braking of cars from over a decade [1]. Some other
computerized vehicle-control applications such as adaptive
cruise control, collision avoidance, and autonomous driving
are also being developed. These applications will be real-
ized as real-time distributed systems requiring dependable
interaction among sensors, processors and actuators.

The FlexRay system [2] is a communication system de-
veloped for the next generations of automobiles by a consor-
tium founded in 2000 by BMW, DaimlerChrysler, Motorola,
and Philips Semiconductors. The core of the FlexRay sys-
tem is the FlexRay communication protocol. It has been
designed for the high data transmission rates required by
advanced automotive control systems. It consists of time-
triggered clusters, such as drive-by-wire in cars, in order to
meet different requirements and constraints between various
sensors, processors, and actuators.

The FlexRay system is a time-triggered architecture
providing a computing infrastructure for the design and
implementation of dependable distributed embedded sys-
tems. The communication in this architecture is based on
a fault-tolerant time-triggered protocol (TTP) [3]. Pop et
al have been developed scheduling strategies using TTP
as a communication protocol for distributed real-time sys-
tems [4], [5]. There are two basic approaches for handling
tasks in real-time applications [6]. In the event-triggered ap-

Manuscript received September 4, 2007.
Manuscript revised February 4, 2008.
†The author is with College of Information Science and Engi-

neering, Northeastern University, Shenyang, P.R. China.
††The authors are with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8603 Japan.
∗This paper was presented at EMSoft 2005.

a) E-mail: dingshan@ise.neu.edu.cn
DOI: 10.1093/ietisy/e91–d.8.2115

proach, activities are initiated whenever a particular event
is noted. In the time-triggered approach, activities are ini-
tiated at predetermined points in time. Two approaches can
be used together inside a few certain applications. Pop et
al [7] have proposed an approach for multicluster distributed
embedded systems consisting of time-triggered and event-
triggered clusters, interconnected via gateways by using the
worst-case response time analysis of the application for the
controller area network (CAN).

In [7], the schedulability analysis is outlined in
Fig. 1 (a). In first step, the application is partitioned on
the time-triggered cluster (TTC) and event-triggered cluster
(ETC), and processes are mapped to the nodes of the archi-
tecture (i.e., mapping). In second step, the mapping of mes-
sages are combined into a frame in order to be transmitted
to the bus(i.e., frame packing). In the last step, the released
time of tasks and the timing of sending messages are deter-
mined (i.e., time scheduling). For each step, a given set of
parameters is leading to find out if a system is schedulable,
that is, all the time constraints are met. If application is un-
schedulable in one of these steps, the set of parameters must
be changed until obtaining the approximate optimal solu-
tion. If after these steps the application is unschedulable,
the approach conclude that no satisfactory implementation
could be found with the available amount of resources.

In general, based the mechanism of the above ap-
proach, it tends to find only locally optimal solutions. In

Fig. 1 Comparison of the scheduling methods.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



2116
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.8 AUGUST 2008

addition to the characteristics of objects, more time is nec-
essary to be carried out searching. Pop et al have supposed
that all the processes belonging a process graph have the
same period. Moreover, such an optimization problem is
NP complete, thus obtaining the optimal solution is no fea-
sible. Pop et al have proposed two frame-packing optimiza-
tion strategies, one based on a simulated annealing (SA) ap-
proach, the other is based on a greedy heuristic to explore
the design space. The main limitation of SA-based methods
is the difficulty in tuning the control parameters. Since the
complexity of a system on which implements several differ-
ence kinds of applications, this model is hard to apply in the
real world.

An optimization procedure based on a SA has been
proposed by Murakami et al [8]. For various sensors, pro-
cessors, and actuators with different execution period, it
is necessary to develop an efficient scheduling method for
static segment of communication cycle in the FlexRay sys-
tem. In this paper, a more practical and flexible approach to
static scheduling method for the distributed automotive con-
trol system which integrate FlexRay and CAN systems has
been proposed. They supposed that all the processes belong-
ing a process graph can have difference periods. Moreover,
they also took into account the influence of system load on
the scheduling method.

In this paper, we propose an effective GA-based
scheduling algorithm for FlexRay Systems that can include
CAN system which be treated as a FlexRay node. The ad-
vantages of a GA-based approach depends heavily on how
well the various components of GA incorporate the salient
features of the problem under consideration [9]. To evaluate
the effectiveness of this approach, we have chosen a repre-
sentative safety-critical application to simulate as case study.
Our experiments show the GA can be applied to such kinds
of application to find a schedule better than SA approach.

There has been much attention surrounding hardware-
software co-design techniques. In [10], they studied the con-
figuration problem which consists of two sections: specify-
ing the hardware capacities of the processing elements and
statically allocating the software tasks to them. This tech-
nology can be applied in allocating clusters of tasks to any
processor for optimization of scheduling subtasks and com-
munication.

The remainder of this paper is organized as follows:
in Sect. 2 the application model and system architecture are
presented. In Sect. 3 the problem is defined. Section 4 dis-
cusses in detail our GA approach. In Sect. 5, experimental
tests are carried out. Some concluding remarks follow in
Sect. 6.

2. System Architecture

2.1 FlexRay Systems

The FlexRay system architectures consisting of nodes are
connected by broadcast communication channels. The
FlexRay protocol is a dual channel protocol. FlexRay sys-

Fig. 2 The node architecture and the dual bus topology configuration.

tems can be configured as single-channel or dual channel
bus network, a single-channel or dual-channel star network,
or in various hybrid combinations of bus and star topolo-
gies. Figure 2 shows one kind of topology configuration of
the communication network as a dual bus.

Each node consists of a microcontroller (host), a com-
munication controller (CC) a bus driver (BD), and bus
guardian (BG). The microcontroller is the part of an ECU
where an application is executed, and can be separated by
the Controller Host Interface (CHI) from the FlexRay pro-
tocol engine. The bus guardian is an electronic component
that protects a channel from interference caused by com-
munication that is not temporally aligned with the cluster
communication schedule by limiting the times that the at-
tached communication controller can transmit to those times
allowed by that schedule.

In the FlexRay protocol, media access control is based
on a recurring communication cycle. Within one commu-
nication cycle FlexRay offers the choice of two media ac-
cess schemes. One is a static time division multiple ac-
cess (TDMA) scheme, and the other is a dynamic mini-
slotting based scheme. TDMA can partition the bandwidth
of the channel in the time domain - [11] provides a “holistic”
schedulability analysis in the context of distributed real-time
systems. The portion of the communication cycle where the
media access is controlled via a TDMA scheme called static
segment, which is described as follows.

Objectives of the static segment [12]:

• Deterministic communication behavior in the time do-
main.(e.g., the released time of tasks)
• Global time implemented by a fault tolerant clock syn-

chronization algorithm.
• Immunity against accepting error-free sub-sequences

of a message as valid messages (i.e. short message re-
jection).

In FlexRay systems, a structure used by the communi-
cation system to exchange information within the system is
called a frame. A node is a logical entity connected to the
network that is capable of sending and/or receiving frames.
An interval of time within the static segment of the commu-
nication cycle is called static communication slot. Within
the during of this slot, access to a communication channel is
granted exclusively to a specific node for transmission of a
frame. Frame is sent when the slot number corresponds to
frame ID. In the static segment, a periodic transmission of
the fixed length data is guaranteed. Static slot messages can



DING et al.: AN EFFECTIVE GA-BASED SCHEDULING ALGORITHM FOR FLEXRAY SYSTEMS
2117

Fig. 3 The communication cycle.

be protected by BG. From the above characteristics, real-
time application messages should be allocated to static seg-
ments in order to ensure that it can meet its time constraints.
In this paper, we focus on the scheduling method for static
segments of FlexRay systems.

Because the communication channel is a broadcast
channel, a message sent by a node is received by all the other
nodes. Node can transmit only during a predetermined time
interval, so-called TDMA. In a slot, a node can send several
messages packaged in a frame. The sequence and length of
the slots are the same for all TDMA rounds. However, the
length and contents of the frames may change. Whether the
frame can be saved into a node or not is decided by frame
ID.

In the FlexRay protocol, media access control is based
on a recurring communication cycle. As mentioned above,
FlexRay offers a static TDMA scheme and a dynamic mini-
slotting base scheme within a communication cycle. Fig-
ure 3 shows one complete instance of the communication
structure of a communication cycle. Cycle counter, the num-
ber of the current communication cycle, ranges from zero to
63.

The periods of tasks and messages are assumed to be
the value 2n(n = 0,1,2,. . .) times at FlexRay communication
cycle. The main reason for this assumption is to avoid the
time violation between messages. For example, if m1 and
m2 have periods of 2, 5 respectively, it can not avoid a time
violation at communication cycle. In an actual design, it is
necessary to adjust the communication cycle and the period
of the application in FlexRay systems.

2.2 Application Model

In this paper, we model an application to be described as
directed acyclic graphs, where a node is a task and the di-
rected arcs are dependencies between tasks. The message
represents dataflow between tasks. Ni represents a node in
FlexRay or CAN. Each task Ni is mapped on a processor,
and has the maximum execution time Ci and a period Ti

on that processor. The designer can provide manually such
maximum execution time, or tools can be used in order to
determine the maximum execution time of a piece of code
on a given processor.

For each message, we know its size and its period,
which is identical with that of the sender process. The task
that processes message from a sensor is called input task
Nin. The task that processes message in a actuator is called

output task Nout. The task in the middle layer of graph that
achieves either computing or relay is called task Nmid. Since
messages between tasks in the same processor can be trans-
mitted by the buffer of the processor, after sent by source
task, the message can be used by destination task immedi-
ately. Such kind of message is called messages in the node.

3. Problem Description

This paper addresses the same problem as proposed in [10].
In order to indicate our algorithm, we give a brief descrip-
tion of the problem as follows. An application consists of
a set of task graphs G = (N, E) , where N = {n1, . . . , nm}
is a finite set of task vertices (i.e., nodes) , E is a finite set
of message edges representing connections between these
nodes. Each node ni is allocated to a uncertain processor,
and has a known worst case execution time Ci, a period Ti, a
deadline Di. Output is a schedule comprising identical bus.
A schedule includes following items need to be determined.

1. Periods of tasks and messages.
2. Nodes that processed by each middle tasks.
3. Sending message node of FlexRay slot.
4. Frame packing for FlexRay message.
5. Receiving message node of FlexRay slot.
6. The released time of each task.

As the primary objective, we construct a schedule
meeting all deadlines of task groups and performance goals
of the embedded application. The secondary objective is
that the schedule can optimize communication buses to min-
imize hardware cost. Since bin-packing problem is known
as NP − complete[13], in this paper, we propose a GA for
static scheduling based on the following advantages.

1. GAs have broad applicability and are intrinsically suit-
able for parallel implementation.

2. In certain cases, GAs can find the global optimum of a
problem with very high probability.

3. Their performance is robust in many settings.

Constraints
As mentioned above, an application should meet its

time constraints in static segment of communication cycle.
Before the time constraints are described, some preliminar-
ies are defined.

Response Time (RT): To the output task processes,
messages are sent by the input task processes through the
communication routes. RT is the time from beginning of all
input task processes that inflected by the output task pro-
cesses, until end of the output task processes.

Freshness Time (FT): Messages are sent by the input
task processes through the communication routes. FT is the
time from beginning of input task processes until the end
of all output task proceesses that be inflected by these mes-
sages.

It should be noted that RT and FT may difference in
case of multirate systems. Figure 4 shows the difference



2118
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.8 AUGUST 2008

Fig. 4 The difference between respone time and freshness time.

between respone time and freshness time.
Maximum Response Time: The maximum response

time of all input tasks processes.

Maximum Freshness Time: The maximum Freshness
time of all output tasks processes.

Based on above preliminaries, four time constraints are
defined as follows;

Response Constraint: For certain route, the maximum
response time must be less than a given time.

Freshness Constraint: For certain route, the maxi-
mum freshness time must be less than a given time.

Synchronous Input Constraint: To these routes
which have the same output task, the maximum difference
of feshness time of these routes must be smaller than a given
time.

Synchronous Output Constraint: To these routes
which have the same input task, the maximum difference of
response time of these routes must be smaller than a given
time.

In this paper, we assume that all the constraints are
equal to deadline of task graph. Besides above time con-
straints, we define another constraint by considering charac-
ter of static segment.

Slot Redundancy: The number of the slot not used at
the end of the communication cycle continuously expresses
the degree of empty slots in the schedule. The larger number
unused slots is, the higher the slot redundancy is.

4. Genetic Algorithm for Scheduling Problem

GA is an example of the meta-heuristics which have been
successfully applied to a variety of problems. Since the
search space is large and has a complex structure, finding
a solution by genetic search is appropriate. Our GA requires
the definition of a set of genetic operations and an evaluation
function as follows:

4.1 Coding Scheduling Individual

Figure 5 shows the structure of an individual. A string is
used for showing which processor the node belongs to. The
length of this string is the number of nodes in the task graph.

Fig. 5 An individual.

The ith number in the string expresses that the ith node be-
longs to processor j. (e.g., T11 belongs to processor 1)

Another string is used for showing the messages (i.e.,
edges) in the communication cycle. Because the communi-
cation cycle can be transformed as the product of number of
slots and the slot size, the length of these strings is the prod-
uct of number of slots and the slot size. We assume that the
slot size is 32 bytes in this paper. If the communication cy-
cle time is Δcycle and each transmission slot time is Δslot, the
number of slots can be calculated as Δcycle/Δslot. As men-
tioned above, a structure called frame can load messages in
the dataflow (bus). Several messages can be assembled into
one frame when they are sent by the same node and sum
of their sizes is not larger than the slot size. Several strings
are prepared for scheduling of processor to record when and
how long the nodes execute.

Individual states include three states, processorNG,
busNG, and stateOK. The processorNG means that the
scheduling of processor is failed. The busNG means that
there is no enough number of slots for message transmis-
sion. If no NG state is shown, then the individual state will
turn to stateOK and calculate the fitness value.

The process of generating individual is shown in Fig. 6.
It is easy to judge whether dataflow (bus) state is NG or
not. Schedulability of processor is judged in the portion
of scheduling for each processor. The process of message
transmission can be considered two portions, i.e., send and
receive. As a synchronous algorithm, the sending node is
executed before dataflow (bus) slot number (i.e., time) in the
processor which it belong to, and receiving node is executed
after dataflow (bus) slot number (i.e., time) in the proces-
sor which it belong to. When there is no time to execute in
the processor, the individual state will become processorNG
state. When the message is transmitted in the same proces-
sor, it will not display in the dataflow. It must be recorded
in the message in same processor string instead. This is be-
cause it will be treated inside of the processor. The execu-
tion time of a node will be recorded in the processor string.
When a node has more than one message to send, execution
time of the node must be moved in front of all messages
it send. Finally, based on the node order appeared in the
routes, we check the lost nodes in the processor strings. If



DING et al.: AN EFFECTIVE GA-BASED SCHEDULING ALGORITHM FOR FLEXRAY SYSTEMS
2119

Fig. 6 The algorithm for generating an individual.

there are lost nodes, it is necessary to schedule the lost nodes
in their processors that they belong to. We insert lost node
in the front of the node that appears to the individual by the
same route.

4.2 Generate Initial Generation

Individuals are generated randomly as many as population
size. Individual value is calculated by an evaluation func-
tion. In the case the same individual is generated, it is
deleted using differentiation of the same individual and a
new different individual is obtained using mutation. Then
the generation will be formed by sorting individuals in as-
cending order.

4.3 Evaluation and Optimization Strategy

Our evaluation function captures the “degree of schedule”
for a certain individual. The evaluation result is used as an
individual fitness value. For a given application, decreasing
individual cost value means that optimization result of this
individual is good.

To the individual, there are two kinds of NG states as
discusses before. When the individual state is processorNG
or busNG, it does not need calculate its cost function since
it is not schedulability. However, in order to differentiate
the “degree of schedulability” of the individual, the general
constraints are checked such as the frame size is smaller than
the slot size or not, and the messages in frame is sent by the
same task or not. When an individual is in stateOK state, we
calculate the optimization cost value.

According to definition of RT/FT, the routes which
only include same period nodes or from longer period nodes
to shorter period nodes must be calculated by response
constraint for measuring the synchronous input/output con-
straints. However, when the routes is from shorter period
nodes to longer period nodes, it is necessary to use the fresh-
ness constraint for measuring the synchronous input/output

Fig. 7 The example for calculating freshness constraint.

constraints.
We assume that all of the four constraints described in

Sect. 3 are equal to the deadline of the task graph. If the
route cost is larger than deadline, we give a penalty as the
following formula.

P =
n∑

i=1

fi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ri

Di
, i f Ri ≤ Di

(Ri − Di)
Di

∗ α + β, i f Ri > Di

fi is the cost value of ith routes, Ri is the execution time
of ith route which will be calculated by freshness time con-
straint or response time constraint. Di is the deadline of the
ith route. α and β are coefficients. This formula demon-
strates that, when the execution time of ith route is smaller
that its deadline, the P value is smaller than 1, since it is the
proportion of its execution time to its deadline. However,
when the execution time of ith route is larger that its dead-
line, the gradient is enlarged by α times, furthermore, the
constant value β is added as more penalty. In this paper, we
set α and β to 10 and 2, respectively.

In addition to the slot redundancy, the individual fitness
value is calculated as follows,

Cost = P ∗ w1 + Nslot ∗ w2

Nslot is slot redundancy, w1 and w2 are coefficients that
means how much the attribute affects the individual fitness
value. The coefficient of each attribute is decided by the
characteristics of the problem and the policy of the schedul-
ing. We set w1 and w2 to 1 and 0.5, respectively. This fitness
function is also to be applied to the SA [10].

We calculate the freshness time constraint as follows.
The route can be expressed by a task sequence and the mes-
sage sequence alternately like input task→message→ task
→ message · · · → message→ output task. According to the
definition of RT/FT, the freshness constraint is calculated
depending on the execution timing of the output tasks.

Figure 7 shows a freshness time constraint calculating
case. The route can be expressed as T1→ m2→ T3. Peri-
ods of Task T1 and T3 are 8 ms and 4 ms respectively. There
are two routes from input task T1 to output task T3. They
are expressed by solid lines and dotted lines. The cost val-
ues (i.e., time) of solid lines and dotted lines are 5 and 9
respectively. As a result, the maximum freshness time of
this route is 9. The response time constraint can be calcu-
lated similarly, but depending on the execution timing of the
input tasks instead.



2120
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.8 AUGUST 2008

Fig. 8 The select operation.

4.4 Selection

The selection operation is performed as shown in Fig. 8.
All individuals in the population are sorted out according
to their fitness, so the first individual is the best in this gen-
eration. The following operation is performed.

In our method, all individuals are selected for mating.
We perform crossover to the ith individual of the next gen-
eration, where i = 1, 2, · · ·, [(p+1)/2] and p is the population
size. Then the individuals with lower fitness could be gen-
erated because the fitness of parents are lower. Also, we
perform crossover to the jth individual and the (p+1-j)th in-
dividual to generate [p/2] individuals of the next generation,
where j = 1, 2, · · ·, [p/2], then the minimal fitness of indi-
viduals in the next generation could be decreased or equal
to the minimal fitness of individual in previous generation.
Because the fitness of his parents is the lowest in previous
generation and if the minimal fitness cost of individuals in
the next generation is larger than its parents, minimal fitness
of parent individual will be copied to his offspring.

4.5 Crossover

The crossover operation is held between two parents. If the
two strings that show to which the node belongs are the same
in two individual parents, we conduct crossover operation
by randomly choose one of the following operations.

• crossover 1:
a. Copy the better fitness parent individual to child in-
dividual.
b. Search one slot with two messages in another parent
individuals.
c. Check the two messages in child individual. If the
two messages are in two independent slots, merge the
two messages in one slot.
d. Repeat steps b and c, until the end of communication
cycle.

• crossover 2:
In child’s string, insert a message at the slot whose

(a)

(b)

Fig. 9 The crossover operation.

number is equal to the average value of two parents’.
• crossover 3:

Based on the order of the message number appeared in
the two dataflow of parents’ genes, two dataflow strings
are composed without considering a empty slot and
message period as shown in Fig. 9 (a). The exchanged
set is found and the child individual is generated by the
following algorithm.

Crossover 3
Input: Dataflow string A=(Ai | 1 ≤ i ≤ n);

Dataflow string B=(Bi | 1 ≤ i ≤ n);
Output:Child dataflow string=(Ci | 1 ≤ i ≤
n);
Procedure:

Initialize transitive closure sets;
α0=ø, α1=ø
select Ai from Dataflow string A ran-

domly;
do {

set α0=α0 ∪ Ai

set α1=α1 ∪ Bi

if (α0=α1) then break;
Ai = index(Bi)

} while(α0!=α1)
Ci=Ai ⊕ α1

return Child dataflow string

The ⊕ operator means insertion of Bi into the corre-
sponding positions of Bi in Ci. How the replacement is
taken place is shown in Fig. 9 (b). Exchanging genes is
done by exchanged set in the child individual.

When the processors that a node belongs to are different in
its two parents, the processor which the node belong to will
be decided once again randomly. When an edge appears in
one of its parents, we insert the same slot number as the
number of its parents. When an edge do not appear in either



DING et al.: AN EFFECTIVE GA-BASED SCHEDULING ALGORITHM FOR FLEXRAY SYSTEMS
2121

of its two parents, we insert the edge into the child individual
gene randomly.

4.6 Mutation

The exchange mutations are defined as follows,

• Search for the slots unsatisfying constraints. Suppose
that there are two messages unsatisfying constraints
messagea and messageb.
• If the period of messagea is longer than that

of messageb, then messageb occupies the slot of
messagea. Messagea must find its new slot by scan-
ning the static segment.

If the period of messagea is shorter than that of
messageb, then messageb must find its new position by
scanning the static segment.
• If there is no a slot unsatisfying constraints, randomly

select two slots in static segment, exchange them in
each cycle.

4.7 Differentiation of the Same Individual

After crossover or mutation, we sort the individuals. If the
same individual is found, then we operate mutation to it in
order to generate a new different individual.

5. Case Study and Experiments

To demonstrate the effectiveness of the GA-base scheduling
algorithm, we conducted a set of experiments. We assume
the FlexRay communication protocol having a bandwidth
of 250 kb/s and a bandwidth of 100 μsec for the transmis-
sion slots. In this paper, we assume that the deadline of the
node and edge is equal to the period of the node and edge.
The developed GA is implemented using C language on the
Linux.

A safety critical application with hard real-time con-
straints, to be implemented on a FlexRay based architecture,
includes a vehicle adaptive cruise controller (ACC), electric
power steering (EPS), and traction control (TC) as detailed
in [14].

5.1 A Realistic Application

The ACC application automatically maintains a safe fol-
lowing distance between two cars, while EPS uses an elec-
tric motor to provide necessary steering assistance to the
driver. The TC application actively stabilizes the vehi-
cle to maintain its intended path even under slippery road
conditions. Considering the synchronous input/output con-
straints, we model the application as Fig. 10.

Task group a, b and c have periods of 2 ms, 4 ms and
8 ms, respectively. The edge F4 and F23 have periods of
4 ms, 8 ms respectively. There are six processors available
to allocate the nodes in this application. In Fig. 10, the nodes

Fig. 10 A safety critical application model.

Table 1 The execution time of nodes and the message sizes.

task e(μsec)
T0 150
T1 350
T2 200
T3 250
T4 300
T5 200
T6 400
T7 300
T8 350
T9 400

T10 250
T11 400
T12 300
T13 400

task e(μsec)
T14 300
T15 200
T16 400
T17 350
T18 400
T19 400
T20 300
T21 600
T22 350
T23 800
T24 300
T25 400
T26 300
T27 400

Edge Size
E0 12
E1 12
E2 20
E3 12
E4 20
E5 12
E6 12
E7 10
E8 12
E9 10

E10 10
E11 12
E12 20
E13 12
E14 12

Edge Size
E15 10
E16 12
E17 12
E18 12
E19 10
E20 12
E21 20
E22 20
E23 12
E24 20
E25 12
E26 20
E27 10
E28 22
E29 20
E30 12

Table 2 The network traffic of the optimum schedule.

Slot Edge
0 4
1 9, 13
2 3, 26
3 11, 15
4 17
5 7
6 23

Slot Edge
20 20
21 24
22 3
23 28, 30
24 null
25 7
26 null

Slot Edge
40 4
41 9, 13
42 3
43 11, 15
44 17
45 7
46 null

Slot Edge
60 20
61 null
62 3
63 null
64 null
65 7
66 null

labeled Ni, means that this node is allocated to ith processor.
The other nodes can be allocated to any processor freely.

Table 1 summarizes the execution time of nodes and
the various message attributes affecting network topology
generation. The names of nodes and edges are in col-
umn “task” and column “Edge”, respectively. The column
“e(μsec)” and column “Size” show the execution time (μsec)
of nodes and message size (in byte) of edge, respectively.

Parameters for GA were set as follows. Population size
was 28, generation number was 3000, optimum value was
17.09 (taking 1888 seconds of optimization time). Table 2
shows the network traffic of an optimum schedule. In Table
2, column “Slot” and column “Edge” show the slot number
and edge name. Null means there is no edge in the slot.
Table 2 shows the minimum number of slots can be used for



2122
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.8 AUGUST 2008

Fig. 11 The relation between the best fitness value and the generation
number.

Fig. 12 The relation between message size and number of slots.

schedule is 7. In [8], the minimum number of slot can be
used for schedule was 11. This experimental result shows
that the proposed scheduling method significantly reduces
up to 36.3% of the network traffic compared with the SA
approach. This schedule also can meet all deadlines of the
task group a, b and c.

The Relationship between the best fitness value of gen-
eration and generation number is shown Fig. 11.

Next, we tested our algorithm with respect to the max-
imum message size allowed. For the results depicted in
Fig. 12 we have assumed the maximum message size as 5,
8, 16 and 32 bytes. Figure 12 shows that the number of slots
used for schedule decreases with the decrease of the maxi-
mum number of bytes in a message.

We changed the graph for general experimental pur-
pose. We considered four graph architectures consisting of
15, 20, 25, and 30 nodes. Execution time, periods and mes-
sage size were assigned randomly within certain intervals.
Figure 13 shows the number of slots used for schedule sat-
isfying the constraints and deadlines. Good results were ob-
tained by both algorithms. However, GA used a fewer num-
ber of slots than SA.

Fig. 13 Maximum number of nodes.

Fig. 14 Maximum number of processors.

Moreover, we have assumed that 28 nodes were allo-
cated to 4, 5, 6, 7 and 8 processors in a graph respectively.
Figure 14 shows that GA is better than SA [8] at almost all
kind of conditions. Experimental results show that our de-
veloped method is able to efficiently produce good quality
results.

6. Concluding Remarks

An advanced communication system, the FlexRay system,
has been developed for future automotive applications. In
this paper, an approach to static scheduling for FlexRay sys-
tems is proposed. Some new concepts are proposed for mea-
suring the “degree of schedulability”. Optimization is per-
formed on reducing the network traffic while meeting dead-
lines and satisfying the constraints which have been identi-
fied. Some genetic operations are proposed in the GA. A
safety critical application that includes ACC, EPS and TC,
has been studied in this paper. Our experimental results
show that the proposed scheduling method significantly re-
duces up to 36.3% of the network traffic compared with a
past approach. The effectiveness of the developed GA is
confirmed by the experiments.

In the future, we will apply the GA-based scheduling



DING et al.: AN EFFECTIVE GA-BASED SCHEDULING ALGORITHM FOR FLEXRAY SYSTEMS
2123

algorithm to real-world applications.

References

[1] E.A. Bretz, “By-wire cars turn the corner,” IEEE Spectr., vol.38,
no.4, pp.68–73, April 2001.

[2] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer,
E. Fuchs, B. Hedenetz, W. Kuffner, A. Kruger, P. Lohrmann, D.
Millinger, M. Peller, J. Ruh, A. Schedl, and M. Sprachmann,
“FlexRay — The communication system for advanced automotive
control systems,” Proc. SAE World Congress, 2001–01–0676, 2001.

[3] H. Kopetz.k.Real-Time Systems, Design Principles for Distributed
Embedded Applications, Kluwer Academic Publishers, Boston,
1997.

[4] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven communication
synthesis for time triggered embedded system,” Proc. 6th Interna-
tional conference on Real-time Computing Systems and Applica-
tions (RTCSA’99), pp.287–294, 1999.

[5] P. Eles, A. Doboli, P. Pop, and Z. Peng, “Scheduling with bus access
optimization for distributed embedded systems,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol.8, no.5, pp.472–491, 2000.

[6] H. Kopetz, Real-time systems-Design principles for distributed Em-
bedded Applications, Kluwer Academic Publishers, Norwell, MA,
1997.

[7] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven frame packing
for multi-cluster distributed embedded systems,” ACM Trans. Em-
bedded Computing Systems, vol.4, no.1, pp.112–140, 2005.

[8] N. Murakami, S. Iiyama, H. Takada, M. Kido, and I. Hosotani,
“A static scheduling method for distributed automotive control sys-
tems,” Trans. IPSJ Advanced Computing Systems, vol.48, no.SIG8
(ACS18), pp.203–215, May 2007.

[9] Y. Leung, G. Li, and Z. Xu, “A genetic algorithm for the multiple
destination routing problems,” IEEE Trans. Evol. Comput., vol.2,
no.4, pp.150–161, Nov. 1998.

[10] J.E. Beck and D.P. Siewiorek, “Automatic configuration of embed-
ded multicomputer systems,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol.17, no.2, pp.84–95, 1998.

[11] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Micropro-
gramming, vol.40, no.2-3, pp.117–134, April 1994.

[12] FlexRay Requirements Specification. Version 2.0.2, April 2002,
www.flexray-group.com.

[13] D.S. Johnson, “Fast algorithm for bin packing,” J. Comput. Syst.
Sci., vol.3, no.2, pp.272–314, 1974.

[14] N. Kandasamy, J.P. Hayes, and B.T. Murray, “Dependable commu-
nication synthesis for distributed embedded systems,” Int’l Conf. on
SAFECOMP, LNCS 2788, pp.275–288, Sept. 2003.

Shan Ding received the B. E. degree in De-
partment of Computer Science and Application
in Northeastern University, Shenyang, China, in
1989, and the M. E. degree in Department of
Electrical and Computer Engineering from Na-
goya Institute of Technology of Japan, in 1999.
He received his Ph.D. degree in computer sci-
ence from Nagoya Institute of Technology in
2003. From Sept. 2004 to Aug. 2006, he was
a visiting postdoctoral researcher in the Depart-
ment of Information Engineering, the Graduate

School of Information Science, Nagoya University, where he was finan-
cially supported by JSPS Postdoctoral Fellowship for Foreign Researchers.
He is currently an Associate Professor in College of Information Science
and Engineering, Northeastern University, P. R. China. His current research
interests include algorithm design and analysis, real-time scheduling the-
ory, and embedded system design.

Hiroyuki Tomiyama received his Ph.D.
degree in computer science from Kyushu Uni-
versity in 1999. From 1999 to 2001, he was
a visiting postdoctoral researcher with the Cen-
ter of Embedded Computer Systems, University
of California, Irvine, where he was financially
supported by JSPS Postdoctoral Fellowship for
Research Abroad. From 2001 to 2003, he was
a researcher at the Institute of Systems & In-
formation Technologies/KYUSHU. He is cur-
rently an Associate Professor with the Depart-

ment of Information Engineering, the Graduate School of Information Sci-
ence, Nagoya University. His research interests include system-level design
methodologies for embedded systems, computer-aided designed of VLSI
systems, and compilers for embedded systems. He has served on the orga-
nizing and program committees of several premier conferences including
ASP-DAC and ICCAD. He is a member of ACM, IEEE, and IPSJ.

Hiroaki Takada is a Professor at the Depart-
ment of Information Engineering, the Graduate
School of Information Science, Nagoya Univer-
sity. He received his Ph.D. degree in Informa-
tion Science from University of Tokyo in 1996.
He was a Research Associate at University of
Tokyo from 1989 to 1997, and was an Assis-
tant Professor and then an Associate Professor at
Toyohashi University of Technology from 1997
to 2003. His research interests include real-time
operating systems, real-time scheduling theory,

and embedded system design. He is a member of ACM, IEEE, IPSJ, and
JSSST.


