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Static Task Scheduling Algorithms Based on Greedy Heuristics
for Battery-Powered DVS Systems

Tetsuo YOKOYAMA†a), Gang ZENG††, Nonmembers, Hiroyuki TOMIYAMA†††,
and Hiroaki TAKADA††, Members

SUMMARY The principles for good design of battery-aware voltage
scheduling algorithms for both aperiodic and periodic task sets on dynamic
voltage scaling (DVS) systems are presented. The proposed algorithms are
based on greedy heuristics suggested by several battery characteristics and
Lagrange multipliers. To construct the proposed algorithms, we use the
battery characteristics in the early stage of scheduling more properly. As
a consequence, the proposed algorithms show superior results on synthetic
examples of periodic and aperiodic tasks from the task sets which are ex-
cerpted from the comparative work, on uni- and multi-processor platforms,
respectively. In particular, for some large task sets, the proposed algorithms
enable previously unschedulable task sets due to battery exhaustion to be
schedulable.
key words: battery-aware voltage scheduling, dynamic voltage scaling,
low power, real-time systems

1. Introduction

Increases in battery capacity and improvements in battery
utilization have proved to be indispensable due to higher
demand for functionality resulting in a drastic increase of
energy consumption. On the other hand, the energy den-
sity of the battery, though gradually improved, have already
reached a half or a third of the theoretical limits [1]. It is
therefore of great importance to reduce the energy consump-
tion by controlling software in the battery-powered embed-
ded systems. The challenge is to appropriately handle the
non-trivial battery characteristics, such as recovery and non-
linearity of battery capacity, which are dependent on the cur-
rent load history [1]–[3]. A real battery recovers its charge
when it is idle. The current load affecting the total capacity
of batteries is not uniform but rather depends on the load his-
tory. Once the voltage of the battery reaches its threshold, a
battery becomes exhausted. Then, its current is unavailable
and never recovers without an external power supply. To
use battery capacity to the greatest extent, it is impossible to
apply existing energy optimization techniques as they are.
Therefore, the aforementioned battery characteristics must
be reflected.

Battery characteristics have been widely studied [4].
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Although computationally expensive low-level electro-
chemical models (e.g., Dualfoil [5]) are accurate, high-level
battery models provide reasonably accurate approximation
gained by lightweight computation [6]–[11]. Based on those
models, a number of battery-aware voltage scheduling algo-
rithms on dynamic voltage scaling (DVS) systems have been
proposed [2], [3], [12].

Specifically, incorporating battery properties, such
as recovery effect and non-linearity, Rakhmatov and
Vrudhula [6], [7] developed a high-level analytical battery
model with only two configuration parameters for each bat-
tery instance. Accuracy of their model was confirmed by the
low-level electrochemical simulation Dualfoil [5] within ap-
proximately 5% error according to their report. Rakhmatov
and Vrudhula [2] specified various important properties of
their mathematically formulated cost function, and several
efficient static battery-aware voltage scheduling algorithms.
Chowdhury and Chakrabarti [3] identified several insight-
ful battery properties and extended the work of Rakhmatov,
Vrudhula, and Chakrabarti [2], [13]. They proposed battery-
aware voltage scheduling algorithms not only for periodic
tasks on uniprocessor platform but also for both aperiodic
and periodic tasks on both uni- and multi-processor plat-
forms.

Their improvement relies on heuristics derived from
battery characteristics, such as the steepest profile and non-
increasing ordering in the early stage of scheduling. In
this paper, we investigate the implications caused by bat-
tery properties, which are identified in the aforementioned
previous work [2], [3]. As the result of the proper investi-
gation of those properties, we propose new static voltage
scheduling algorithms for the battery-powered embedded
systems, based on greedy heuristics suggested by several
battery properties and Lagrange multipliers. We target both
uni- and multi-processor systems. Our method shows better
results in the aperiodic task sets of time varying load used
in the previous works on multiprocessor systems, as well as
in the periodic task sets on uniprocessor systems. To obtain
optimal periodic task scheduling with respect to the battery
load, we have found that a special care is necessary, while it
is not necessarily considered in energy minimization.

One of the limitations of our approach is caused by the
selection of the objective function to minimize. As men-
tioned above, it deviates from the low-level electrochemical
simulation Dualfoil [5] by at most 5%. Moreover, Dualfoil
does not perfectly reflect real battery behavior. Also, only

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



2738
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Li-ion battery parameters are used when evaluating our re-
sult.

This paper is organized as follows. First, we present the
non-ideal battery characteristic using a motivating example
(Sect. 2). After representing the system and battery models
we rely on (Sect. 3), we propose our voltage scheduling al-
gorithms (Sect. 4). The proposed algorithms are evaluated
through comprehensive experiments (Sect. 5). Finally, we
conclude with a few remarks (Sect. 6).

2. Motivation

Figure 1 represents four profiles of two identical tasks (cur-
rent 250 mA, duration 2 min in the highest voltage setting,
deadline 6 min) on a battery-powered uniprocessor system,
in which processor speed and power change continuously.

Figure 1 (a) shows the increase current profile. Since
the idle time increases the nominal residual charge in batter-
ies, the later we measure the nominal battery capacity, the
higher value we obtain. The consumed capacity is measured
by the objective function σB (see Sect. 3 in detail). The
higher σB stands for the smaller nominal residual charge
available in batteries at observation time B. OnceσB reaches
some threshold (denoted as α in this paper), the batteries
become exhausted; The batteries are inactive and no longer
recoverable without external power supply. The objective
function at time 6 min (σ6) is 1566 mA·min and it decreases
to 1115 mA·min at time 12 min (σ12). Each of two objective
functions is the worst in the four cases.

For battery-unaware scheduling, it is well-known that
only a single processor speed is sufficient to obtain the opti-
mal profile [14]. The time between the end of task execution
and deadline is called slack time. If we distribute the slack
time equally among two identical tasks, we obtain level cur-
rent profile (Fig. 1 (b), cf. [12]), which is an optimal profile
in terms of the amount of energy dissipated from batteries.
However, due to non-linearity of the objective function, it is
not always an optimal profile as far as optimization of bat-

(a) Increase current (b) Level current

(c) Gradual decrease current (d) Decrease current

Fig. 1 Motivating example.

tery residual charge is concerned. As we will see later on,
this profile is optimal in case of ideal battery.

The decrease current profile results in better battery
performance compared to increase current profile. Fig-
ure 1 (c) is an optimal profile minimizing the objective func-
tion σ12. Despite higher energy consumption in the level
current approach (Fig. 1 (b)), the battery loads σ6, σ12 are
reduced.

Figure 1 (d) is an optimal profile minimizing σ6. This
decrease current is obtained by swapping the two tasks in
the increase current profile in Fig. 1 (a). Those two profiles
consume exactly the same amount of energy, but the battery
loads differ (34.2% improvement with respect to σ12). This
implies the importance of the task order (i.e., the history of
load) in the battery-aware voltage scheduling. The gradient
of this task load is steeper than in the gradual decrease cur-
rent profile (Fig. 1 (c)), and this results in the worse effect on
σ12. Namely, the steepest non-increasing load current pro-
file is not always optimal. Hence, heuristics for choosing the
steepest non-increasing load current profile [3] is not always
the best choice.

This example becomes an intratask voltage scheduling
problem [15], if we regard two identical tasks as one piece
of task and have opportunity to change the speed when a half
of the task is finished. In the battery-aware voltage schedul-
ing, even when each task consumes power uniformly, there
is still room to optimize the total available capacity in the
battery by switching voltages during the task execution. The
difference of σ6 between Fig. 1 (b) and Fig. 1 (d) shows not
negligible improvement (6.1%).

Energy minimization is not exactly equivalent to bat-
tery optimization. In summary, when considering the
battery-aware voltage scheduling, we need to pay attention
to the recovery effect and the history of load, and we should
not rely too much on the steepest non-increasing profile
heuristics to obtain an efficient profile.

The importance of the research on the better battery
utilization is also reinforced by the fact that it is somewhat
independent of the energy optimization of the other parts of
the systems. For example, if a subsystem, which consumes
10% of the total energy, reduces the energy consumption
by 50%, only 5% is reduced in total. However, if energy,
which remained in a battery after battery failure, is used in
the system it is exactly equal to the increase of the available
energy for performing system.

3. Preliminaries

This section explains the assumptions used in the following
sections, in order to make this paper self-contained.

3.1 System Configuration

We assume DVS-enabled uni- and multi-processors. For the
sake of simplicity, the DC-DC conversion efficiency is as-
sumed to be 100%. The ratio of the initial task duration Δ
and the new task duration Δ∗ after scaling the task voltage
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Vdd down by factor s (i.e., Vdd/s) is

Δ∗

Δ
= s

⎛⎜⎜⎜⎜⎝1 + 2(s − 1)Vth

Vdd − Vth

⎞⎟⎟⎟⎟⎠ (1)

with Vth a threshold voltage. The battery current Ibatt scales
by s3, i.e., I∗batt/Ibatt = s−3 with I∗batt a battery current after
scaling the task voltage.

Our target processor is compatible with the
StrongARM SA-1100 microprocessor [16]. The operating
voltage ranges over set {3.3, 3.0, 2.7, 2.5, 2.0}. The threshold
voltage Vth is 0.4 V. For the sake of simplicity, we assume
no time and energy overhead due to the change of voltage
setting.

In most modern embedded systems, dynamic energy
consumption is dominant. Therefore, in this paper, static
energy consumption is ignored, although it is one of ma-
jor concerns in the near future. All the assumptions above
are consistent with the work on battery-conscious voltage
scheduling [3] for comparison purpose.

3.2 Battery Model

There has been no single model capturing the behavior of
both charge and voltage at the same time. We focus on
charge sensitive model and ignore voltage sensitive mod-
els [5], [17]. As a model for variable load, we use the high-
level analytical model of Rakhmatov and Vrudhula’s [6],
[7]. The load on battery i(t) and battery life time L are re-
lated by equation

α =

∫ L

0
i(t)dt +

∫ L

0
i(t)

⎛⎜⎜⎜⎜⎜⎝2
∞∑

m=1

e−β
2m2(L−t)

⎞⎟⎟⎟⎟⎟⎠ dt (2)

with α (mA·min) and β (min−1/2) being constants, uniquely
determined for each battery. α corresponds to the battery’s
theoretical capacity and β represents the recovery rate.

The first term on the right hand side sums up the dis-
charged capacity from the battery from time 0 to L. The
second term represents the residual charge in the battery, un-
available at time L. It should be noted that once battery volt-
age becomes lower than some threshold, the residual charge
in the battery cannot be used any more. If the second term
on the right hand side is negligible (e.g., β → ∞), the bat-
tery behavior is nearly optimal. If α is significantly large,
we do not have to consider the battery failures (exhaustion).
By means of insertion of the period of no load, i.e., i = 0, or
low load, the battery life L increases; the battery at rest re-
covers its charge. Let τk (k in short) be tasks executed during
the period of Δk starting at time tk. For brevity, we estimate
the load of each task k on the battery to be a constant Ik

in the highest voltage setting. If the tasks are sequentially
computed and the battery life ends at task u, the battery ca-
pacity equation computed with continuous current function
(2) becomes the discrete equation [2], [6]

α =
∑
k∈S u

IkF(L, tk, tk + Δk, β) + IuF(L, tu, L, β) (3)

with a set S u consisting of the tasks executed before task u
and auxiliary function

F(T, s, f , β)

= f − s + 2
mmax∑
m=1

e−β2m2(T− f ) − e−β2m2(T−s)

β2m2
(4)

in which s represents the start time, f the finishing time,
and T the observation time. If t � [tk, tk + Δk) for all τk ∈
S u + {τu} in the uniprocessor systems, then t is in the idle
time. Since in theory mmax is infinite, the number of terms
in the sum of infinite series provides a tradeoff between the
accuracy and the amount of computation. In [6] and [7], a
graph ranging 1 ≤ β2L ≤ 102 shows that the sums of the first
10 and 100 000 terms create negligible difference. This fact
implies that the first 10 terms are a good approximation.

We justify this observation analytically. Since the for-
mula (summands) under Σ notation in F is monotonically
decreasing with m and T , by using the solution of Basel
problem†, we obtain, for any mmax

mmax∑
m=1

e−β2m2(T− f ) − e−β2m2(T−s)

m2
< e−β

2(T− f )
π2

6
. (5)

Given mmax and the upper bound of f − s, the upper bound
of error is obtained. For example, assuming f − s ≥ 1 min,
mmax = 10, β = 0.637 min−1/2, T − f = 10 min, error is
bounded by 1.03 × 10−3. The sum of the first 10 terms
has approximately at most 0.2% error. Therefore, we use
mmax = 10 in the formula of F (4).

We focus on the task sets of the middle duration range
(0.5 min to 20 min). This is because firstly the load fre-
quencies higher than 1 Hz can be filtered owing to the late
response of the battery device [1] and battery-charge opti-
mization is not effective for very fine-grained (< 10 ms)
tasks [18]. Secondly, for very coarse-grained (> 30 min)
tasks, battery-aware voltage scheduling is not much supe-
rior to energy optimal scheduling [18]; Battery optimization
is almost equivalent to energy minimization in this range.

In this paper, we do not consider self-discharge mech-
anisms, aging caused by discharge/recharge repetition, and
dependence on temperature, since this model does not take
them into account.

3.3 Cost Function

A profile of n tasks consists of a set of the current Ik, the
starting time tk, and the duration Δk. For a given profile of
n tasks and the observation time B, the battery-aware cost
function [7]

σB =

n−1∑
k=0

IkF(B, tk, tk + Δk, β) (6)

is to be minimized. The subscript B of σ is omitted if it
†Euler solved the Basel problem and obtained the formula∑∞

m=1 1/m2 = π2/6.
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is insignificant or obvious from its context. σB models a
measure of the accumulated battery load until time B. When
battery parameter β or the observing time B becomes large
(β → ∞, B → ∞), the third term on the right hand side
in the formula of F (4) disappears, and the battery becomes
ideal (limβ→∞ σB = σ∞).

To make the value σ meaningful, two conditions must
be satisfied. Firstly, all tasks must terminate before observa-
tion time B:

∀k. tk + Δk ≤ B . (7)

Secondly, the battery must satisfy the endurance constraint;
the battery must not be exhausted before B:

∀t ≤ B. α ≥
n−1∑
k=0

IkF(t,min{t, tk},min{t, tk +Δk}, β) . (8)

It should be noted that if the values of the second and third
arguments of F are equal, F becomes zero.

For comparison purpose, we use the same battery
parameters in all profiles (including motivating examples
in Sect. 2) as in [2], [3], [7] (α = 40 375 mA·min, β =
0.273 min−1/2).

We will use the largest deadline of given tasks for the
observation time B, instead of the end time of each profile,
which was used in the previous work [2], [3]. As a result,
even if all tasks finished earlier than the deadline, it is not
always disadvantageous because of the usage of the remain-
ing time for recovery.

3.4 Cost Function Properties

The properties derived by analysis of cost functions are
described by proposers of the battery model [2] and inde-
pendently identified by [3]. The cost function decreases
when swapping two ascending tasks with no idle time in-
between. Therefore, assuming no endurance constraint, no
slack time interleaved between tasks, and no task depen-
dency, σ is minimized if tasks are in non-increasing load
order (Fig. 1 (d)), and is maximized if tasks are in non-
decreasing load order (Fig. 1 (a)). When designing algo-
rithms, we assume that the decrease of voltage results in
increase in the duration of tasks as well as decrease in the
amount of load:

V ≥ V ′

⇒ Δ(V) ≤ Δ(V ′) and I(V)Δ(V) ≥ I(V ′)Δ(V ′) . (9)

Under this assumption, several properties hold. When B =
maxk{tk + Δk}, the degradation of voltage of task k with the
new observation time B∗ = maxk{tk +Δ∗k} does not make the
cost function σB∗ worse and the endurance constraint satis-
fied in the original profile is still satisfied. For two identical
tasks, the earlier task is less expensive than the later task.
When slack time is used for battery rest, it is optimal if it is
used as late as possible. However, for the first task failing
the endurance constraint, the voltage down scaling is better

than the battery rest. We will take account of those proper-
ties in the next section.

Nevertheless, the existing battery-aware scheduling al-
gorithm did not properly consider the implications of some
battery properties, especially non-increasing profile. We
make two remarks as follows. Firstly, a profile in the steep-
est decreasing order is not always optimal, if tasks are de-
pendent on each other and/or their order is imposed by dead-
line constraints (cf. Sect. 2); We cannot exclude the possibil-
ity that downscaling the processing speed for the previous
tasks is more optimal than downscaling the failing (battery
exhausting) task. We need a quantitative measure to con-
struct algorithms. Secondly, while task ordering does not
affect the amount of energy consumption once voltages of
tasks are fixed in terms of energy minimization, it does af-
fect the nominal residual battery capacity, especially when
large task sets are given and multiprocessor platforms are
considered (see Sect. 5). We will construct static voltage
scheduling algorithm by taking those two observations into
consideration.

4. Battery-Aware Voltage Scheduling

A voltage scheduling problem for the battery-powered DVS
system can be formulated as a non-linear optimization prob-
lem (Fig. 2). In this paper, we do not consider task preemp-
tion. The input consists of six ordered sets of voltages S V

on which a system operates, frequency S φ, current S I , re-
lease time S r, duration S Δ, and deadline S d, task depen-
dency graph G, observation time B, battery parameters α, β,
specified in Sect. 3.3, and the number of processors p. The
output consists of two ordered sets representing scheduled
voltage S V∗ and start time S t for each task. S V∗ is uniquely
determined by scheduled current I∗s and/or scheduled dura-
tion Δ∗s.

The objective function to be minimized is σB in the
battery-aware cost function (6). Five constraints are im-
posed: 1) release time, 2) number of processor, 3) depen-
dency, 4) deadline, and 5) current load endurance. First,
release time of each task must be smaller or equal to each
starting time. Second, the number of processes running si-
multaneously must be smaller or equal to the number of pro-

Fig. 2 Battery-aware voltage scheduling problem.
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cessors. Third, the task dependency represented by G must
be preserved. Fourth, the deadline dk for each task k should
be met, and the length of profile must be smaller than obser-
vation time B. Fifth, the battery must survive all the tasks
without battery exhaustion until observation time B.

A voltage scheduling problem is NP-hard, even if tasks
have the fixed-priorities [19]. Therefore, the efficient and ef-
fective heuristics is needed. The energy minimization prob-
lem is in general an instance of the battery-aware energy
optimization problem, since the latter becomes the former
when α, β→ ∞.

We will add the following assumptions and make the
problem simpler. For simplicity we do not consider intra-
task voltage scheduling [15], i.e., in our intertask voltage
scheduling the power and performance are approximated to
be uniform within a single task, as is often assumed. The
arrival time, the deadline, the current, and the dependence
relation are known in advance before execution.

Our major idea is simple greedy heuristics. The objec-
tive function σ reaches its minimum if the equation

∂σ

∂Δ1
=
∂σ

∂Δ2
= · · · = ∂σ

∂Δn
(10)

is satisfied. This equation is obtained by the Lagrange mul-
tiplier method. Here, we assume there is no slack time be-
tween tasks. The performance of the task will be decreased,
so that the energy increase is the most effective. The effec-
tiveness of the energy increase is measured by the decreased
cost per the decreased duration ∂σ/∂Δk. Since we focus on
discrete DVS and configurations, the effectiveness is mea-
sured by

σ∗ − σ
Δ∗k − Δk

. (11)

It should be noted that this expression does not assume any
specific function σ.

4.1 Voltage Scheduling for Uniprocessor Systems

The proposed algorithm consists of two phases (Fig. 3):
I) obtain a feasible solution and II) distribute slack time.

In Phase I, battery-unaware scheduling algorithm with-
out voltage scaling is used. In this paper, we use the earliest
deadline first (EDF) algorithm, but this choice is not essen-
tial. The power is scaled down starting from the highest
power initial solution, which hopefully satisfies the dead-
line constraints. When it does not satisfy the endurance con-
straint, our scheduling algorithm returns “Failure”.

To repair the battery failure, we repeatedly scale down
the speed of the failed tasks or the tasks appeared before
them, in such a way that reduction of their speed by one
level results in the greatest value using the discrete voltage
downscaling effectiveness measure (11) within timing con-
straints (greedy choice). It should be noted that the down-
scaled task is not always the failed task unlike in case of
the scheduling algorithms in [3], where even the failed task

Fig. 3 Battery-aware uniprocessor voltage scheduling algorithm.

is not assigned the lowest voltage. If the task is not a fail-
ing task, the voltage downscaling is not guaranteed to be
superior to the insertion of the battery idle time. But such
slack time tends to be relatively larger compared to our time
range. Therefore, as in [3] and unlike in [2], [13], we do not
consider the insertion of the idle time. If the effectiveness
of DVS evaluated by the discrete voltage downscaling ef-
fectiveness measure (11) is negative, the voltage of the task
is not scaled down. This case never occurs if assumption (9)
holds at any moment. Strictly speaking in our assumption,
due to duration scaling equation (1), it does not always hold,
but the effect is limited and can be ignored when designing
scheduling algorithm.

In Phase II, we repeatedly use the available slack time
by scaling down speeds of tasks to achieve the most effec-
tive decrease of the cost with respect to the discrete voltage
downscaling effectiveness measure (11). Next, we swap the
task order if the result has lower cost without violating the
deadline constraints. We repeat this phase until no tasks can
be swapped. Consideration of batteries is a necessary condi-
tion for this new method of swapping tasks to optimize the
energy efficiency. It should be noted that, if all tasks have
the same release time and deadline, the scheduled subpro-
files are always placed in the non-increasing order [2], [3].

Generally, the energy efficiency is achieved only if σ
has an asymptotic lower bound being the function propor-
tional to an exponential function of Δ, in which exponent x
is greater than one, i.e., σ > Δx (x > 1). If σ is monotonic
with respect to Δ, scaling down the voltage to the next level
is more effective than to any other levels. This observation
justifies the reduction of the speed of the most effective task
by one level at each time.

The proposed algorithm depends on heuristics and thus
it is not guaranteed to return the optimal solution, as we will
see in the next example (Fig. 4). Nevertheless experiments
in Sect. 5 show that for the same task set proposed algo-
rithm results in better schedules when comparing to previ-
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(a) Highest voltage (b) Non-increasing and exclusive
down scaling

(c) Our approach (d) Optimal solution

Fig. 4 Load profiles for tasks in Table 1. The numbers displayed in the
bars are the task numbers and the numbers above them the current in mili-
ampair.

Table 1 Initial task specifications.

Task # Duration (min) Deadline (min) Current (mA)
1 7 18 650
2 5 10 800
3 8 26 400
4 10 38 380

ous works [3].
We do not assume continuity and differentiability of the

objective function, and we can apply our method to the prac-
tical objective functions, most of which are neither continu-
ous nor differentiable, especially when we consider memory
accesses and peripherals.

Table 1 describes an initial task set of aperiodic tasks.
Figure 4 (a) shows the load profile given by EDF schedul-
ing algorithm in the highest voltage setting. The value of
objective function at infinite time σ∞ is 28.0% smaller than
its value at time 38 min, i.e., σ38. The difference shows the
theoretical maximum bound of recovery. This profile re-
turns the worst result among four profiles given in Fig. 4. It
should be noted that to schedule the tasks we used the ob-
jective function at time 38 min.

Figure 4 (b) shows the load profile achieved by two
existing approaches, i.e., non-increasing [3] and exclusive
down scaling [13]. These two accidentally result in the same
profile. Both algorithms assign all tasks to the highest avail-
able voltage, schedule tasks by the battery-unaware algo-
rithm, recover the failure if any occurs by downscaling the
task, and repeatedly distribute the remaining slack to pre-
ceeding tasks whose voltage can be lowered (as the result,
the profile becomes steep) without violating deadline con-
straints.

Figure 4 (c) shows the load profile achieved by the
proposed algorithm. Unlike two previously presented al-

Table 2 Initial task specifications of periodic tasks.

Task # Duration (min) Deadline (min) Current (mA)
1 0.5 2 250
2 0.2 4 100
3 1.0 6 500

gorithms, our algorithm does not always return the non-
increasing profile, as this figure shows. However, both ob-
jective functions σ38 and σ∞ show the improved values.

Figure 4 (d) shows the load profile by the exhaustive
search, resulting in the optimal solution at time 38 min.
While the proposed algorithm is not optimal, even when
there are no task dependencies, objective function obtained
in our approach differs from the optimal solution by at most
4%. Note that the optimal solution was obtained by brute-
force search. The optimal solution does not always result
in a non-increasing order. The simultaneous reduction of
the objective functions at different observation times is by
no means inevitable. In fact, the value of σ∞ in Fig. 4 (c) is
more optimal than one in Fig. 4 (d).

It should be noted that, for the task set in Table 1, pro-
posed algorithm returns more efficient profile than the pre-
viously proposed algorithms. This result implies that, on the
contrary to the intuition described in [3], the non-increasing
scheduling algorithm is not optimal for the case when there
is no task dependency.

4.2 Scheduling Periodic Tasks

The least common multiple (LCM) of the periods of all pe-
riodic tasks is called a hyperperiod. In a conventional volt-
age scheduling problem, the optimal scheduling for each hy-
perperiod is identical and the simple repetition of the opti-
mal profile becomes globally optimal scheduling in terms of
energy consumption. However, in a battery-aware voltage
scheduling, it is not always optimal in terms of the nomi-
nal residual charge due to the non-linearity of the objective
function (see the experimental result in Sect. 5). The optimal
profile for each hyperperiod is not always the same. There-
fore, when the same scheduling is performed periodically,
the superiority of the battery-aware scheduling to battery-
non-aware scheduling is not obvious.

The latter the executed tasks are at a certain observa-
tion time, the more temporal decrease of the battery charge
is observed. On the other hand, such temporal effects of
former tasks are smaller. The most efficient scheduling in
terms of nominal residual battery charge at certain obser-
vation time is not most efficient when the observation time
changes. Therefore, if we can change scheduling online,
to optimize the nominal battery residual charge at the ob-
servation time, at the former periods we would start with
non-battery scheduling. As the time goes by we needed to
be more and more taking battery effects into consideration.

Figure 5 illustrates the comparison of slack utiliza-
tion by three algorithms, for the periodic tasks specified
in Table 2. Profile shown in Fig. 5 (a) is generated by the
level current algorithm [12], which aims to reduce the peak
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(a) Level current profile

(b) Non-increasing profile

(c) Our approach

Fig. 5 Load profiles of the first hyperperiod. The numbers displayed in the bars are the task numbers
and the numbers on them the current in mili-ampair.

power. Figure 5 (b) is substantially improved due to the
non-increasing task ordering achieved by battery-aware pe-
riodic task voltage scheduling algorithm in [3], even though
the peak current is significantly greater than in case of the
level current profile. The objective function σ12, the value
after execution of the first hyperperiod, shows significant
improvement (45.6%). All sequential subprofiles are non-
increasing, but the profile in Fig. 5 (b) still has a lot of un-
used slack time.

The profile produced by the proposed algorithm
(Fig. 5 (c)), in which swapping task ordering plays an im-
portant role, further distributes the slack time. The objec-
tive function σ12 shows the further considerable improve-
ment (33.7% from the non-increasing profile, 63.3% from
the level current profile). The resulting profile of the pro-
posed algorithm does not always have a non-increasing task
ordering. In fact Fig. 5 (c) contains a non-increasing sub-
profile, while the overall tendency is non-increasing. Bet-
ter slack time utilization, however, shows better battery effi-
ciency.

When the same scheduling is repeated for all hyperpe-
riods, schedule A is superior to schedule B at any observa-
tion time if both the nominal and actual loads of schedule
A is smaller than that of schedule B at the end of the hy-
perperiod [2]. In Fig. 5, since the profile of our approach is
superior to the level current profile and non-increasing pro-
file in both nominal and actual loads, our profile is superior
to them for any number of hyperperiods at any observation

time.

4.3 Voltage Scheduling for Multiprocessor Systems

Our multiprocessor voltage scheduling algorithm illustrated
in Fig. 6 is based on uniprocessor voltage scheduling algo-
rithm from Sect. 4.1. We followed the basic idea of mul-
tiprocessor scheduling algorithm in [3]. It consists of two
phases. In Phase I, we use the list based scheduling in
which the first key is deadline in non-decreasing order and
the second key is current in non-increasing order. Since any
task schedule must not violate deadline, the deadline is the
primary key. In addition to the usual deadline order, the
introduction of the non-increasing current order is due to
battery effects that non-increasing order is superior to non-
decreasing order, as we have seen in Sect. 2. The energy op-
timized scheduling is achieved when the task load is equally
distributed to each processor. Therefore, we use worst fit
scheduling. Scaling down of voltage is applied to the most
effective task according to the discrete voltage downscal-
ing effectiveness measure (11), and the tasks following the
downscaled task are replaced in the ready list. Phase II is the
same as in the uniprocessor voltage scheduling algorithm
(Fig. 3). It should be noted that tasks assigned to the dif-
ferent processors are also swapped. It should be noted that
as in uniprocessor algorithms the sharpest load profiles does
not always result in the optimal scheduling algorithm.

For a given taskset presented in Fig. 7, Fig. 8 illustrates



2744
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Fig. 6 Battery-aware multiprocessor voltage scheduling algorithm.

Fig. 7 Input task graph for a multiprocessor system. Each node is
equipped with [A, B,C]: A is the execution time and B is the deadline in
minutes; C is the current in mili-ampair.

Fig. 8 Load profiles of two processors for tasks in Fig. 7. The numbers
displayed in the bars are the task numbers and the numbers above them the
current in mili-ampair.

the result of the proposed algorithm with the inter-processor
communication delay and cost ignored. Overall, the result
shows the non-increasing tendency. For this example, the
proposed algorithm is as efficient as the profile produced by
non-increasing algorithm [3, Fig. 13 (d)].

Table 3 Task specifications.

Task # Name Current (mA)
1 MPEG 208.92
2 DICT206high 186.53
3 TTS206 102.89
4 TTS74high 98.77
5 TTS74low 98.77
6 WAV206high 79.28
7 WAV59 70.71

Fig. 9 Aperiodic task graphs. Each node is equipped with [A, B]: A is
the execution time and B is the deadline in minutes.

Table 4 Loads given by the aperiodic task voltage scheduling for
uniprocessor systems for tasks in Fig. 9.

Algorithm\task sets I II III IV
Exclusive down scaling 3258 3039 3039 5265

Non-increasing 3258 2834 2928 5807
Proposed algorithm 3254 2799 2800 5265

5. Experimental Results

For comparison purposes, throughout this paper, we used
the same task sets as in the existing work [3]. Table 3
shows the current of the real-time applications running on
ITSY [3]. The arrival time of all tasks was assumed to be
time 0 to use the greatest freedom of schedulability, though
our algorithms can be used under the restriction.

Aperiodic tasks on uniprocessor systems. Four task
graphs are presented in Fig. 9: the strictly increasing profile
(Case I), the independent tasks (Case II), and randomly gen-
erated task sets (Case III and IV). The number in the circle
denotes the number of tasks specified in Table 3. Each task
has a pair of duration (min) and deadline (min).

For comparison purpose, we used exclusive down scal-
ing algorithm (ExclusiveDownScaling2(·) in [2, p.304]),
which showed the best result among algorithms described
in [2] for their example task sets, and the profile produced
by non-increasing algorithm [3]. Table 4 shows that all the
resulting profiles of the proposed algorithm were not worse
than exclusive down scaling profiles and non-increasing pro-
files. The proposed algorithm was approximately 2% supe-
rior on average and 3% at the maximum.

Non-increasing algorithm did not return the result for
the long profiles, e.g., 160 identical tasks of task #1 (dura-
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Fig. 10 Periodic task graphs. In Case I and Case II, each node is
equipped with [A] and [A, B], respectively; A is the execution time and
B is the period in minutes.

Table 5 Loads given by the periodic task voltage scheduling at the start
of specified hyperperiod after the targeting hyperperiod for uniprocessor
systems for tasks in Fig. 10.

Algorithm\task sets I II
Observation time 1st 20th 1st 20th
Non-increasing 2013 1534 2198 1939

Proposed algorithm 1705 1234 1918 1663

Table 6 Loads given by the aperiodic task voltage scheduling for
multiprocessor systems for tasks in Fig. 11.

Algorithm\task sets I II III I ×16
# of PE 2 2 2 4

Non-increasing 3764 4924 4168 33160
Proposed algorithm 3760 4603 3195 28378

tion 1 min in the highest voltage, deadline 240 min). Non-
increasing algorithm cannot recover the battery exhaustion,
since it does not take into account downscaling of tasks pre-
ceding failing task. The proposed algorithm, however, suc-
cessfully returned the feasible profile.

Periodic tasks on uniprocessor systems. Figure 10
presents task sets of the same period dependent tasks
(Case I) and the different period independent tasks (Case II).
The results of scheduling were presented in Table 5. The
first column of each case describes the nominal battery load
of a hyperperiod at the end of this hyperperiod (at the start
of the next hyperperiod) and the second column after 20 pe-
riod. In all cases, our profiles are superior to non-increasing
profiles, in the way that the improvement is up to 19.0%,
with an average of 15.5%. Interestingly, in our result, tar-
geting the different periods had the different voltage pro-
files, while in non-increasing profiles those were the same.
The actual loads of our profiles were also superior to those
of non-increasing profiles. Those imply that in those cases
our profiles outperformed non-increasing profiles in terms
of the residual nominal battery charge at any observation
time when the same profiles are repeated.

Aperiodic tasks on multiprocessor systems. We used
voltage scheduling algorithm described in Sect. 4.3. We as-
sumed no time and energy overhead by interprocessor com-
munication. Table 6 shows the objective functions of the
three task sets presented in Fig. 11†. Since non-increasing

†We used the different deadline of tasks to [3], since otherwise
all the tasks can be downscaled within the deadline constraints. We
regarded task 8 of Case I in [3] as task 7.

Fig. 11 Task graphs for multiprocessor systems. Each node is equipped
with [A, B]: A is the execution time and B is the deadline in minutes.

profile in Case I is almost optimal, the difference between
their and our results is limited. However, the improvement
of the proposed algorithm in the independent task sets ap-
pears especially in the large task sets such as in Case IV,
where set consists of 16 times of tasks from Case I with
multiplying each deadline 8 times, and is processed by 4
processors. Our profiles showed 23.3% improvement at the
maximum.

6. Conclusions

We have proposed static voltage scheduling algorithms for
battery-powered DVS systems based on the studied bat-
tery characteristics and our analysis. The proposed al-
gorithms are extensions to the work of Chowdhury and
Chakrabarti [3] and are designed by using greedy heuristics.
Periodic and aperiodic voltage scheduling on uni- and multi-
processor platforms, respectively, outperformed those in the
comparative work [6], [7].
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