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PAPER

Effective Scheduling Algorithms for I/O Blocking with a
Multi-Frame Task Model∗

Shan DING†a), Nonmember, Hiroyuki TOMIYAMA††b), and Hiroaki TAKADA††, Members

SUMMARY A task that suspends itself to wait for an I/O completion or
to wait for an event from another node in distributed environments is called
an I/O blocking task. Conventional hard real-time scheduling theories use
framework of rate monotonic analysis (RMA) to schedule such I/O block-
ing tasks. However, most of them are pessimistic. In this paper, we propose
effective algorithms that can schedule a task set which has I/O blocking
tasks under dynamic priority assignment. We present a new critical instant
theorem for the multi-frame task set under dynamic priority assignment.
The schedulability is analyzed under the new critical instant theorem. For
the schedulability analysis, this paper presents saturation summation which
is used to calculate the maximum interference function (MIF). With satu-
ration summation, the schedulability of a task set having I/O blocking tasks
can be analyzed more accurately. We propose an algorithm which is called
Frame Laxity Monotonic Scheduling (FLMS). A genetic algorithm (GA)
is also applied. From our experiments, we can conclude that FLMS can
significantly reduce the calculation time, and GA can improve task schedu-
lability ratio more than is possible with FLMS.
key words: I/O blocking, multi-frame task model, schedulability analysis,
laxity, genetic algorithm

1. Introduction

A task that suspends itself to wait for an I/O completion or to
wait for an event from another node in distributed environ-
ments is called an I/O blocking task. With the conventional
framework of the rate monotonic analysis (RMA), an I/O
blocking task cannot be scheduled effectively. The reason
for this is that the critical instant theorem does not follow
its original form when a task has I/O blocking, and various
analysis techniques derived from the theorem cannot be ac-
cordingly applied [1].

Takada [1] has proposed an approach using multi-
frame task model to schedule a set of tasks including I/O
blocking [2]. According to this approach, a task having I/O
blocking is divided into two frames f1 and f2, whose maxi-
mum execution times are C1 and C2, respectively, one frame
applicable before the blocking and the other after the block-
ing. The whole task period is denoted as T , and the periods
of f1 and f2 are denoted as T1 and T2, respectevely, where
T = T1 + T2. f1 is started periodically within the period of
T1 and an I/O operation is requested after f1 is completed.
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Then, f2 is started immediately after the I/O operation is
completed. Here, we assume that periods T1 and T2 are
equal to deadlines of f1 and f2, respectively.

In [1], a method is considered by which the deadline of
a frame can be allocated so that the maximum schedulability
of lower priority frames can be achieved. If subtraction of
the execution time from the deadline can be described as the
slack of a frame, a simple allocation method of deadlines is
to make the slacks of the two frames equal. In other words,
T1−C1 = T2−C2. In addition to the T = T1+T2 formula, T1

can be calculated by the formula T1 = (T +C1−C2)/2. This
method is described as an equal slack allocation method.
Although this method is not the optimal method, compared
to conventional approaches, it does provide a useful way of
improving the schedulability of I/O blocking tasks.

Endo et al. have discussed the critical instant theorem
for generalized multi-frame tasks (GMF) with the dynamic
priority assignment [3]. By use of the maximum interfer-
ence function (MIF) [4], they have calculated the interfer-
ence time caused by high priority tasks within the duration
time interval t. Based on this theorem, they discussed the
necessary and sufficient condition for the schedulability of
a set of GMF tasks under dynamic priority assignment. As
described later, our algorithms presented in this paper are
based on their work.

Iiyama et al. [5] have applied the GMF model to engine
management systems. According to their work, the degree
of schedulablity of a frame is captured by summation of the
maximum total interference times requested by all higher
priority frames within the duration of time t. This sum-
mation can be calculated by “adding up” the MIFs of all
higher priority frames. However, the time which obtained
by normal arithmetic addition is longer than actual interfer-
ence time, so they have proposed saturation summation for
greater precision. We also employ saturation summation to
improve the calculation of MIF in our algorithms.

As above described, scheduling of a set of tasks which
has I/O blocking, allocation of the deadline and assign-
ment of priorities to the frames simultaneously, remain as an
open issue. Specifically, no approach exists to assign arbi-
trary priorities within a general multi-frame model. We pro-
pose an algorithm which is called Frame Laxity Monotonic
Scheduling (FLMS). A genetic algorithm is also applied.
As a result of our experiments, we have concluded that the
genetic algorithm we proposed significantly improve task
schedulability ratio more than is possible with FLMS.

The remainder of this paper is organized as follows: In
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Sect. 2 the multi-frame task model is defined, and an illus-
trative example is given. Section 3 discusses the necessary
and sufficient condition for the schedulability of a set GMF
tasks with dynamic priority assignment. Section 4 discusses
in detail our approaches. In Sect. 5, experimental tests are
carried out, and some concluding remarks follow in Sect. 6.

2. The Multi-Frame Task and an Illustrative Example

In this section, we give a brief description of the multi-frame
task model under dynamic priority assignments, then give a
simple example to show difference priorities can improve
schedulability of a task set which has I/O blocking tasks.

2.1 The Multi-Frame Task Model

The multi-frame task model is effective for tasks whose ex-
ecution times are periodically changed according to a speci-
fied pattern. Under this model, each period with the Liu and
Laylaud (L&L) task model is called a frame, and the task
maximum execution time in each frame is changed with a
larger cycle. In other words, a set of tasks is divided into
some frames with the same period, and the maximum exe-
cution time of a task is set for the frame which it belongs
to. A task is set at the beginning of the frame, and the dead-
line is the end of the frame. The generalized multi-frame
task model is an extension of the multi-frame task model in
the following two directions: (1) different frames may have
different periods and (2) the deadline for a frame may be dif-
ferent from the end of the frame [6]. From now on, we will
describe the generalized multi-frame task model simply as a
multi-frame task model.

In addition to priorities for frames under multi-frame
model, a multi-frame task Ti consisting of Ni frames is char-
acterized by a sequence of 4-tuples ((C0

i ,D
0
i , P

0
i , L

0
i ), . . .,

(CNi−1
i ,DNi−1

i , PNi−1
i , LNi−1

i )), where C j
i , Dj

i , Pj
i and L j

i rep-
resent the maximum execution time of the jth frame of Ti,
its relative deadline, its priority and its length, which is the
minimum separation time between the arrival time of the
jth frame and the following frame. In order to maintain the
frame separation properties, we assume that Dj

i ≤ L j
i , holds

for all j (0 ≤ j ≤ Ni − 1) [4].
An I/O blocking task is shown in Fig. 1. The I/O block-

ing task is divided into frame1 which is before the blocking
and frame2 which is after the blocking. Frame1 and frame2
are expressed as (C1, D1, P1, L1) and (C2, D2, P2, L2), re-
spectively. D is the total deadline of the I/O blocking task.
In this paper, we assume that D is equal to the period of the

Fig. 1 An I/O blocking task.

I/O blocking task. In consideration of the I/O blocking task
constraints, three equations are applied as follows.

L1 = D1 + B

D = L1 + D2

P = L1 + L2

The focus of our research is to find an optimal schedul-
ing method by adjustment of priorities and deadlines of
frames. To a set of period tasks according to the L&L task
model, the Deadline Monotonic (DM) [7] priority assign-
ment is optimal, meaning that if any static priority schedul-
ing algorithm can schedule a set of tasks with deadlines that
are unequal to their periods, then DM will also schedule
the task set. However, DM is not the optimal scheduling
method within multi-frame task model. To demonstrate this,
we show an example below.

2.2 An Illustrative Example

A multi-frame task τm consists of two frames ((3, 3, P1, 3),
(2, 5, P2, 5)). There is another period task τ, the execution
time, the deadline, the relative priority and the period of task
τ are 3, 6, P3 and 8, respectively. According to DM, the two
frames of task τm is allocated higher priority and task τ with
lower priority. Used with this kind of priority assignment,
the task set is not schedulable, as shown in Fig. 2 (a).

However, if we assign τm,0 the highest priority, τ mid-
dle priority, τm,1 the lowest priority respectively, the task set
is schedulable, as shown in Fig. 2 (b).

This illustrates that DM can not effectively schedule a
GMF task set. Since the release time of frames is generated
by dynamic priority assignment, the problem becomes NP-
hard [8]. On the other hand, an I/O blocking task allows
preemption tends to make the problems easier. We consider
that dynamic priority assignment for frames can improve the
schedulability of a set of tasks.

2.3 Related Work

The I/O performance has been considered in some ap-
plications such as distributed systems, multiprocessor or

Fig. 2 An example of DM.
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multiple-disk systems [8]–[11] by other approaches. A.L.
Narasimha Reddy and Prithviraj Banerjee have been im-
proved the I/O performance by building an I/O subsystem
with multiple disks [9]. Specifically, they considered disk
synchronization, data declustering/disk striping, and a com-
bination of both these approaches. The effects of block
size and other parameters of the system have been evalu-
ated. In [10], several design options in designing an I/O
system have been studied. Trace driven simulations have
been used to study a disk system with nonvolatile cache. It
was shown that decoupling the cache block size and fetch
size yielded significant performance benefits. Also, A.L.
Narasimha Reddy [11] studied the I/O behavior of some sci-
entific applications, a subset of perfect bechmarks, execut-
ing on a multiprocessor. The aim of this study is to explore
the various patterns of I/O access of large scientific applica-
tions and to understand the impact of this observed behavior
on the I/O subsystem architecture.

In distributed systems, the lack of global information
about data transfer between clients and servers make im-
plementation of parallel I/O a challenging task. J. Wu
et al. have proposed two distributed algorithms for schedul-
ing data transfer in parallel I/O with non-uniform data
sizes [12]. Their simulations show that two algorithms are
suitable for parallel I/O with data transfer traffic.

3. Schedulability Analysis

3.1 Critical Instant Theorem

With L&L task model, a critical instant of any task occurs
whenever the task is requested simultaneously with requests
for all higher priority tasks [13]. In case of a GMF task set
which has non-AM (Accumulative Monotonic) tasks, a criti-
cal instant for the frame cannot be determined independently
of the execution time of the higher priority frames. For ex-
ample, consider an I/O blocking task τm( f1, f2) = ((3, 3, P1,
3), (1, 5, P2, 5)) and a task τ = (2, 2, P3, 5). Assuming
P1 > P3 > P2, if we consider a critical instant of the task
set with multi-frame model as above, a critical instant of the
lowest priority frame f2 occurs when f2 is requested simul-
taneously with requests for τ. As shown in Fig. 3 (a), the
response time of f2 is 3.

However, the worst case response time of f2 is as
shown in Fig. 3 (b), and a critical instant of f2 defined as
above is not the worst case response time of f2. Even if f1
is executed at time 0, it can be postponed by the length of
f2. Based on the preemptive static priority scheduling the-
orem, we give a brief description of the new critical instant
theorem for a GMF model [4].

Definition 1 (Critical Instant Candidates): The crit-
ical instant candidates of a GMF task are defined as the in-
stants at which a frame of the task is requested simultane-
ously with any one of the frames with higher priority. Their
succeeding frames are requested with their minimum sepa-
rations, and each frame is executed for a maximum execu-
tion time.

Fig. 3 An example of the critical instant theorem.

On the basis of such a definition, we can describe the
critical instant theorem for a GMF task as follows.

Theorem 1 (Critical Instant Theorem): A critical instant
of a frame of a GMF task occurs at one of the critical instant
candidates for the task. In other words, one of the critical
instant candidates is a critical instant of the frame.

Proof. All frames which are in a frame set U have their
priorities. We assume that when frame F with priority i of
the task T is released at time t and completes at time tend,
the worst case response time of frame F is caused. In this
situation, a frame is sure to be executed with higher priority
than the priority of F between time t and tend. The time at
which there is no frame with higher priority has been exe-
cuted before time t is assumed to be t0. Because any frame
is not executed at time 0, t0 is sure to exist. It is assumed
that F is the first arrival of T after t0. Even if we change
the arrival time t of frame F to t0, it still completes at time
t since there is at least one frame with priority that is higher
than i is executed.

Assuming that for each frame with priority that is
higher than i, we move its first arrival time after t0 to t0. In
this case, the completion time of frame F might be delayed
to tend′ . Moreover, their succeeding frames are requested
early with their minimum separations, and each frame is ex-
ecuted for a maximum execution time. The completion time
of frame F is delayed further to time tend′′ . Since time t is
one of critical instant candidates of T , the response time of
frame F is longer than the first situation.

When we assume that if the worst case response time
of frame F is caused in the first situation, the worst case
response time of frame F is caused too when the critical
instant candidates for frame F are requested.

Next, assuming that frame F is not the first arrival of
T after t0, we prove it as follows. If frame F with priority
i is the kth frame of the arrival of T after t0, we assume
that the worst case response time of frame F is caused, and
it completes at time tend. As above proof, the time which
a frame with higher priority has not been executed before
t is assumed to be t0. It is sure that t0 exists. We assume
that frame F′ with higher priority j is the first arrival of T
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after t0 ( j ≥ i). The arrival time of F′ is t′. It completes
at time tend′ . Even if we change at the arrival time of F′
from t′ to t0, it still completes at time tend′ since there is at
least one frame with priority that is higher for i is executed.
Therefore, frame F still completes at time tend.

Assuming that for each frame with priority that is
higher than i, we move its first arrival time after t0 to t0. In
this case, the completion time of frame F might be delayed
to t′end′ . Moreover, their succeeding frames are requested
early with their minimum separations, and each frame is ex-
ecuted for a maximum execution time. The completion time
of frame F is delayed further to time t′end′′ . Since time t is
one of critical instant candidates of T , the response time of
frame F is longer than the first situation.

When we assume that frame F with priority i is the kth
frame of the arrival of Ti after t0, the worst case response
time of F is caused. If there exists a frame between F and
F′ with priority that is lower than i, t0 exists between t and
t′. t is one of critical instant candidates of T .

Based on the new critical instant theorem, a frame in
the task set is schedulable when critical instant of the frame
is smaller than its deadline.

3.2 Maximum Interference Function (MIF)

In order to decide the feasibility of a set of multi-frame tasks
effectively, a maximum interference function (MIF) is pro-
posed in [4]. The MIF of a task is a function presenting the
maximum time during which the execution of the task in-
terferes with the execution of the lower priority tasks within
the duration time interval t.

The MIF Mi(t) of a multi-frame task Ti is represented
as follows,where Ik

i is called the interference function (IF)
and represents the maximum time during which Ti interferes
with lower priority tasks during t after the arrival of the kth
frame of Ti.

Mi(t) = max
0≤k≤Ni−1

Ik
i (t)

It can be transformed into the following form.

Ik
i (t) =

k+J−1∑

h=k

ChmodNi
i + min

⎛⎜⎜⎜⎜⎜⎜⎝C
(k+J)modNi

i , t −
k+J−1∑

h=k

LhmodNi
i

⎞⎟⎟⎟⎟⎟⎟⎠

Where J is the maximum integer that satisfies the fol-
lowing formula.

k+J−1∑

h=k

LhmodNi
i ≤ t

The MIF of a multi-frame task is the maximum value
of each interference function (IF) of frames when interfer-
ence frames are released simultaneously. Consider a task
consisting of three frames: τi = ((1, 4, P1, 4), (2, 4, P2, 4),
(3, 4, P3, 4)), Fig. 4 illustrates the IFs of three kinds of con-
ditions and the MIF of τi. The MIF of the multi-frame task
τi is the uppermost connected lines of the three IFs.

Fig. 4 The MIF of a GMF task.

From the definition of the MIF, the necessary and suf-
ficient condition for the schedulability of a multi-frame task
Ti can be given as follows.

A multi-frame task Ti is schedulable under a GMF
model if and only if;

∃t, 0 ≤ t ≤ Dk
i ,

i−1∑

j=1

Mj(t) +Ct
i ≤ t (1)

According to the above formula, we can obtain schedu-
labe conditions for a task during time interval t. Since the
interference time caused by one higher priority multi-frame
task can be calculated, the total interference time caused by
one or more than higher priority multi-frame tasks can be
intuitively calculated by arithmetically adding of them. In
fact, for a set of multi-frame tasks that has one or more tasks,
the result of the arithmetical addition of MIFs is longer than
the actual interference time caused by all the higher priority
tasks. Saturation summation has been applied to improve
MIF for a task set.

3.3 Saturation Summation

For a set of tasks, the degree of schedulable of a frame is
captured by total interference time requested by all higher
priority frames within the duration of time interval t. As
described above, the time is calculated by arithmetical ad-
dition of MIFs is longer than the actual interference time of
all higher priority tasks.

Assume that two multi-frame tasks exist, τ1 = ((1, 8, 4,
8), (2, 8, 3, 8)) and τ2 = ((3, 8, 2, 8), (2, 8, 1, 8)). M1(t)
and M2(t) are MIFs of τ1 and τ2 respectively. The MIF of
τ1 and τ2 is shown in Fig. 5 (a) (i.e., M(t) = M1(t) + M2(t)).
Ms(t) constitutes the actual interference time affected by the
two multi-frame task τ1 and τ2. From Fig. 5, the value of
M(t) is greater than that of Ms(t) during the two intervals of
time (0, 4) and (8, 11), which means that M(t) is longer than
the actual interference time in the same two intervals. In
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(a) (b)

Fig. 5 The saturation summation.

fact, MIF is impossible to increase like M(t) during the two
intervals of time, because only one frame is executed during
the intervals. For this reason, M(t) must be converted into
Ms(t) by use of a saturation conversion.

Definition 2 (Saturation Conversion): Given a func-
tion F(t) that depends on time with a nonnegative integer
gradient, a new function Fs(t) can be obtained on the basis
of the following formulas. This is called a saturation con-
version.

Fs(t) = t − max
0≤τ≤t

(τ − F(τ))

As for the definition of saturation conversion, the func-
tion that is converted from the arithmetical addition of MIFs
by a process of saturation conversion can be described as
saturation summation, which can be expressed as follows:

i−1∑

j=1

Mj(t)� = t − max
0≤τ≤t

⎛⎜⎜⎜⎜⎜⎜⎝τ −
i−1∑

j=1

Mj(τ)

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

Figure 5 (b) illustrates saturation summation applied to
the same set of tasks in Fig. 5 (a).

• In the interval of time [0, 5], because
∑3

1 Mj(τ) ≥ τ,

max
0≤τ≤4

⎛⎜⎜⎜⎜⎜⎜⎝τ −
i−1∑

j=1

Mj(τ)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0, =⇒
i−1∑

j=1

Mj(t)� = t;

(0 ≤ t ≤ 4)

• In the interval of time [8, 11], because,

max
8≤τ≤11

⎛⎜⎜⎜⎜⎜⎜⎝τ −
i−1∑

j=1

Mj(τ)

⎞⎟⎟⎟⎟⎟⎟⎠ = 3, =⇒
i−1∑

j=1

Mj(t)� = t − 3;

(8 ≤ t ≤ 11)

Thus, saturation summation of MIF can compensate for
a discrepancy and calculate interference time precisely.

The necessary and sufficient condition for the schedu-
lability of a kth frame of a multi-frame task Ti must be re-
formulated for saturation summation of MIF.

According to the definition of saturation summation,
the inequality 1 can be transformed into the following in-
equality.

∃t, 0 ≤ t ≤ Dk
i ,

i−1∑

j=1

Mj(t)� +Ct
i ≤ t (3)

Since saturation summation is a monotonic non-decreasing
function, the laxity of a multi-frame task Ti is at the max-
imum at a time t is equal to the task deadline. Based on
the above discussions, it is easy to observe that saturation
summation of MIF can only be inspected at the time of the
deadline t, but not at each t

′
< t. The necessary and suffi-

cient condition for the schedulability of the kth frame of a
multi-frame task Ti is described below:

Theorem 2: The kth frame of a multi-frame task Ti can be
schedulable if and only if

i−1∑

j=1

Mj(D
k
i )� +Ct

i ≤ Dk
i

This theorem is proved by demonstrating the two in-
equalities (1) and (3). When inequailty (1) is satisfied, then
inequailty (3) is also satisfied. The two inequalities are
equivalent to the schedulabe conditions of the kth frame of a
multi-frame task Ti. The proof of this is described in details
elsewhere [5].

4. Scheduling Algorithms

When priorities for a frame are assigned sequentially, the
worst-case complexity of searching the frame deadline with
n frames is of a higher order than O(n!). It took several
days to calculate a 10 frames problem (4 I/O blocking tasks
and 2 non-I/O blocking tasks). The algorithm is practically
unusable for most real-time applications.

4.1 Frame Laxity Monotonic Scheduling (FLMS)

In this section, we present a minimum laxity first dynamic
scheduling algorithm based on a greedy approach such as
[14]. Laxity is a measure of the flexibility available for
scheduling a task. The basic idea is that the shorter laxity of
frame is, the higher priority assigned to the frame. In gen-
eral, laxity Xi of a non-I/O blocking ith frame is the max-
imum time that the frame can be delayed on its activation
to complete within its deadline. For an I/O blocking task
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Fig. 6 Find an “urgency” frame.

τk(including two frames f and f
′
), we have defined laxity

Xf of the frame f as follows:

Xf =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dk −WCIT ( f ) − Lf ′ −C f − B( f )
if Pf ′ is always fixed.

(Dk −WCIT ( f ) −C f −C f ′ − Bk)/2
if Pf ′ andPf are not fixed.

Where, Dk is a task deadline, WCIT ( f ) is amount of
time during which interference is caused by the execution of
higher priority frames in worst case, as calculated by means
of theorem 1. Lf ′ is the length of frame f

′
. B( f ) is a func-

tion, when frame f is the frame applicable before I/O block-
ing, B( f ) returns a value of a maximum waiting time (Bk) of
the task; otherwise, B( f ) returns zero.

According to the above formula, if priorities of f
′

and
f are not assigned, frame laxity values of f

′
and f are equal

to the average equivalent of the laxity of the I/O blocking
task. Note that, Bk is the maximum waiting time.

If more than one frame have the same laxity, the al-
gorithm randomly selects the one to which higher priority
should be given.

To consider the I/O blocking task mechanism, we im-
proved FLMS based on the following strategies.

• FLMS takes into consideration the execution time of a
frame. However it can not ensure that other frames do
not miss deadlines. Consider two frames τ1 (1, 100,
P1, 100) and τ2 (52, 150, P2, 150). The interference
time caused by higher priority frames is 50. The laxity
of τ1 and τ2 are 49 and 48, respectively. According to
FLMS, τ2 is assigned a higher priority. But τ1 is un-
schedulable. This example illustrates that a frame with
minimum laxity is not necessary an “urgency” frame
that must be executed in the first instant, the “urgency”
frame does not always exist. We compare the total of
interference time and execution time of the frame with
minimum laxity with the deadlines of other frames so
as to find an “urgency” frame. If the deadline of a frame
is smaller than the total value, the frame is deemed to
be an “urgency” frame, and must be assigned higher
priority. Otherwise, the frame with the minimum laxity
is assigned the higher priority (line 12). Figure 6 illus-
trates how to find an “urgency” frame, where MIF fmin

is the total of interference time.

Fig. 7 Frame laxity monotonic scheduling. (FLMS)

• The two frames that are in an I/O blocking task do not
mutually interfere with each other regardless of the pri-
ority of the two frames. In other words, when calculat-
ing interference time of the ith frame, it is unnecessary
to generate the IF of the multi-frame task to which the
ith frame belongs (line 4).
• Whenever a frame fails to meet its deadline, the equal

slack allocation proposed in [3] is used to maximize
the schedulability of lower priority frames. If the pri-
ority of two frames of an I/O blocking task is greater
than that of a frame that fails to meet its deadline, the
deadline of the two frames is adjusted by this method
(line 17).

According to FLMS mechanism, the minimum laxity
frame in a set of frames in which frames are not assigned
priorities is taken into account (from line 2 to line 7). If the
frame is unschedulable, showing the whole frame set is un-
schedulable, the algorithm is stop at this step (line 9). Oth-
erwise, finding an urgency frame is performed at line 11. If
the urgency frame is existed, it is used to replace the mini-
mum laxity frame. From line 11 to line 14, priority of the
frame we selected is assigned and deadline of the frame is
determined. At the end, the equal slack allocation is per-
formed if the frame we selected is in an I/O blocking task
(line 17). Note that priority of a frame is not equal to that of
another frame, since the relevant MIF calculation becomes
more complex. The method is summarized in Fig. 7.

4.2 Genetic Algorithm for I/O Blocking

Our GA requires the definition of a set of genetic operations
and an evaluation function as follows:
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4.2.1 Coding Individual

Each frame is denoted with frame identifier (FrameID).
Based on the frame identifier, we can find whether an I/O
task that the frame belongs to. Priorities of frames can be
encoded by a string where the ith number in string is priority
of the ith frame. Another string is used for encoding dead-
lines of frames. The lengths of two strings are the number
of frames. The deadline of a frame with the highest priority
is equal to the maximum execution time of the frame. Prior-
ities and deadlines are generated randomly in their possible
ranges. According to the FrameID, priority and deadline of
the frame are easy to find.

4.2.2 Generate Initial Generation

Individuals are generated randomly as many as population
size. The fitness value of an individual is calculated by an
evaluation function. When the same individual is generated,
it is deleted and a new different individual is obtained by us-
ing mutation operation. Then individuals in the generation
will be sorted in ascending order.

4.2.3 Evaluation Strategy

The fitness value of an individual is the number of frames
that are schedulable in the task set. The schedulability of
a frame is calculated according to the new critical instant
theorem.

4.2.4 Crossover

The crossover operation is held between two parents. Two
selected individuals are called parent-A and parent-B, and
assume the fitness value of parent-A is higher or equal to
that of parent-B. Every crossover results in one offspring
by randomly choosing one of two suboperations. One is
to exchange priorities of some genes. This mechanism can
be carried out by cyclic permutation operation. The same
performance was described elsewhere [15] in details.

Another operation is to change deadlines of some genes
by the following steps:

1. For a gene da in parent-A and the gene db at the same
position as da in parent-B, if da = db then set da to the
same position in the offspring.

2. Let the number of unset genes in the offspring be m.

(a) if m ≤ 4 then for every unset positions in the off-
spring, set the average value of genes at the same posi-
tion in parents to the offspring.
(b) if m > 4 then: select [m + 1]/4 genes from parent-A
randomly and set them to the offspring. If the deadline
of a frame in an I/O blocking task was determined, the
deadline of another frame in the same I/O blocking task

is also determined. Values of unset genes in offspring
are copied from genes at the some position in parent-B.

At the end of crossover operation, let the deadline of a
frame with the highest priority equal to the maximum exe-
cution time of the frame.

4.2.5 Mutation

The mutation operation is in an individual. We also con-
duct mutation operation by randomly choosing one of two
suboperations. One is to choose an I/O blocking task ran-
domly, change deadlines of two frames randomly. Another
is to choose an I/O blocking task randomly, set the average
value of deadlines in two frames.

4.2.6 Other Operations

Selection and differentiation of the same individual are per-
formed as described elsewhere [16] in details.

Parameters for GA were set as follows. Population size
was five times as much as the number of frames. The prob-
ability of mutation was 0.2. The number of generations was
1000.

5. Experiments

This section presents a set of experiments demonstrating
the effectiveness of our approach. The two developed al-
gorithms are implemented using C language executed on a
2.53 GHz Pentium4 processor with a 512 MB RAM. We
have not conducted a comparison with other algorithms. Be-
cause I/O blocking with a multi-frame task model is differ-
ent from L&L task model and two algorithms we propose
are also based on the new critical instant theorem. We con-
ducted tests on four task sets consisting of 5, 10, 15 and 20
frames, respectively. 20 samples were generated randomly
for each task set. The main parameters of a task are listed
in Table 1. The minimum execution time and the maximum
execution time of frame are 10 and 100 time units, respec-
tively.

The number of frames, I/O blocking tasks and non-I/O
blocking tasks in the four task sets are listed in Table 1. The
task deadlines and the blocking waiting times were gener-
ated randomly between the minimum time and the maxi-
mum time of the deadline and the waiting time, respectively.

The data reported in Figs. 8 and 9 are the average values
of 20 samples obtained by FLMS and GA for each data set,

Table 1 Parameters of task.

Name of data sets Set 1 Set 2 Set 3 Set 4
Number of frames 5 10 15 20

Number of I/O blocking tasks 2 4 7 9
Number of non-I/O blocking tasks 1 2 1 2

Minimum deadline for task 100 400 700 1300
Maximum deadline for task 500 1000 1300 2000

Minimum waiting time 20 20 20 80
Maximum waiting time 90 90 90 150
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Fig. 8 The time required comparison between FLMS and GA.

Fig. 9 Task schedulability ratio comparison between FLMS and GA.

respectively. Figure 8 presents the average time required for
algorithm computation comparison between FLMS and GA.
FLMS is better than that of GA for all 4 data sets. As above
described, if priorities for frames are assigned sequentially,
it took several days to calculate a 10 frames problem. The
maximum computing time for the biggest problem by GA is
12 seconds. Compared with several days, it is not a serious
problem for 12 seconds.

Another reason why computation time of FLMS is less
than that of GA is, GA is a kind of evaluation algorithm.
When the individual’s chromosome changes by genetic op-
erations, it needs to calculate interference function again.
FLMS only needs calculate interference functions accord-
ing to greedy approach. This also indicates that these strate-
gies of FLMS are success and reduction of the number of
interference functions leads up to significant reduction of
calculation time of the saturation summation.

Figure 9 illustrates the task schedulability ratio com-
parison between FLMS and GA. The task schedulability
ratio is the proportion of the schedulable data samples to
each data set calculated by one kind of algorithms. Figure 9
demonstrates significant improvement of GA over FLMS.
From experiment, we can conclude that FLMS can signifi-
cantly reduce the calculation time, however the GA can im-
prove task schedulability ratio more than is possible with
FLMS. Experimental results show that our developed meth-
ods are able to effectively produce good quality results. Be-
cause the assumption of our range of experiment parameters
is realistic, we can conclude that our approach is sufficiently
effective for practical purposes.

6. Conclusions

In this paper, effective algorithms that can schedule a set of
tasks which has I/O blocking under dynamic priority assign-

ment are proposed. We have presented a new critical instant
theorem necessary for a multi-frame task set with arbitrary
priority assignment. An approach to schedulability analysis
based on the critical instant theorem is also presented. In
addition, we have proposed an FLMS algorithm. A genetic
algorithm is also applied. From our experiments, we can
conclude that the FLMS can significantly reduce the time of
the calculation time, and GA can improve task schedulabil-
ity ratio more than is possible with FLMS.
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